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Critical threshold for microtubule amplification through templated severing
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The cortical microtubule array of dark-grown hypocotyl cells of plant seedlings undergoes a striking, and
developmentally significant, reorientation on exposure to light. This process is driven by the exponential
amplification of a population of longitudinal microtubules, created by severing events localized at crossovers
with the microtubules of the pre-existing transverse array. We present a dynamic one-dimensional model for
microtubule amplification through this type of templated severing. We focus on the role of the probability of
immediate stabilization-after-severing of the newly created lagging microtubule, observed to be a characteristic
feature of the reorientation process. Employing stochastic simulations, we show that in the dynamic regime of
unbounded microtubule growth, a finite value of this probability is not required for amplification to occur but
does strongly influence the degree of amplification and hence the speed of the reorientation process. In contrast,
in the regime of bounded microtubule growth, we show that amplification only occurs above a critical threshold.
We construct an approximate analytical theory, based on a priori limiting the number of crossover events
considered, which allows us to predict the observed critical value of the stabilization-after-severing probability
with reasonable accuracy.

DOI: 10.1103/PhysRevE.101.052405

I. INTRODUCTION

Microtubules are a ubiquitous component of the cytoskele-
ton in eukaryotic cells. They are filamentous aggregates of
tubulin dimers reaching lengths of several μm’s. They are
typically part of structures that span the dimensions of the
whole cell, enabling, e.g., their major role in intracellular
transport by providing “tracks” for cargo carrying motor
proteins and cell division where they form the mitotic spindle
responsible for the spatial segregation of the duplicated chro-
mosomes [1]. The fact that during the cell cycle microtubules
can be reassembled into different spatial structures is due to
their intrinsically dynamic nature. They stochastically switch
between phases of growth through polymerization to phases
of shrinkage through rapid depolymerization, a mechanism
that has been dubbed dynamic instability [2]. A direct con-
sequence of this mechanism is that microtubules have a finite
lifetime, as they can shrink away, and therefore need to be
actively (re)nucleated to sustain their overall number. Cells
achieve control over the microtubule structures they build by
manipulating the nucleation and dynamics of microtubules in
space and time, using specific nucleating complexes and a host
of microtubule-interacting proteins (MAPS) [3].

Growing plant cells have a unique microtubule structure
called the cortical array. The cortical array is an assem-
bly of mutually aligned microtubules localized close to the
cell membrane that almost homogeneously covers the inside
surface of the cell. Generically the preferential direction of
the cortical microtubules is transverse to the long axis of
the cell. This is crucial to their function, as they guide the
anisotropic deposition of cell-wall building polymers, which
in turn allows the cell to grow along a single expansion axis.
In this way the cortical array drives the dominant mode of
morphogenesis in plants, which is the formation of linear
extensions, like roots, stems and branches. However, it is

known that this generic growth scenario can be modulated by
hormonal, mechanical and other environmental signals [4]. A
striking example of this type of modulation is the reorientation
of the cortical array of dark-grown hypocotyl (stem precursor)
cells after exposure to blue light [5]. This effect is highly rel-
evant, as the developmental program of the plant must change
dramatically, once the hypocotyl, which typically emerges
from a buried seed, first reaches the sunlight. It is believed
that the observed reorientation from the transverse to the
longitudinal orientation of the cortical array is associated with
the arrest of further growth, and the subsequent differentiation
of the cells.

The light-induced reorientation of the cortical array is
mediated by the microtubule severing protein katanin. It has
been shown to localize at the crossover between differently
oriented cortical microtubules and, moreover, to preferentially
sever the overlying microtubule, i.e., the one that crossed over
a pre-existing one. As the underlying microtubule is most
likely to be a transversely oriented microtubule from the pre-
exposure state and severing effectively multiplies the number
of microtubules, this effect can rapidly create an exponentially
growing population of longitudinal microtubules. In this way
the original transverse cortical array serves as a template for
the reorientation toward a longitudinal array.

Recent experiments involving a number of mutants in
which the reorientation effect is impaired have shown that
there is an important role for the propensity of the newly
created plus end of the lagging microtubule to immediately
switch to the growing state, a process which in vivo is
mediated by the prominent MAP CLASP [6]. This specific
function of CLASP appears to have evolved, as the default
outcome of a severing event is the creation of a shrinking plus
end of the lagging microtubule [7]. In particular, Lindeboom
et al. [6] experimentally showed that the concentration of
CLASP at severing sites is positively correlated with the

2470-0045/2020/101(5)/052405(15) 052405-1 ©2020 American Physical Society

https://orcid.org/0000-0002-5425-9101
https://orcid.org/0000-0002-8620-5749
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.052405&domain=pdf&date_stamp=2020-05-19
https://doi.org/10.1103/PhysRevE.101.052405


MARCO SALTINI AND BELA M. MULDER PHYSICAL REVIEW E 101, 052405 (2020)

stabilization of the newly created plus end after severing
and, therefore, with its immediate growth. Indeed, in higher
plants, CLASP localizes not only at growing plus ends but
also along the lattice of microtubules [8], where severing
events take place. Furthermore, stochastic simulations of a
simplified model of the reorientation mechanism, showed that
the degree of amplification of the numbers of microtubules
due to severing increases monotonically with the probability
of the so-called stabilization-after-severing of the lagging plus
end [6]. However, the dynamic parameters of the microtubules
measured in the experiments suggest that, at least in the
initial phase of reorientation, the microtubules are in the so-
called unbounded-growth regime [9]. Since in this regime the
microtubules in principle are very long lived on the timescale
of the reorientation, this raises the question to what extent
stabilization-after-severing is in fact a necessary ingredient of
the mechanism. Unfortunately, as all microtubules experimen-
tally studied were in the unbounded-growth regime, there are
no data about the reorientation process in the bounded-growth
regime. However, one can argue that, as the total amount
of tubulin in the cell is finite, the unbounded-growth and
amplification of microtubules cannot be sustained indefinitely,
as the pool of available tubulin to drive polymerization is
inevitably depleted. This would cause the growth speed of the
microtubules to decrease, effectively driving them back to the
bounded-growth regime. To fully understand the reorientation
process we thus need to disentangle the role of the microtubule
growth state from that of the probability of stabilization-after-
severing, and this is the main aim of this paper. We approach
this problem using a combination of stochastic simulations
and analytical theory, which together allow us to fully char-
acterize the requirements for the amplification of longitudinal
microtubules to occur.

The structure of the paper is as follows. In Sec. II we
introduce our dynamic model of longitudinal microtubules
undergoing dynamic instability and severing in the presence
of a grid of stable transverse microtubules. We then briefly
review some of the main features of Dogterom-Leibler model
for microtubules undergoing dynamic instability [9], on which
our model is based. In Sec. III we show how, for microtubules
in the unbounded-growth regime, while not a necessary in-
gredient, the probability of stabilization-after-severing does
dramatically affect the speed and ultimate success probability
of amplification of the longitudinal microtubule population.
Then we extend our treatment to the bounded-growth regime,
showing that in this case amplification can occur provided that
the probability of stabilization-after-severing exceeds a criti-
cal threshold. Finally, we calculate the critical value for the
probability of stabilization-after-severing using a combination
of analytical calculations and computer simulations. To that
end, we introduce an approximate theory in which each micro-
tubule can experience at most two crossovers, allowing an an-
alytical determination of the contribution of the probability of
stabilization-after-severing to the probability that the creation
of a crossover actually leads to a severing event and hence
contributes to the amplification. In order to do so, we develop
a novel approximate technique to calculate the first-passage
time distribution (FPTD) for the microtubules to reach rela-
tively close targets, which has potential application for study-
ing first-passage time problems in other systems as well.

II. THE MODEL

A. Dynamic model

In order to better understand the importance of the prob-
ability of stabilization-after-severing for the reorganization
mechanism of the cortical microtubule array, we introduce
a stochastic model of longitudinal microtubules undergoing
dynamic instability in a one dimensional grid of transverse
microtubules. We limit our study of the system only to the
first stage of the reorientation process, i.e., the first 500 s, for
three distinct reasons. First, since prior to the exposure to light
the transverse array consists of relatively long microtubules
which would take significant time to depolymerize to a degree
affecting our proposed mechanism, the array can in the initial
stage of this process be regarded as a constant background
structure, while for longer time periods it begins to “dissolve”
due to ongoing depolymerization, and therefore its dynamics
can no longer be ignored. Second, experiments have shown
that, while the full reorientation of the microtubule array
requires from 30 to 60 min to complete, the amplification of
the number of longitudinal microtubules typically takes place
in the first 10 min after the exposure to blue light [6]. Finally,
given that our model produces an exponentially increasing
number of microtubules (see Sec. III), running the required
simulations for more than 500 s would be computationally too
costly.

The model consists of a single longitudinal microtubule
undergoing dynamic instability in the one dimensional grid
of stable, transverse microtubules with constant spacing d be-
tween neighboring filaments [10]. According to experimental
observations, where the angle between differently oriented
microtubules is very close to 90◦, we assume that all longitu-
dinal microtubules are exactly perpendicular to the transverse.
The microtubule is nucleated at position x = 0 with plus end
in the growing state with growing speed v+, and it can switch
to shrinking state with constant catastrophe rate rc. Once it
is in the shrinking state, either its plus end shrinks back to
position x = 0 and dies, or it undergoes a rescue with constant
rate rr , switching back to the growing state.

Every time the plus end reaches a transverse microtubule,
i.e., when its position is x = nd with n ∈ N, it creates a
crossover. This crossover can be resolved in two distinct
ways: either it is removed by the shrinkage of the microtubule
due to its dynamic instability, or it survives long enough to
lead to a severing event. Whether or not the severing event
occurs is determined not only by the dynamic instability of
the longitudinal microtubule, but also by an intrinsic severing
waiting time distribution at the crossover that can be, in
principle, arbitrary. This distribution accounts for the fact
that katanin requires a certain amount of time to localize
at crossovers and be properly assembled before being able
to sever microtubules. We choose this severing waiting time
distribution to be of the form

Wk,θ (t ) = t k−1

θ k�(k)
e− t

θ , (1)

i.e., the gamma probability density function [11], where

γ (k) =
∫ ∞

0
ds sk−1e−s, (2)
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FIG. 1. Schematic of the model of longitudinal microtubules undergoing dynamic instability in a grid of stable transverse microtubules.
After a crossover creation, a competition between the intrinsic severing waiting time and crossover removal due to dynamic instability takes
place. If severing occurs, then the newly created plus end is rescued with probability p+.

is the Euler gamma function, k is the shape, and θ is the
scale parameter of the distribution. We adopted the value
k = 7, as this value was shown to provide a good fit to the
experimentally measured severing waiting time distribution
[6]. However, we stress that the choice for a specific form
of the distribution is a pragmatic one, and in the absence
of further insight into the details of the molecular processes
that lead up to a severing, we cannot speculate whether this,
e.g., is in fact evidence for an underlying seven-step Poisson
process, which potentially could explain the specific form of
the distribution (1). This would require further investigations
aimed at understanding the full mechanism of the severing
process driven by katanin.

When a severing event occurs, the former long microtubule
is split in two shorter microtubules, both of them keep un-
dergoing dynamic instability and can create new crossovers
and being severed again, in order to amplify the number
of longitudinal microtubules. Hereafter, we adopt the con-
vention of calling the “lagging” microtubule as being the
newly created one, while the “leading” microtubule, with the
unperturbed original plus-end as the original one, consistent
with the fact that the severing events increases the number of
microtubules by 1. The newly created plus end of the lagging
microtubule either is stabilized and it enters the growing state
with probability p+, or it enters the shrinking state with prob-
ability 1 − p+. The newly created minus end of the leading
microtubule is now positioned at the severing point and in
a stable state, consistent with the experimental observation
that the stability of microtubule minus end is promoted by the
presence of SPIRAL2 protein, which tracks the minus end of
microtubules and prevent them from subunit loss [10], while
no changes are applied to its plus end, see Fig. 1.

B. Microtubule behavior in the interstitial strip

After the creation of a crossover and before the creation of
a second one, the dynamics of the plus end of a microtubule
is described by the Dogterom-Leibler model for microtubules
undergoing dynamic instability [9]. We are aware that several

effects in microtubule dynamics have been reported that go
beyond this widely adopted basic model, such as a time-
dependent increase in catastrophe rate due to microtubule
ageing (see, e.g., Ref. [12] as well as a time-dependent in-
crease in rescue rate due to microtubule healing (see, e.g.,
Ref. [13]), we posit that these effects are secondary in nature,
and as such beyond the scope of the present model, which
aims at establishing basic principles. Notice that the dynamics
of the plus end is not influenced by eventual severing events.
Therefore, as long as the plus end is at x ∈ (nd, (n + 1)d ),
we can study the property of the correspondent microtubule
undergoing dynamic instability in a strip of width d as if its
length is l = x − nd .

In the non-confined-in-a-strip case, the model has two pos-
sible solutions for the probability distribution of microtubule
length: in the bounded-growth regime, defined by the relation
l > 0, with

l =
( rc

v+ − rr

v−
)−1

, (3)

the steady-state solution is reached, and the length distribution
is an exponential decay proportional to e−l/l , while in the
unbounded-growth regime the average length of microtubules
grows linearly in time, with the length distribution that is well
approximated by a Gaussian-like function [9].

When microtubule dynamics is confined in a strip of a
finite width, however, both the bounded and the unbounded-
growth regimes lead to a steady-state solution for the length
distribution that is proportional to e−l/l . Notice that, in the
unbounded-growth regime case, l is no longer positive, and
hence the distribution is exponentially increasing [14]. Gen-
eral features regarding the lifetime distribution and the split-
ting probabilities of microtubules in the Dogterom-Leibler
model can be found in Appendix A.

Given our specific interest in studying the properties
of the system in both the bounded and the unbounded-
growth regime, we have chosen two sets of dynamic pa-
rameters: For the bounded-growth case parameters are cho-
sen accordingly to previous observations [15], while for the
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TABLE I. Model parameters.

Numerical value Numerical value
Parameter Description (bounded-growth) (unbounded-growth) Units

v+ Growth speed 0.1 0.103 μm s−1

v− Shrinkage speed 0.25 0.225 μm s−1

rc Catastrophe rate 0.02 0.0058 s−1

rr Rescue rate 0.02 0.026 s−1

p+ Probability of stabilization-after-severing Tuned Tuned —
d Spacing between neighbors 1.5 1.5 μm
θ Scale parameter of � distribution 8.5 8.5 s
k Shape parameter of � distribution 7 7 —

unbounded-growth case, both dynamic parameters and grid
parameters are those that have been directly measured for the
WT case by previous experimental works [6], see Table I.

III. RESULTS

A. Amplification in the unbounded-growth regime

We already partially studied the model introduced in Sec. II
computationally for microtubules in the unbounded-growth
regime in earlier work [6]. There, the model was used to show
that the major contribution to the speed of amplification of
longitudinal microtubules was the probability of stabilization-
after-severing p+ rather than the intrinsic rescue rate rr of
microtubules.

Here we perform an in-depth study of the response to
the system to the change of p+. We will show that in the
unbounded-growth regime, although the value of p+ is indeed
crucial for determining the speed of amplification, a nonzero
value of p+ is in fact not required for amplification to occur.
This seemingly counterintuitive result will be explained later
in terms of the dynamic properties of the unbounded-growth
regime.

Our simulations consist of N = 105 trials in which a single
longitudinal microtubule undergoes dynamic instability in the
whole grid of transverse microtubules. For every trial we keep
track of the fate of the initial microtubule and its offspring
until either no more microtubules are present, i.e., they all
have shrunk to length zero, and we call this possible output
extinction, or, for every trial that did not result in an extinction,
the number of microtubules is exponentially increasing, and
we call this second possible output amplification.

Figure 2(a) shows that for our choice of dynamic param-
eters, the speed of amplification increases with p+. Further-
more, we notice from Fig. 2(b) that greater values of p+
correspond to lower extinction probabilities, suggesting that
a good stabilization-after-severing entails a double effect: It
not only increases the speed of amplification but also makes
the amplification occur more likely.

The interesting result that in the unbounded-growth regime
even the p+ = 0 case leads to an overall amplification can
be explained by an intrinsic property of the regime itself.
Indeed, although every severing event shortens the length
of the severed microtubule, its plus end is not affected by
such an event. Consequently, the dynamic properties of the
leading microtubule are not changed by the severing, and so it
applies to the microtubule lifetime as well. Since, on average,

the length of microtubules in the unbounded-growth regime
grows as

J = rrv
+ − rcv

−

rr + rc
t, (4)

it follows that the average lifetime of microtubules is infinite
[9], and therefore there is no upper bound for the number
of severing events that a microtubule can undergo. Indeed,
a shrinking microtubule in this regime always has a finite
probability to switch back from the shrinking to the growing
state, and fully recover any amount of lost length, regardless
of p+.

B. Amplification in the bounded-growth regime

In this section, we address the question whether the ampli-
fication occurs regardless of p+ in the bounded-growth regime
as well as in the unbounded-growth case. To do so we perform
computer simulations for microtubules in the bounded-growth
regime (see Table I) to show that p+ needs to be greater
that a certain critical value p+

crit in order have amplification.
Moreover, using a combination of computer simulations and
analytical calculations we identify such a critical value as a
function of the other model parameters.

1. Critical point in simulations

By tuning the probability of stabilization-after-severing p+
from 0 to 1, we observe two different behaviors, see Fig. 3(a):
For lower values of p+ the average number of microtubules
exponentially decays in time (extinction), while for higher
values of p+ the number of microtubules exponentially in-
creases (amplification). It follows that there exists a critical
threshold for p+ above which the average output is amplifica-
tion. For our choice of model parameters, the computationally
measured critical value is p+

crit � 0.36. Therefore, if we define
the amplification probability as the fraction of trials the output
of which is amplification, then we observe that below the
critical threshold the amplification probability is zero, while
it is greater than zero otherwise, see Fig. 3(b).

2. Calculation of the critical point

When microtubule is created through a severing event,
either it shrinks to length zero and dies or it is severed a
sufficient number of times to create an offspring of new
lagging microtubules. If the size of such an offspring is, on
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FIG. 2. (a) Time evolution of the number of longitudinal microtubules for four different values of p+. They all exhibit amplification.
(b) Extinction probability as a function of time. It represents the fraction of trials in which, after a certain amount of time, all microtubules
have completely depolymerized. Results are averaged over N = 105 simulation.

average, greater than 1, then the output is amplification. In
other words, if M is the number of severing events that a newly
created microtubule undergoes, then amplification occurs if,
on average,

M > 1. (5)

To fix the ideas, suppose that a microtubule is created by
severing with initial length x = d . Then, with probability p+,
it is initially created in the growing state and consequently
with probability 1 − p+ in the shrinking state. It follows
that the size of the offspring of the mother microtubule can
be written as M = p+M+ + (1 − p+)M−, where Mσ is the
size of the offspring of a microtubule created in the state
σ . However, since a shrinking microtubule with plus end at
x < d cannot be severed, M− equals M+ times the probability
that the shrinking microtubule recovers the length at birth d ,
i.e., M− = R−

d (d )M+, where R−
d (d ) is the splitting probability

defined in the Appendix A. Hence, the condition expressed in
Eq. (5) can be rewritten as

M = [p+ + (1 − p+)R−
d (d )]M+ > 1. (6)

By solving the equality related to Eq. (6) we can find the
critical value of p+ = p+

crit above which amplification takes

place

p+
crit = 1 − R−

d (d )M+

(1 − R−
d (d ))M+ . (7)

As p+
crit can only take allowed values between 0 and 1, depend-

ing on M+ and R−
d (d ), situations exist in which amplification

cannot occur and others in which it always occurs. Indeed,
from Eq. (7), we immediately see that if M+ < 1 then p+

crit >

1, i.e., if the average size of the offspring of mother micro-
tubules born in growing state is smaller than 1, amplification is
impossible. On the other hand, if M+R−

d (d ) > 1, or M− > 1,
then it follows that p+

crit < 0, i.e., if the average size of the
offspring of mother microtubules born in the shrinking state is
greater than 1, then amplification always occurs.

It is important to underline that, in our discussion, we
assumed that all microtubules were born with initial length d .
This choice implies that all severing events occur at the first
crossover. However, given the stochastic nature of the system
and of the severing waiting time probability of Eq. (1), it is
possible that a severing event occurs further in the grid than at
the first crossover of a microtubule. In other words, the initial
length of a newly created microtubule can be x = nd , with
n > 1.
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FIG. 3. (a) Time evolution of the number of longitudinal microtubules for three different values of p+. One leads to amplification (blue
line), one to extinction (black line), and one corresponds to the critical behavior (red line). (b) Amplification probability as a function of p+.
Amplification probability is nonzero for p+ larger than p+

crit � 0.36. Results are averaged over N = 105 simulation.
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TABLE II. Comparison p+
crit vs. pcrit,(1) vs. pcrit,(2) for different sets of dynamic parameters as v+, v−, rc, and rr . All other model parameters

are those of Table I. �p+
(1) = p+

crit−p+
crit,(1)

p+
crit

and �p+
(2) = p+

crit−p+
crit,(2)

p+
crit

represent the relative error of the one and two-crossovers theory to the

computationally measured critical value for the probability of stabilization-after-severing.

Simulations 1-cross. approximation 2-cross. approximation

Dynamic parameters Critical point Critical point Relative error Critical point Relative error

v+ v− rc rr p+
crit p+

crit,(1) �p+
(1) p+

crit,(2) �p+
(2)

(μm s−1) (μm s−1) (s−1) (s−1) — — — — —

0.10 0.250 0.020 0.020 0.360 0.316 0.122 0.361 0.003
0.08 0.275 0.016 0.022 0.338 0.297 0.121 0.337 0.003
0.15 0.225 0.020 0.020 0.142 0.108 0.239 0.144 0.014
0.10 0.250 0.030 0.015 0.882 0.819 0.071 0.864 0.020
0.10 0.250 0.015 0.030 0.089 0.068 0.236 0.103 0.157
0.10 0.250 0.030 0.015 0.800 0.733 0.084 0.780 0.025
0.10 0.275 0.020 0.030 0.285 0.240 0.158 0.285 0.000
0.10 0.250 0.010 0.020 0.054 0.041 0.241 0.066 0.222
0.08 0.225 0.015 0.025 0.208 0.179 0.139 0.213 0.024
0.12 0.225 0.020 0.025 0.175 0.140 0.200 0.179 0.023
0.08 0.250 0.002 0.020 0.510 0.455 0.108 0.497 0.025

In this case, we need to add into the count of the size
of offspring of a mother microtubule all cases in which a
microtubule that is born with initial length nd , n > 1, it is
also severed at (n − 1)d , (n − 2)d , . . . . We consider the
microtubules created by this mechanism as direct daughter
microtubules of the mother microtubule we are measuring the
size of the offspring of. To that end, we first define mi via
M+ = 1

N

∑N
i=1 mi as the number of microtubules generated

by the mother microtubule labeled by i, and N is the number
of microtubules we keep track of the fate. Then, we denote
the number of severing events the microtubule i undergoes
with si, and the position of the crossover at which the first
severing takes place with c ji , with the rule: c ji = n − 1 if the
severing occurred at nd . Since after a severing event at nd
the crossovers at kd , k < n, can be removed by either shrink-
age or severing, we define bcji

as the number of crossovers
that are resolved by shrinkage. Therefore

mi = si +
si∑

ji=1

[
c ji − bcji

]
. (8)

Notice that bcji
depends on p+, as it depends on the be-

havior of the plus end after severing of the newly created
microtubule. Consequently, the right-hand side of Eq. (7)
exhibits a dependency on p+. Hence, we need to find the
exact dependency on p+ of bcji

. To avoid the problem, in first
approximation we set bcji

= 0 for every c ji . In this way, we

can computationally measure m(1)
i ≡ si + ∑si

ji=1 c ji , and we
use Eq. (7) to give a first estimate of the critical probabil-
ity p+

crit,(1), see Table II. We refer to this approximation as
one-crossover approximation. From the table we notice that,
although this approximation gives a reasonable prediction
for the critical probability of stabilization-after-severing, it
systematically underestimates it.

Analytically, one can calculate bcji
only under the condi-

tion that a severing event at nd always implies the resolution
of the crossovers at d , 2d , . . . , (n − 2)d through a severing
event, while the crossover at (n − 1)d can be resolved by

either severing or shrinkage. Therefore, if we denote the
probability of resolving this crossover with a shrinkage as
pcr (p+), we have

bcji
= (

1 − δc ji ,0
)
pcr (p+). (9)

The Kronecker function δc ji ,0
of Eq. (9) accounts the fact

that if the severing happens at d (i.e., c ji = 0), then no other
crossovers are removed by either severing or shrinkage. If
we plug Eq. (9) into Eq. (8), then we can now calculate an
approximate expression for M+, i.e.,

M+
(2) = 1

N

N∑
i=1

m(2)
i

= 1

N

N∑
i=1

⎡⎣si +
si∑

ji=1

c ji − pcr (p+)
si∑

ji=1

(1 − δci,0)

⎤⎦. (10)

The detailed derivation of Eq. (10) can be found
in the Appendix B. Finally, if we define M+

(1) =
1
N

∑N
i=1 [si + ∑si

ji=1 c ji ], S = 1
N

∑N
i=1 si, and 〈1 − δci,0〉 =

1
si

∑si
ji=1 (1 − δc ji ,0

) (see Appendix B), then we can rewrite
the condition (6) for microtubule amplification as

M = [p+ + (1 − p+)R−
d (d )]

×
[

M+
(1) − pcr (p+)S

1

N

N∑
i=1

〈1 − δci,0〉
]

> 1. (11)

The resolution of the equation associated to this inequal-
ity provides the critical threshold for the probability of
stabilization-after-severing p+

crit,(2) in order to have amplifica-
tion. We refer to this approximation as two-crossovers approx-
imation. The expression (11) contains two quantities, M+

(1)
and S, that cannot be analytically calculated but can be easily
measured with computer simulations. On the other hand, in
the following sections we are going to analytically calculate
the terms pcr (p+) and 1

N

∑N
i=1 〈1 − δci,0〉. In this way, we
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FIG. 4. (a) Legal and (b) illegal path for a microtubule to reach the target at a distance d in a first-passage time T . Only one catastrophe
and one rescue are allowed. [(c)–(f)] Comparison between simulations (red dots) and theory (blue line) for the nondirect part fd (t ) of the
first-passage time distribution. [(b) and (c)] Our theory nicely fits simulations for relatively close targets (d = 1.5 μm, d = 6 μm), [(d) and
(e)] while it is not very good for more distant targets (d = 30 μm, d = 60 μm).

will make a better prediction off the critical probability of
stabilization-after-severing in order to have amplification.

C. Analytical approach

In this section we are going to calculate the critical proba-
bility of stabilization-after-severing. To that end, we first need
to calculate pcr (p+) and 1

N

∑N
i=1 〈1 − δci,0〉. In order to do so,

and because of the complexity of the model, we make the
approximation that the entire grid of transverse microtubules
is replaced by just two transverse microtubules. This reduces
the total number of possible crossovers to two. Therefore,
we first calculate the FPTD for a longitudinal microtubule
to create a crossover with a transverse, as we will need
it for the formulation of our two-crossovers approximation.
Then, we give some analytical results of the one-crossover
approximation already introduced in the previous section.
Finally, we present the two-crossovers approximation and we
show that we can use it to calculate the critical probability of
stabilization-after-severing with a good degree of accuracy.

1. The first-passage time distribution

The creation of new crossovers for a microtubule under-
going dynamic instability is intimately linked to a FPTD
problem for the same microtubule to reach a target. Here we
face this problem by making use of an approach where we
consider all possible legal paths to reach the target, given the
knowledge of the time needed to reach it.

The first-passage time problem for a microtubule to reach
length x1 starting from x0 in the absence of severing can be
seen as a reverse lifetime problem, in the sense that in place
of studying the reaching of the target at x1 we study the

survival of the microtubule until it arrives at x1, as if it is
shrinking from x0 to x1. In this way, the growing speed of
the microtubule acts as its shrinking speed, its catastrophe
rate as the rescue rate, and vice versa. However, with this
approach we assume that a microtubule “shrinking” from x0

can undergo a “rescue” and grow beyond the initial position
x0. This means that the microtubule assumes negative length.
To avoid this, we need to take into account only the paths from
x0 to x1 that never shrink below x0. Hence, if Lσ (t |x1 − x0) is
the lifetime distribution for microtubules with initial length
x1 − x0 and initial state σ (see Appendix A), then we define

Ltarget
σ (t, x1 − x0) = Lσ (t |x1 − x0)|

v± → v∓
rc ↔ rr

, (12)

as the FPTD to reach the target, including the possibility of
assuming negative length. Therefore, this function must be
rescaled by the number of legal paths �x0→x1 (t ) that reach
the target x1 at time t , without ever shrinking back to x < x0,
calculated over all possible paths that arrive at x1 at time t , see
Figs. 4(a) and 4(b).

For our purpose, the target to reach is a transverse mi-
crotubule for the creation of a new crossover, the position
of which is at distance d from the starting point, i.e., the
previous transverse microtubule. Typically, for the range of
values of Table I, every plus end that impinges on a trans-
verse microtubule starting from the previous one either it
does so without undergoing any catastrophe or it undergoes
one catastrophe and a subsequent rescue. For the dynamic
parameters we are considering, the occurrence of multiple
catastrophe-rescue events is very unlikely. Indeed, once a mi-
crotubule undergoes a catastrophe, the probability of reaching
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the target after a single subsequent rescue can be roughly es-
timated as (1 − e−rr d/v−

)e−rcd/v+ � 0.08, where p = e−rcd/v+

is the probability of reaching the target without any catas-
trophe [16]. On the other hand, the occurrence of a second
catastrophe-rescue event pair can be roughly estimated as

(1 − e−rcd/v+
)(1 − e−rr d/v−

)
2
e−rcd/v+ � 0.002. Therefore we

assume that all paths are either direct - no catastrophes, or
indirect - one catastrophe and one rescue.

Given the constant growing and shrinking speeds, the
amount of time that a microtubule needs to reach the target
at d is given by the time needed to reach it in absence of
any catastrophe, added to the time spent from a catastrophe to
the moment when the original length before the catastrophe
is restored. Mathematically, if Td is the first-passage time
and �x(Td ) is the distance walked by the plus end from the
catastrophe to the subsequent rescue, then the equation

Td = d

v+ + �x(Td )

(
1

v+ + 1

v+

)
, (13)

holds. From Eq. (13) we can find the expression for �x(T ) =
v+v−

v++v− (T − d
v+ ).

Since catastrophes are modelled as Poisson events, if a
catastrophe occurs, the probability that it occurs does not
depend on the distance from the target. Therefore, the fraction
of legal paths can be written as �0→d (T ) = 1 − �x(T )

d , and,
finally, the FPTD as

F0d (t ) = Ltarget
σ (t, d )�0→d (t )�

[
d

(
2

v+ + 1

v−

)
− t

]
, (14)

where the Heaviside θ is imposed to allow at most one
catastrophe-rescue event.

In order to separate direct paths from indirect paths, it is
convenient to split F0d (t ) in two parts, and rewrite it as

F0d (t ) = δ

(
t − d

v+

)
e−rct + f0d (t ), (15)

where the term multiplied by the delta function accounts
for direct paths, while f0d (t ) accounts for indirect paths.
From Appendix A that microtubules reach the target with
probability R+

d (x). Therefore F0d (t ) is normalized to R+
d (x)

and, as a consequence, the relation∫ ∞

0
dt f0d (t ) = R+

d (0) − e− rcd
v+ (16)

holds.
We run N = 106 simulations of microtubules undergoing

dynamic instability in a strip of width d , and we create
the histogram of the arrival times for the microtubules that
reach the target with an indirect path. These simulations are
independent from those performed in Sec. III A and Sec. III B.
Indeed, here we only keep track of the time needed by
single microtubules to reach a target at distance d , and no
severing events are involved. Figures 4(c) and 4(d) shows
that the approximation of only one catastrophe-rescue event
is a good approximation when the target is relatively close
compared to the dynamic parameters of the microtubules,
while it apparently fails when the target is more distant, see
Figs. 4(e) and 4(f). However, it is convenient to point out that,
for d � l , we observe a very few arrivals at the target, since

from Eq. (A1) we notice that the arrival probability R+
d (0)

decays as e−d/l . On the other hand, in the unbounded-growth
regime, since a fraction 1 − rcv

−
rrv+ of the microtubules always

arrives at the target, for distant targets the approximation of
one catastrophe-rescue event is no longer accurate.

2. One-crossover theory

Naïvely, one can think that once a crossover is created, the
probability p(1)

sev of resolving it with a severing event is given
by the competition between two independent events: micro-
tubule lifetime, expressed by the random variable T+(x) with
density function given by Eq. (A5), and severing waiting time
at the crossover, with random variable τd and density function
defined in Eq. (1). Then, if we define the random variable t =
τd − T0, we can calculate its probability density function by
using the relation Pz(z = x + y) = ∫ +∞

−∞ dz′ Px(z − z′)Py(z′),
where Pi is the probability density function of the random
variable i = x, y, z, and x and y are independent random
variables. In our case, the probability density function is

Pτd −T+(0)(t ) =
∫ +∞

−∞
dt ′ Wk,θ (t + t ′)L+(t ′|0). (17)

Hence, the probability that the event “severing” happens
before the event “return” is P [t < 0] = ∫ 0

−∞ dt Pτd −T+(0)(t ).
This probability is not yet the probability of resolving a
crossover with a severing event: Indeed, microtubules in the
unbounded-growth regime have a finite probability of growing
indefinitely. For those, the lifetime T+(0) → ∞ is infinite.
Therefore, the probability of resolving a crossover with a
severing event is

p(1)
sev = S+(∞|0) + [1 − S+(∞|0)]

∫ 0

−∞
dt Pτ0−T+(0)(t ), (18)

where S+(∞|0) is the ultimate survival probability defined
in the Appendix A. As a consequence the probability of
resolving a crossover with a shrinkage is

p(1)
shrink = 1 − p(1)

sev. (19)

However, with this approach we neglect the number of
crossovers removed by shrinkage after the severing at a sec-
ond crossover and, therefore, the dependency on p+. In other
words, the one-crossover theory does not take into account
that some microtubules that would have been severed at d are
not anymore severed there because an eventual severing at nd ,
n > 1, can in principle shorten their lifetimes and make them
shrink below d , resulting in the resolution of the crossover by
a shrinkage induced by the severing at nd , see Fig. 5.

3. Two-crossovers theory

In order to take into account the influence of a crossover on
the resolution of the previous one, we calculate the probability
of resolving a crossover with a severing event in a scenario
in which we have two transverse microtubules, at position
d and 2d , respectively. We make the further approximation
that a microtubule cannot be severed two times at the same
crossover. We denote the probability of having a severing
event at d with p(2)

sev and, consequently, the probability of
resolving a crossover with shrinkage with p(2)

shrink = 1 − p(2)
sev.
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FIG. 5. Schematic of the full one-crossover theory (a). The newly created crossover can be resolved either by the shrinkage of the plus
end below the crossover itself (lower blue square) or by the severing at crossover (upper blue square). Schematic of the full two-crossovers
theory (b). The first crossover created can be resolved either by the shrinkage of the longitudinal microtubule with probability p(2)

shrink (sum of
all paths that bring to the lower blue square) or by the severing at crossover with probability p(2)

sev (sum of all paths that bring to the upper blue
square). Whether the severing at the first crossover occurs or not also depends on what happens at the second crossover: A severing event at
the second crossover alters the dynamic instability of the lagging microtubule, and hence its probability of shrinking before being severed at
the first crossover.

Figure 5(b) shows the three distinct ways in which the
newly created crossover at d can be resolved by shrinkage
or severing: (1) The microtubule shrinks (is severed) without
reaching 2d , (2) the microtubule shrinks (is severed) after
reaching 2d but without being severed there, and (3) the
microtubule shrinks (is severed) after reaching 2d and after
being severed there. The third case bears a dependency on p+.

We first notice that p(2)
shrink can be split in two probabilities,

i.e., p(2)
shrink = qsev + qshrink, where qsev is the probability of

shrinkage after severing at 2d [path −→−→↙ of Fig. 5(b)],
while qshrink is the probability of shrinkage without any sev-
ering [paths −→↓ or ↘ of Fig. 5(b)]. Furthermore, since qsev

depends on the dynamic behavior of the microtubule just after
the severing event, it carries a dependency on p+ and can
be split again in qsev(p+) = p+qsev,+ + (1 − p+)qsev,−, where
qsev,σ is the probability of shrinkage after being severed at 2d
with the newly created plus end in the state σ . The derivation
of qsev,σ can be found in Appendix C.

As regards the probability qshrink that microtubules shrink
below d without being severed there, we observe that such a
probability accounts all cases in which crossovers are resolved
by shrinkage in absence of the crossover at 2d , i.e., p(1)

shrink,
except for those cases in which microtubules that in principle
would have shrunk back, do not have enough time to do so
because they are severed at 2d . We denote this probability
with qns, and hence qshrink = p(1)

shrink − qns. The derivation of
qns can be found in Appendix C.

Therefore, the final expressions for the probabilities of
resolving a crossover with a severing and with a shrinkage
are

p(2)
shrink (p+) = p(1)

shrink − qns + qsev(p+), (20)

p(2)
sev(p+) = p(1)

sev + qns − qsev(p+). (21)

Note that qsev(p+) can be rewritten as

qsev(p+) = qsev,− − (qsev,− − qsev,+)p+,

where the term in the braces is always positive. Indeed,
since a microtubule initially in the growing state takes more
time to completely depolymerize than a microtubule in the
shrinking state, its probability of resolving the crossover at
d before being severed there is smaller than in the opposite
case. Consequently, from Eq. (21) the probability p(2)

sev(p+)
of resolving a crossover with a severing event grows linearly
with p+.

By making use of this two-crossovers theory, we finally
give a new estimate of the critical probability of stabilization-
after-severing by calculating the probabilities pcr (p+) and
1
N

∑N
i=1 〈1 − δci,0〉 of Eq. (11). In order to do that, we first

define p2d as the probability to have a severing event at 2d
before an eventual severing event at d . The derivation of p2d

can be found in the Appendix C.
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We now define the three events A, B, and C as

A = shrinkage of microtubule below d after severing at 2d,

B = severing event at 2d before an eventual severing event at d,

C = severing event at either d or 2d.

The three events are nested as A ⊂ B ⊂ C, and their probabilities are P (A) = qsev(p+), P (B) = p2d , and P (C) = p(2)
sev(p+) −

qsev(p+) + p2d = p(1)
sev − qns + p2d . Thus, it holds

pcr (p+) = P (A|B) = P (A ∩ B)

P (B)
= P (A)

P (B)
= qsev(p+)

p2d
(22)

and

1

N

N∑
i=1

〈1 − δci,0〉 = P (B|C) = P (B ∩ C)

P (C)
= P (B)

P (C)
= p2d

p(1)
sev − qns + p2d

. (23)

Plugging pcr and 1
N

∑N
i=1 〈1 − δci,0〉 into the equality associated to inequality (11), we finally calculate the critical threshold for

the probability of stabilization-after-severing p+
crit,(2), that is,

p+
crit,(2) = 1

2S�qsevβ[1 − R−
d (d )]

{
(M+

0 − Sαβ )[1 − R−
d (d )] − S�qsevβR−

d (d )

+
√

[(M+
0 − Sαβ )(1 − R−

d (d )) + S�qsevβR−
d (d )]2 − 4S�qsevβ[1 − R−

d (d )]

}
, (24)

where

α = p(1)
sev + qns − qsev,−,

β = 1

p(1)
sev − qns + p2d

,

�qsev = qsev,− − qsev,+.

Table II shows a very good agreement between our pre-
dicted critical probability of stabilization-after-severing in
the two-crossovers approximation and the critical probability
obtained with our simulations in the whole grid of transverse
microtubules for different choices of dynamic parameters,
confirming our hypothesis that, in order to study the critical
properties of the system, we can approximate the entire grid
of transverse microtubules with just two of them without any
considerable loss of accuracy.

IV. DISCUSSION

Our aim was to obtain a deeper insight into the conditions
under which templated severing of microtubules at micro-
tubule crossovers can lead to exponential proliferation of a
new population of microtubules, as observed in the recent
experiments on the light-induced reorientation of the plant
microtubule cortical array. To that end we separately consid-
ered the role of the microtubule growth state, be it bounded or
unbounded, and that of the stabilization-after-severing effect
previously identified as a key component of the amplification
process. Simulations revealed a striking difference between
the unbounded and the bounded microtubule growth regimes.
In the unbounded-growth regime, which appears to be salient
for the experimental situation, amplification due to templated
severing will occur even in the absence of stabilization-
after-severing. The reason is that in this growth regime

microtubules in principle have infinite lifetime, allowing them
(and their descendants after severing) to be severed without
limit, which by itself is sufficient to drive the amplification.
There still is a role for the probability of stabilization-after-
severing, but only as a moderator for rate of amplification and
the probability of success per microtubule. In contrast, in the
bounded-growth regime an microtubule can in principle only
be severed a finite number of times. In this case amplification
can only occur if the process is biased by a sufficiently high
probability of stabilization-after-severing. When the system is
below a critical value of this parameter, a newly nucleated
microtubule, and all of its descendants through severing, is
sure to go extinct. The value of this critical stabilization-after-
severing probability depends strongly on the probability of
a newly severed microtubule to cross the interval between
neighboring transverse microtubules, so that it can be severed
in turn, a crucial step in the amplification process. This
prompted us to develop a—to the best of our knowledge—
novel approach to calculating the appropriate first-passage
time distribution, using an approach that may find application
in other stochastic systems as well. This formed the basis
of approximate calculation of the critical stabilization-after-
severing probability, which compares favorably with the re-
sults obtained from simulations.

Experiments to date have only observed severing-induced
amplification in the Arabidopsis thaliana hypocotyl system,
where microtubules appear to be in the unbounded-growth
regime. Unfortunately, therefore, a direct observation of the
critical behavior of the amplification probability in response
to the change of p+, here predicted to occur in the bounded-
growth regime, is lacking. Moreover, the complex expression
(24) for our theoretical prediction for the critical probability
of stabilization-after-severing did not allow us to readily
identify a single parameter, tuneable either theoretically or
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experimentally, in order to systematically vary p+
crit,(2). How-

ever, bounded-growing microtubules can, in principle, be cre-
ated through inducible expression of MAPs aimed at changing
the stability of microtubules by, e.g., decreasing the growth
speed or by increasing the catastrophe rate. In that case,
two options could be envisaged to test the existence of a
critical threshold for the probability of stabilization-after-
severing in order to observe amplification: (i) suppressing the
activity of CLASP and, therefore, reducing the probability of
stabilization-after-severing or (ii) reducing the severing rate
by modulating katanin activity.

While our work sheds light on the initial phase of
the amplification process, understanding the later stages
and the stability of the final state remains a challenging prob-
lem. Here we have neglected a number of important effects.
First, the transverse microtubules were taken to be inert, while
in reality they are also dynamic and will tend to be broken
down over time as more and more of the available tubulin
is incorporated into the exponentially growing population
of longitudinal microtubules. This will remove opportunities
for severing, and therefore tend to dampen the amplification
again. Moreover, as the amplification process develops, the
availability of free tubulin dimers, which surely are a limited
resource in the cell, is also bound to decrease, which in turn af-
fects both the growth dynamics and nucleation rate. Given our
results here, the first effect, depression of the growth speed,
could in fact switch the microtubules from the unbounded
to the bounded-growth regime, which likely decelerates the
amplification process. We are currently exploring these issues,
which will be the subject of a follow-up paper.
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APPENDIX A: MAIN FEATURES OF THE
DOGTEROM-LEIBLER MODEL

1. Splitting probabilities in the interstitial strip

If a microtubule plus end impinges on a transverse mi-
crotubule, then it creates a crossover. After the creation of
the crossover the plus end is located at x ∈ (nd, (n + 1)d ),
and, as long as this condition is fulfilled, the dynamics of

microtubules is described by the Dogterom-Leibler model
for microtubules with their minus end at nd , regardless the
occurrence of a severing event. Without any loss of generality,
we can set n = 0 and length l = x.

Due to the dynamic instability of the plus end, the micro-
tubule either reaches length x = d or shrinks back to length
x = 0. The occurrence probability of either of these events is
described by the so-called splitting probabilities Rσ

0 (x) and
Rσ

d (x), which describe the probability that a microtubule with
initial state σ and initial length x arrives first at length 0
or d respectively. Conservation of probability implies that
Rσ

0 (x) + Rσ
d (x) = 1.

It is possible to show [16] that

R+
d (x) = ex/l − rrv

+
rcv−

ed/l − rrv+
rcv−

, (A1)

R−
d (x) =

rrv
+

rcv− (ex/l − 1)

ed/l − rrv+
rcv−

, (A2)

R+
0 (x) = ed/l − ex/l

ed/l − rrv+
rcv−

, (A3)

and

R−
0 (x) = ed/l − rrv

+
rcv− ex/l

ed/l − rrv+
rcv−

. (A4)

Interestingly, these expressions hold for both bounded and
unbounded-growth case. This is a direct consequence of the
fact that in a strip both regimes produce a steady-state solution
[14].

2. Microtubule lifetime and survival probability

The lifetime density function Lσ (t |x) of a microtubule
with initial length x and initial state σ , is defined as the
distribution of the time needed by microtubules to completely
depolymerize.

In the bounded-growth regime all microtubules have a
finite lifetime, hence Lσ (t |x) is normalized to 1. However,
in the unbounded-growth a fraction of microtubules grows
linearly in time. It follows that for unbounded-growth micro-
tubules, the lifetime density function can be defined only for
the fraction of microtubules the lifetime of which is finite.

In the bounded-growth regime, the lifetime density func-
tions are [17]

L+(t |x) = �
(

t − x

v−
) rc

v+t + x
e−[rr (v+t+x)+rc (v−t−x)]

{
x I0

[
2

v+ + v−
√

rrrc(v+t + x)(v−t − x)

]

+ v+

rc

√
rc(v−t − x)

rr (v+t + x)
I1

[
2

v+ + v−
√

rrrc(v+t + x)(v−t − x)

]}
, (A5)

L−(t |x) = δ
(

t − x

v−
)

e−rrt + �
(

t − x

v−
)√

rcrr

(v+t + x)(v−t − x)
x

× e−[rr (v+t+x)+rc (v−t−x)]I1

[
2

v+ + v−
√

rrrc(v+t + x)(v−t − x)

]
, (A6)

where I0(·) and I1(·) are the modified Bessel functions of order 0 and 1, respectively.

052405-11



MARCO SALTINI AND BELA M. MULDER PHYSICAL REVIEW E 101, 052405 (2020)

In order to obtain the densities in the unbounded-growth regime, we need to by divide Eq. (A5) and Eq. (A6) by 1 − S+(∞|x)
and 1 − S−(∞|x), respectively, where Sσ (∞|x) is the fraction of microtubules with initial length x and initial state σ that
never completely depolymerize. Due to their finite lifetime, in the bounded-growth regime these fractions are identically 0. The
fractions Sσ (∞|x) are called ultimate survival probabilities, and they are

S+(∞|x) =
{

1 − rcv
−

rrv+ exp
(
− rrv

+−rcv
−

v+v− x
)

if unbounded-growth regime,

0 if bounded-growth regime,
(A7)

S−(∞|x) =
{

1 − exp
(
− rrv

+−rcv
−

v+v− x
)

if unbounded-growth regime,

0 if bounded-growth regime.
(A8)

APPENDIX B: DERIVATION OF THE SIZE OF THE
OFFSPRING OF A MICROTUBULE

Here, we derive the expression for the size of the offspring
of a microtubule in the one and two-crossovers approxima-
tions.

First, we introduce the one-crossover approximation by
removing the dependency on p+ from the right-hand side of
Eq. (8). We assume that bcji

= 0 for every ji. This implies
that, when a severing event occurs at nd , n > 1, then all
previous crossovers are resolved by a severing event. With this
approximation, we replace mi with

m(1)
i = si +

si∑
ji=1

c ji , (B1)

see Fig. 6. Analytically, we cannot calculate neither si nor c ji ,
but these quantity are easily measurable with computer simu-
lations. We average m(1)

i over N = 105 simulations to find the
first approximation for M+, i.e., M+

(1) = 1
N

∑N
i=1 m(1)

i = 2.61.
Therefore, from Eq. (7), we can calculate the first estimate
of the critical probability of stabilization-after-severing, i.e.,
p+

crit,(1) = 0.316, against the computationally measured one
p+

crit = 0.360. Table II shows a comparison between p+
crit,(1)

and p+
crit for different sets of dynamic parameters. The table

shows that, even though our one-crossover approximation
provides a reasonable estimate of the critical probability, we
systematically underestimate it.

Now we introduce the two-crossovers approximation by
assuming that after a severing at nd , n > 1, all crossovers
at d , 2d , . . . , (n − 2)d are resolved by a severing event,
while the crossover at (n − 1)d is resolved by a shrinkage
with probability pcr (p+) and by a severing with probability
1 − pcr (p+). Our aim is to give a better estimate of p+

crit than
in the one-crossover approximation. Here

bcji
= (

1 − δc ji ,0
)
pcr (p+).

With this definition for bcji
, we approximate mi with

m(2)
i = si +

si∑
ji=1

[
c ji − (

1 − δc ji ,0
)
pcr (p+)

]
. (B2)

From this equation, we can observe that

si∑
ji=1

(
1 − δc ji ,0

)
pcr (p+)

= pcr (p+)[si − (δc1,0 + δc2,0 + · · · + δcsi ,0
)]

= pcr (p+)[si − si〈δci,0〉]
= pcr (p+)si

〈
1 − δci,0

〉
, (B3)

where the average value 〈δci,0〉 is calculated over all severing
events that a leading microtubule undergoes along its lifetime.
Consequently, 〈1 − δci,0〉 is the fraction of severing events

0

0

01

2 10

0

0

01

2 10

FIG. 6. Schematic of the count of the size of the offspring m(1)
0 of

a microtubule labeled by 0 created by severing in the growing state.
When a crossover is created, the competition severing-shrinking
takes place, and if the severing occurs, then the counter for the
number of severing events s0 gains one unity, while the size of the
offspring gains 1 + cs0 . We keep track of the leading microtubule as
it can generate other descendants, further increasing m(1)

0 . We do not
keep track of the lagging microtubules created by severing.
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that a leading microtubule undergoes at nd with n > 1. If we
combine Eqs. (B1), (B2), and (B3) together, and we average
over N , then we obtain

M+
(2) = 1

N

N∑
i=1

m(2)
i

= 1

N

N∑
i=1

⎡⎣si +
si∑

ji=1

c ji − pcr (p+)si〈1 − δci,0〉
⎤⎦

= M+
(1) − pcr (p+)S

1

N

N∑
i=1

〈1 − δci,0〉,

(B4)

where S = 1
N

∑N
i=1 si and where we assumed that the cor-

relation between the number of severing events that occur

along the lifetime of a microtubule and the fraction of them
that occur at nd with n > 1 is negligible. In this case, if
N � 1, then by the law of large numbers 1

N

∑N
i=1 〈1 − δci,0〉

is the probability that a microtubule is severed at nd with
n > 1, sampled over all cases in which a severing event has
occurred. By replacing M+ with M+

(2) in Eq. (6), we obtain
the final amplification condition (11). Table II shows that
the two-crossovers reproduces the computationally measured
critical probability of stabilization-after-severing with a good
degree of accuracy.

APPENDIX C: DERIVATION OF SEVERING AND
SHRINKAGE PROBABILITIES

In order to calculate qsev,σ we first define the following
random variables:

τd = severing waiting time at d,

τ2d = severing waiting time at 2d,

Td = FPT from the first to the second crossover, i.e., from d to 2d,

Tσ (x) = lifetime of a microtubule with initial state σ and initial length x,

τ̃2d = severing waiting time at 2d given that the severing occurs.

(C1)

τd and τ2d have probability density function Wkθ (t ) defined in Eq. (1), while the probability density function of Td is F0d (t )
from Eq. (14). The probability density function of Tσ (x) is L+(t |x) defined in the Appendix A. Finally, the probability density
function of τ̃2d can be calculated by observing that the event “severing” and the event “shrinkage” are independent. Therefore,
the cumulative function �τ̃2d (t ) = P [̃τ2d < t] can be written as

�τ̃2d (t ) = P {(τ2d < t ) ∩ [τ2d < T+(0)]} = 1

ZW

∫ t

0
dt ′ Wk,θ (t ′)

∫ ∞

t ′
dt ′′ L+(t ′′|0), (C2)

where

ZW =
∫ ∞

0
dt Wk,θ (t )

∫ ∞

t
dt ′ L+(t ′|0). (C3)

Thus, the probability density function W̃kθ (t ) of τ̃2d is

W̃kθ (t ) = d

dt
�τ̃2d (t ) = 1

ZW
Wkθ (t )

∫ ∞

t
dt ′ L+(t ′|0). (C4)

The probability qsev,σ is the probability that a microtubule reaches 2d , it is severed there with newly created plus end in
the state σ , and finally shrinks back below d before being severed at d . In S+(∞|0) of the cases (i.e., for indefinitely growing
microtubules), this event occurs if T1 = τd − Td − τ2d − Tσ (d ) > 0, with probability density function of T1 defined by

PT1 (t ) =
∫
R3

dt ′dt ′′dt ′′′ Wkθ (t + t ′ + t ′′ + t ′′′)F0d (t ′)Wkθ (t ′′)Lσ (t ′′′|d ). (C5)

In the remaining 1 − S+(∞|0) of the cases (i.e., for microtubules with a finite lifetime), the event occurs if T2 = τd − Td − τ̃2d −
Tσ (d ) > 0, and if it is severed at 2d , i.e., if τd < T+(0). The probability density function of T2 is

PT2 (t ) =
∫
R3

dt ′dt ′′dt ′′′ W̃kθ (t + t ′ + t ′′ + t ′′′)F0d (t ′)Wkθ (t ′′)Lσ (t ′′′|d ). (C6)

Hence, the final expression for qsev,σ is

qsev,σ = R+
d (0)

{
S+(∞|0)

∫ ∞

0
dt PT1 (t ) + [1 − S+(∞|0)]

∫ ∞

0
dt Pτd −T0 (t )

∫ ∞

0
dt PT2 (t )

}
[1 − S+(∞|d )]. (C7)

To calculate qns we first define the random variable T̃+ as the time that a microtubule initially in the growing state and with
plus end in 2d needs in order to return in the shrinking state at 2d , given that no severing event occurs at 2d . Similarly to the
derivation of W̃kθ (t ), we can derive the probability density function of T̃+, that is,

L̃+(t ) = 1

ZL
L+(t |0)

∫ t

0
dt ′ Wk,θ (t ′), (C8)
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with

ZL =
∫ ∞

0
dt L+(t |0)

∫ t

0
dt ′ Wk,θ (t ′). (C9)

Therefore, as qns is the probability that a microtubule reaches length 2d and would return to length d but it cannot because
it is severed at 2d , the two conditions that our random variables have to fulfill are τ2d < T+(0) and τd > Td + T̃+ + T−(d ). The
former condition had already been discussed before, while the latter is associated to the probability density function

Pτd −Td −T̃+−T−(d )(t ) =
∫
R3

dt ′dt ′′dt ′′′ Wkθ (t + t ′ + t ′′ + t ′′′)F0d (t ′)L̃+(t ′′)L−(t ′′′|d ). (C10)

Therefore

qns = R+
0d [1 − S+(∞|0)]

∫ 0

−∞
dt Pτd −T+(0)(t )

∫ ∞

0
dt Pτd −Td −T̃+−T−(d )(t ). (C11)

Finally, in order to calculate the probability p2d to have a severing event at 2d before an eventual severing event at d , we
notice that we have two different cases. In the first case, the microtubule reaches length 2d and it is severed there before being
severed at d , i.e., τd > Td + τ2d . In the second case, the microtubule reaches 2d and it is severed there before being severed at
d , i.e., τd > Td + τ̃2d , given that the event “severing” wins the competition against the event “shrinkage” at 2d , or τ2d < T+(0).
The probability density functions associated to these conditions are, respectively,

Pτd −Td −τ2d (t ) =
∫
R2

dt ′dt ′′ Wkθ (t + t ′ + t ′′)F0d (t ′)Wkθ (t ′′), (C12)

Pτd −Td −τ̃2d (t ) =
∫
R2

dt ′dt ′′ Wkθ (t + t ′ + t ′′)F0d (t ′)W̃kθ (t ′′), (C13)

Pτ2d −T+(0)(t ) = Pτd −T+(0)(t ). (C14)

Then

p2d = R+
0d

{
S+(∞|0)

∫ ∞

0
dt Pτd −Td −τ2d (t ) + [1 − S+(∞|0)]

∫ 0

−∞
dt Pτ2d −T+(0)(t )

∫ ∞

0
dt Pτd −Td −τ̃2d (t )

}
. (C15)
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