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Modeling navigation by weaver ants in an unfamiliar, featureless environment
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The motion of individual weaver ants from Oecophylla smaragdina was tracked within a small arena to study
the algorithm that these ants use for navigation. The arena, a floor tile, was either clean or partly covered by a
mild chemical repellent. Statistical properties of the observed motion of the ant can be described by a model
that is analogous to the Langevin theory of the motion of Brownian particles. With each time step, the velocity
of the ant changes by a random vector with a robust probability distribution. When the average ant encounters
the chemical repellent it responds, like a particle seeing a potential energy barrier, by initially slowing before
recovering towards its equilibrium state of motion. The model accounts for most qualitative properties of motion
with a small number of parameters.
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I. INTRODUCTION

Weaver ants include Oecophylla longinoda, native to
Africa, and Oecophylla smaragdina, from tropical Asia and
Australia. They are remarkable for making large-scale coop-
erative efforts [1,2]. Thousands of individuals work together
to weave nests in trees by folding and gluing broad leaves, or
to form bridges from the bodies of the ants themselves. This
requires communication over a range of length scales [3,4].
The mechanisms of communication employed by weaver ants,
using pheromones, gestures, and direct contact, are indeed
sophisticated and have attracted the longtime interest of biol-
ogists [5–8]. They also make them an attractive subject for the
physics of collective phenomena in complex systems [9–12].
The effect of communication on ant motion, in particular, is a
topic of interest [8,13–15].

In this paper we take a quantitative approach to a simple
aspect of the behavior of an individual from Oecophylla
smaragdina, its motion within a small arena. The arena is
a floor tile that is normally featureless except for its square
boundary but can be modified by coating part of the tile with
a chemical repellent. We track the position of each ant in
the arena versus time, and based on the results develop a
model of individual ant movement that is analogous to the
Langevin theory of Brownian motion. The algorithm that the
ant uses to navigate is represented by the parameters of this
model. While we hope to later investigate how communication
between different ants can affect the algorithm, this paper is
concerned only with navigation by an individual ant.

There is an apparent similarity between the erratic motion
of a foraging ant and that of a Brownian particle. In biophys-

ical modeling, a Brownian motion picture is often taken as
a basis for more sophisticated theories of navigation by ants
and many other animals [16–28]. Much current research along
these lines is motivated by the idea of using ant motion as
an example of general collective motion of communicating
individuals: as macroscopic versions of bacterial processes
relevant to medicine, as models for human crowds or for
designs of swarming robots, as a few examples [29–33].

A Brownian particle, like a grain of pollen in water,
undergoes dispersive motion because of its collisions with
surrounding water molecules. Einstein explained the motion
using a statistical description of these collisions, and Langevin
further developed this theory a few years later [34]. In
Langevin’s theory of Brownian motion, the particle is subject
to random impulses, forces applied over a short duration
that have random direction and zero time average, as well
as deterministic forces like a drag force and an interaction
with external fields. Since the dominant forces on the ant
are reaction forces of the ground on its moving body parts,
all parameters in a Langevin model of ant motion can be
interpreted as features of the navigation algorithm employed
by the ant.

We apply Langevin’s theory to the motion of individual
weaver ants, and find that random and deterministic compo-
nents of the forces can be resolved. The probability distri-
bution of random impulses is robust and characterized by a
single parameter. The deterministic response to the chemical
repellent can be modelled by an external field or ‘potential
energy’ that indicates the desirability of a given position.
The theory explains most statistical properties of the data
including the counterintuitive observation that ants, which
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FIG. 1. (a) The experimental setup for observing ant movement with a camera mounted above the arena, a square floor tile of length
L = 30 cm. The position of an ant can be detected slightly beyond the boundary of the arena, in the extended region. (b) The dark (green) path
is an actual ant trajectory in a clean arena. The gray shaded band, centered along x and of width � will be called zone R. It has no significance
for the clean arena but indicates where citronella oil is to be coated. The dashed line distinguishes a strip along the boundary, with d = 2 cm,
from the rest of the arena (i.e., from the “interior”).

avoid the repellant and spend most of their time in the clean
regions, remain continuously within a region contaminated
by repellant for a longer duration than in a clean region of
the same size. The mathematical simplicity of the model,
which allows a full characterization of navigation with a
small number of parameters, suggests that it is an appropriate
starting point for further quantitative studies.

II. EXPERIMENTAL PROCEDURE

Individual major-workers from Oecophylla smaragdina,
belonging to one of several colonies, were captured from
wooded areas on the campus of Suranaree University of
Technology, Nakhon Ratchasima, Thailand. Their motion was
studied in two similar configurations (see Fig. 1). In both
cases, the ant was free to move on the surface of a square
plate, ceramic floor tile, with a side length L = 30 cm and
a thickness of 0.6 cm. The plate was in a larger bowl con-
taining water, not deep enough to reach the plate surface, so
ants at the plate edge encountered a water barrier that they
rarely attempted to cross. We used more than a dozen tiles,
nearly indistinguishable from one another, and changed the
tile with each trial. After being used, a tile was washed in
dishwashing soap and water and left to dry. It was even-
tually re-used as we cycled through tiles, but never on the
same day.

In the first configuration, the plate is clean and the square
arena is approximately homogeneous. In the second, a central
rectangular band was coated evenly with 1% w/w citronella
oil, a natural repellent that is aversive but nonlethal to ants
[35,36]. This band, of width �, is referred to as zone R in
Fig. 1. Values � = 2.5 and 10 cm were used in different
experiments. We will use x, y position coordinates with the

origin at the plate center. The arena is defined by −L/2 �
x � L/2 and −L/2 � y � L/2 or |x| < 15 cm, |y| < 15 cm.
The repellent, when present, is coated evenly over the region
|x| < �/2.

For each trial, a single ant, having been captured using
a clean plastic container, was transferred into the arena by
inverting this container. Within a few seconds after each
ant was introduced, we started recording its motion with a
video camera and did so for time T = 300 s before similarly
removing it from the arena. There was no evident change in
behavior seen over the 300 s. A typical ant continued moving
throughout the trial.

The high-speed camera was fixed to a tripod and positioned
directly above the arena. In-house image processing scripts
coded in MATLAB extracted the position of the ant from each
frame. (The details about the image processing are included
in Appendix A.) Two-dimensional spatial coordinates r(t ) =
(x[t], y[t]) were obtained at discrete time steps t = j�t with
j = 0, 1, 2, . . . 4500 and �t = 1/15 s. A sample trajectory is
shown in Fig. 1(b). Because of the ant’s finite body size, its
position is occasionally found in the extended region, 0.5 cm
beyond the arena.

A probability distribution, i.e., a normalized histogram for
position �(x, y), is plotted in Fig. 2. We counted the number
of times that the position x[t], y[t] of the ant in any trial
landed in each square bin, �x = 0.3 mm in length. Dividing
by the total number of events, this gives a probability density
�(x, y, t ) for finding an ant near r = (x, y) at time t . Aver-
aging over time gives the normalized histogram �(x, y) =
(1/T )

∫
dt�(x, y, t ) that tells us the fraction of time that the

average ant spends near a given position. The quantity �(x, y)
has units 1/cm2 and its integral over the entire arena is equal
to 1.
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FIG. 2. Normalized position histograms. The x, y axes indicate position and the vertical axis is �(x, y), the probability density for ants
within the arena. To make three-dimensional (3D) plots easier to see, histogram bars are colored according to height, so the color scale
duplicates the vertical axis. Left plots: (a) Data for 59 ants in the clean arena. (b) Data for 68 ants with the repellent, citronella oil, painted in
zone R. Right plots: Same as left but with data restricted to the arena interior, |x|, |y| > L/2 − d .

From Figs. 1(b) and 2 we see that ants are often near the
boundary. This tendency dominates the position distribution.
They have a slightly reduced probability to be found within
the repellent. The average probability for ants to be found
in zone R with and without the repellent is 0.20 ± 0.01
and 0.23 ± 0.01, respectively. This modest difference, being
comparable to the uncertainty in the measurement, is barely
perceptible in the overall distribution (left in Fig. 2) but does
appear in a plot of the distribution over the arena interior
(right in Fig. 2). We noticed large qualitative differences
between individuals: certain ants avoid the repellent while
others seemed indifferent to it.

To model and analyze motion, we exploit the square
symmetry of the arena that results in approximate square
symmetry in the data. That is, each tile appeared square so
we arbitrarily orientated it with edges along the x and y axes.
While an ant might perceive asymmetry in an individual tile
that we cannot, the x and y directions should be symmetry-
equivalent in an average over many tiles. This symmetry is
limited to the tile itself: the position of the tripod, room
lighting, etc., did not maintain it. So, if the ant navigates

using the local properties of the tile then we expect data for
a clean arena to respect square symmetry on average. If the
ant gives significant consideration to sensory cues originating
from beyond the tile then we should see a difference between
the x and y directions. Deviations from square symmetry are
seen below but are a small effect.

III. THEORETICAL MODEL

Most statistical properties of the data can be captured by
a simple theoretical model, in which the ant is treated as a
particle undergoing Brownian motion. More details of the
model are given in Appendix B. In this section, we use a broad
overview of the data to motivate it and then discuss nontrivial
model predictions. As seen in Fig. 2, ants spend a large
fraction of their time near the arena boundary. The unnatural
boundary is peculiar to our experiment so ant behavior near
the boundary is of no general interest. For this reason, we
focus on properties of the data in which the ant-boundary
interaction does not play a dominant role.
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FIG. 3. Ant velocity and change in velocity derived from the position data of Fig. 2. (a) Normalized histograms of ant velocity vx (left)
and vy (right) for ants in a “clean” arena (blue) and in an arena with a “repellent” present in zone R (red). The probability density labeled
�(v) refers to Pi(vx ) and �(vy ) for respective components. (b) The light-green curve shows normalized histograms for velocity changes: �vx ,
�vy, with and without repellent present drawn on top of each other. The dark green curve is the one-parameter fit of Eq. (2) with m = 1 to the
probability density p(�v). (For noncolor plots, the dark green curve is smoother.) (c) Maps in velocity space, one point per ant per time step.
They show data for the arena “interior” and “boundary” strip without and with repellent. (d) Maps in (�vx,�vy ) space.

A. Velocity and velocity-change distributions

The position ri(t ) = (xi[t], yi[t]) of i = 1, 2, . . . , 59 ant
individuals was measured in the clean arena, where time t
increases in steps �t = (1/15) s from t = 0 to t = 300 s.

From this, we derive the velocity vi(t ) = �ri/�t with �ri =
ri(t + �t ) − ri(t ) and the change in velocity �vi(t ) = vi(t +
�t ) − vi(t ) at each time step.

Figure 3 presents normalized histograms and maps in
phase space. We define a probability distribution of velocity,
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�(vx, vy, t ), the probability of finding an ant with a velocity
in a bin centered on vx, vy at time t . Averaging this over
time yields �(vx, vy) = (1/T )

∫
dt�(vx, vy, t ). To obtain a

one-dimensional histogram we can further integrate �(vx, vy)
over all vy. The resulting distribution, giving the average
probability of finding an ant with a given vx, is shown in
Fig. 3(a). Curves are shown for both vx and vy for the “clean”
arena and for an arena with the “repellent” citronella oil
present for |x| < �/2 = 5 cm.

The velocity distribution is peaked at zero with shoulder
features seen near velocities of 5–6 cm/s. A typical ant does
not remain still for long but, since it passes through zero
velocity each time it turns around, it has a high probability
to have a velocity near zero. The shoulders are broad plateaus
that contain a local maximum. There is an increased probabil-
ity for an ant to have a velocity within the shoulder region.
The shoulders are notably missing from the vx distribution
when citronella oil is present, which we will discuss again in
Sec. IV C.

Figure 3(c) shows maps in (vx, vy) space, with one data
point per time step per ant. These data were divided according
to position: data for the “interior” have positions at least d =
2 cm away from the boundary, while data for the “boundary”
were obtained within the strip of width d . The latter looks like
a plus sign because ants move along edges. While it appears
to obey square symmetry, the velocity distribution is strongly
affected by the ant-boundary interaction.

We show histograms and phase space maps for the change
in velocity (�vx,�vy) in Figs. 3(b) and 3(d). The phase
space maps in Fig. 3(d) appear isotropic. The distributions in
Fig. 3(b) are symmetric, peaked at zero, and do not change
noticeably when repellent is added. Apparently they are not
dominated by ant-boundary effects since results are similar
near the boundary and within the arena interior. The simple
distribution of �vx motivates the application of Langevin’s
theory: velocity changes can be attributed to random local
impulses with a robust probability distribution.

B. Ant as a Brownian particle

An analogy to the Langevin theory of Brownian motion
is used to model ant movement. The model ant experiences
a total force F(t ) that results in a change of velocity �v =
F(t )�t = (Fx(t )�t, Fy(t )�t ) with each time step. The veloc-
ity is taken to obey Newton’s second law, for unit mass, which
is

�v
�t

≈ dv
dt

= F(t ) = η(t )/�t − v
τ

+ E. (1)

The interaction of a Brownian particle with molecules in the
ambient fluid results in a random impulse η(t ), with zero time
average, and a linear drag force with time constant τ . We
include these terms in the equation of motion for the ant:
the random impulse, because its precise motion is unpre-
dictable, and the drag force to keep the model stable.

The field E = E(x, y) in Eq. (1) accounts for an ant’s
interaction with any spatially dependent feature, such as the
arena edges or the chemical repellent. An appropriate model
for the field must be chosen in each case. Since ants stop
at the arena boundary, the boundary field can be described

by a short-range repulsive force with a damping effect (like
the normal force of a crash pad). For the chemical repellent,
we define a potential energy V (x, y) related to the field by
E = −∇V that indicates the desirability of a given position
(the higher the potential the less desirable the position) and
assign a positive potential to a position coated with repellent.

While �vx is proportional to the total force Fx, the normal-
ized histogram of �vx in Fig. 3(b) should be approximately
proportional to the probability distribution for the random
impulse ηx alone. This is mainly because the magnitude of
ηx is larger than the impulse due to the other forces in Eq. (1).
The effect of the latter is further reduced by square symmetry.
A histogram bin contains position and velocity components
with both signs and the field is odd in x and y while the drag
force is odd in vx and vy. In this way we can approximately
disentangle the random and deterministic forces.

The histogram for either component of force, assumed
equal to the probability distribution p(η) for η = ηx or η = ηy,
is fit to the following generalized Gaussian:

p(η) = N exp

( −|η|m
(cmσ )m

)
, (2)

with a dimensionless number cm = �1/2(1/m)�−1/2(3/m)
and normalization factor N−1 = cmσ�(1 + 1/m) where �(z)
is the Gamma function. Since p(η) is an even function, the
mean {η} = 0 while the mean square is

{η2} =
∫ ∞

−∞
dηη2 p(η) = σ 2. (3)

So σ is the standard deviation of the model distribution. A
similar goodness of fit is found (see Appendix A) over a
range of values for σ and m, so we fix m = 1, leaving σ as
the only parameter. A Gaussian, with m = 2, does not give
a good fit for any σ . The fits shown in Fig. 3 use m = 1
and the best-fit values of σ 2

x = 1.51 ± 0.01 cm2 s−2 and σ 2
y =

1.41 ± 0.01 cm2 s−2. [We denote by σx and σy the value of σ

that gives the best fit to the p(�vx ) distribution and p(�vx )
distribution, respectively.]

In the model η(t ) is independently drawn at each time step.
This ignores any correlations between the random impulses
at nearby times: an assumption, tested later, that is made here
for simplicity. Also, with ηx and ηy drawn independently and
the field vector E assumed to respect square symmetry, the
Cartesian components of Eq. (1) are independent.

C. Measurable model properties

Using the general picture given above, we can calculate
specific properties of model ant behavior that may be com-
pared to measurements. Below we sketch derivations of each
model result and describe how the corresponding property can
be extracted from data. We are primarily concerned with prop-
erties that are insensitive to the details of the ant-boundary
interaction.

1. Time-dependent squared velocity in the interior of a clean arena

First, we consider the mean-squared velocity of an en-
semble of model ants. Write one component of the velocity
as vx(t + �t ) = vx(t ) + �vx(t ) and square this expression to
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obtain

v2
x (t + �t ) − v2

x (t ) = 2vx(t )�vx(t ) + [�vx(t )]2. (4)

The left side is �t multiplied by d (v2
x [t])/dt while on the

right side we use �vx = �t (dvx/dt ) and substitute Eq. (1).
We take an ensemble average, denoted by curly brackets, by
averaging over many identical ants with the same position
and velocity at time t . Different members of the ensemble
experience different random impulses so {ηx} = 0. Random
impulses affect {v2

x } via the term proportional to {η2
x } = σ 2

that appears on the right side of Eq. (4). The ensemble average
of Eq. (4) is

d

dt

{
v2

x

} = σ 2

�t
− 2

{
v2

x

}
τ

+ 2{vxEx}, (5)

where we dropped (�t )2 terms.
Equation (5) can be easily solved in the case of an infinite

clean arena with Ex = 0 everywhere. The result is{
v2

x (t )
} = v2

∞ + [{
v2

x (0)
} − v2

∞
]
e−2t/τ , (6)

where v2
∞ = σ 2τ/(2�t ). At large times the system is in an

equilibrium state with a root-mean-square velocity component
equal to v∞. In a large, finite arena, a sizable fraction of ants
will have root-mean-square velocities close to this equilibrium
value. If we attribute the shoulder features in the velocity
distribution to the fraction of the ensemble that has achieved
equilibrium, then we get an estimate v∞ ≈ 5.3 cm/s (from
the peak of the shoulder feature in Fig. 3 for the clean arena).
A model ant disturbed by the field will wander into a clean
region and forget the disturbance in time τ and over a distance
v∞τ .

In a finite arena, we must model the ant-boundary inter-
action. The simplest plausible interaction is to have an ant
stop abruptly at an arena edge, with vx going to zero at
x = −L/2 while vy is unaffected. This crude approximation
is not adequate to describe ant motion near the boundary, but
can be used to study the motion of ants in the interior of the
arena that have recently come from the boundary. We define
the interior by |x|, |y| < L/2 − d , which excludes a boundary
strip of width d = 2 cm. Then Eq. (5) is used to calculate
model ensemble averages of the squared velocity in the arena
interior.

These squared velocities can be compared to correspond-
ing measured values. We compile data segments with an ant
entering the interior at time t1 and exiting at t2. Subtracting t1
from t we have an experimental ensemble of ants entering the
interior at t = 0. It is a large ensemble because each ant will
enter and exit the interior region many times.

2. Position-dependent squared velocity with and without repellent

The model also predicts that an ensemble-averaged
squared velocity depends on position. Ants that move away
from a disturbance approach the equilibrium state of an
infinite arena, so {v2

x } and {v2
y } approach v2

∞. For the clean
arena, {v2

x } is small near x = ±L/2 and approaches v2
∞ deep

in the interior. With repellent present, ants receive a negative
(positive) impulse as they enter (leave) zone R. Away from
these disturbances at the borders of zone R, the squared
velocity again approaches v2

∞. To obtain the experimental

position-dependent squared velocity, we take the full data set
and arrange it in order of increasing x before taking a running
average of v2

x and v2
y .

3. Field and potential

The field E in Eq. (1) comes from the arena boundary
and chemical repellent. The boundary field, which keeps ants
in the arena, is strong, short ranged, and directed inwards.
The potential associated with the repellent V (x) is a square
barrier, with height V0 and width �. The resulting field has
an x component Ex = −V0δ(x + �) + V0δ(x − �) and no y
component. The ant that moves into zone R has to overcome
a potential barrier and any ant with velocity less than vmin =√

2V0 cannot enter.
Experimental values for the field Ex(x) and potential V (x)

can be obtained in the following way. When we arrange the
data in order of increasing x, break it into bins of width
�x, and take a running average of �vx, we obtain �vx as
a function of x. The values of (t, y, vx, vy) vary within each
bin and the bin average of ηx is zero. The drag force is
not required by symmetry to have an average of zero but it
turns out to be negligible. This means that every term on the
right side of Eq. (1) can be ignored except the field Ex(x).
Thus, the running average of �vx gives Ex(x)�t , effectively
measuring the field. The integral V (x) = − ∫

dxE (x) with
V (x) = 0 outside zone R gives the potential.

4. Crossing probability and residence time

A model ant, having entered zone R, has a probability PC

to proceed through it, rather than turn back to the zone from
which it came. The average time that it resides in zone R
before leaving to either side is TR. In Appendix B, we calculate
PC and TR for the model, assuming the ensemble arriving at
the border is in equilibrium, as functions of the potential V0.
For a clean arena we can take V0 = 0. Both quantities can be
measured by finding all instances where an ant enters zone R
at time t1 and then determining the time t2 when it exits that
zone and noting to which side.

IV. RESULTS AND DISCUSSION

A. Distribution of random impulses

The most basic quantity to measure and analyze is the
probability distribution of velocity changes �vx and �vy.
In the Langevin model, Eq. (2) describes the distribution
of random local impulses ηx that dominate the distribution
p(�vx ) of velocity changes. We can fit the measured p(�vx )
to Eq. (2) with a single parameter σ . If p(�vx ) was determined
entirely by random impulses then the value of σ would be the
same for all positions and times. But the field E has some
influence on p(�vx ) and consequently on the value of the
parameter σ that gives its best fit. So, apparent changes in σ

reflect deterministic effects as well.
Equation (2) was used in fits to the distributions p(�vx ),

p(�vy) for several subsets of the data, with results shown
in Fig. 4 and Table I. The subsets are “overall” (data for all
ants at all times and positions in the clean arena), “early,” and
“late” (all positions in the clean arena at time 0 < t < 30 s
and 270 < t < 300 s, respectively), “interior” (all times in the
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FIG. 4. (a) The data for the probability distribution p(�vx ) in a clean arena and a fit to Eq. (2) with m = 1 (blue) and the m = 2 (red).
(b) More m = 1 fits to p(�vx ) for various data subsets, including early times (orange), late times (blue), inside (green) and outside (black) the
region with chemical repellent. (For noncolor plots, curves from top to bottom are black, blue, orange, green.) For the latter, repellent was in
zone R with width � = 10 cm. (c) σx (circle) and σy (square) change over time for all ants in a clean arena (black) and with repellent in zone
R of width � = 2.5 cm (blue) and � = 10 cm (orange).

clean arena with position |x|, |y| < L/2 − d), along with the
complementary subsets for positions |x|, |y| > L/2 − d from
the boundary strip. Finally, with the repellent coated over zone
R, length � = 10 cm and � = 2.5 cm, we show results for
positions in and out of this repellent.

The first observation is that the distributions are quali-
tatively robust. The goodness of fit, indicated by χ2 does
not change drastically. As evident from Figs. 3 and 4, the
expression Eq. (2) has the same qualitative behavior as the
data when m = 1. We note that a Gaussian with m = 2
gives a significantly worse quantitative fit and has the wrong
qualitative shape. The Pearson correlation coefficient ρ, which
measures the correlation between velocity changes at nearby
time steps, is always small. The size of σ 2 is roughly constant.

We chose the value of σ to minimize χ2, which evaluates
goodness of fit. We do not expect a quantitative fit and are less
concerned with the absolute value of χ2 than with its change
from subset to subset. But for completeness we note that if

Eq. (2) is the probability distribution for a velocity change
�vx = η then out of M data points, M̄(η) = M p(η)�η are
expected to land in a bin of width �η centered on η. If the
measured number in this histogram bin is M(η) then

χ2 =
∑

η

(M[η] − M̄[η])2/M̄[η], (7)

where the sum is over the Nbins = 500 values of η used. This
quantity measures the deviation between the measured and
expected histograms under the assumption that Eq. (2) is the
true probability distribution of velocity change.

A basic assumption of our model is that each impulse
η(t ) is an independent random variable. The correlation co-
efficients in Table I are ρ = ρ(�vx[t],�vx[t + 3�t]) and
ρ = ρ(�vy[t],�vy[t + 3�t]) in respective columns, where

ρ(X,Y ) = {(X − {X })(Y − {Y })}
({X 2} − {X }2)1/2[({Y 2} − {Y }2)1/2]

(8)
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TABLE I. The results of fitting the measured distribution of ve-
locity changes p(�vx ) and p(�vy ) for various data subsets to Eq. (3)
with m = 1. The labels “early” and “late” refer to times t < 30 s and
t > 270 s, while “interior” means |x|, |y| < L/2 − d and x ≈ L/2
means L/2 − d < |x| < L/2. When repellent is present in zone R,
with width � in cm, the “in” label means |x| < l/2, “out” means
|x| > �/2, and x ≈ 0 means |x| < 1.25 cm. The fitting parameter
σ 2 had a typical uncertainty �σ 2 ≈ 0.02 cm2 s−2 with a maximum
0.05 cm2 s−2 in the repellent for � = 2.5 cm. The goodness of fit,
reflected by the dimensionless χ 2 value, is discussed in the text, as is
the dimensionless Pearson correlation coefficient ρ.

p(�vx ) p(�vy )

Subset σ 2 cm2 s−2 χ 2 102ρ σ 2 cm2 s−2 χ 2 102ρ

Overall 1.51 2 −2 1.41 2 −1
Early 1.55 8 0 1.53 10 0
Late 1.37 16 1 1.26 12 2
Interior 1.29 3 −4 1.35 3 −4
|x| ≈ L/2 1.38 3 0 2.07 2 2
|y| ≈ L/2 1.83 1 1 1.11 2 −1
� = 10, in 1.87 4 1 1.48 18 −2
� = 10, x ≈ 0 1.93 2 −1 1.46 2 1
� = 10, out 1.17 2 −1 1.23 2 −1
� = 2.5, in 2.64 1 4 1.80 3 2
� = 2.5, out 1.52 22 −2 1.69 19 −1

and the curly brackets denote an average over the subset.
We considered times separated by 3�t because those closer
together are constructed using overlapping data points r(t ).
Since {�vx(t )} = {�vx(t + 3�t )} ≈ 0 and {(�vx[t])2} =
{(�vx[t + 3�t])2} ≈ σ 2, the value of ρ = {�vx(t )�vx(t +
3�t )}σ−2 indicates the size of the correlation of impulses at
nearby time steps compared to their magnitude at each step.
The fact that ρ � 1 suggests that it is reasonable to treat the
impulses as independent.

Quantitatively, differences are seen in the parameters of
Table I. For example, the square symmetry is not perfect, since
σy is smaller that σx in the clean arena. The effect is larger than
would occur by chance (the difference between σ 2

x and σ 2
y is

ten times greater than uncertainty, which is 0.01 cm2 s−2 for
both) but small enough that it does not threaten the assumption
that the navigation algorithm is local. Since ants regard the x
and y directions as roughly equivalent, they are not using the
sight (or smell) of a distant landmark as their primary guide.

B. Time and position dependence of random motion

According to Table I and Fig. 4(c), σ decreases with time
t . This is detailed in Table II, which gives results of linear fits
to σ versus t . For a clean arena, the downward trend is weak:
the slope of σy versus t is zero within uncertainty. In an arena
with repellent, σ decreases more significantly since the slope
is several times larger than its uncertainty. This could be an
indication that ants learn to move a bit more cautiously over
time in the presence of repellent. But the main point here is
that σ does not change substantially over the duration of the
experiment.

Also from Table I, there is a sizable difference in the value
σ 2 obtained for positions near the boundary compared to those

TABLE II. A linear regression was done on the data Fig. 4(c),
in which σ values are plotted vs time t . The slope m = �σ/�t and
its uncertainty are indicated for σ obtained from �vx and �vy in the
clean arena and that with repellent present.

103mσ,x cm2 s−2 103mσ,y cm2 s−2

Clean −0.3 ± 0.1 −0.4 ± 0.4
� = 2.5 cm −0.9 ± 0.1 −0.7 ± 0.2
� = 10 cm −0.8 ± 0.2 −0.9 ± 0.2

for the interior. While the difference is an order of magnitude
larger than the uncertainty in σ 2, it is certainly influenced
by the ant-boundary interaction. The field term in Eq. (1)
is strong in the boundary strips, so we cannot ignore it and
expect to get a reliable value of σ when fitting �vx,�vy

distributions to Eq. (2). Ant behavior near the boundary is not
a good indication of natural behavior so it is not our main
interest [37].

Finally, the value of σ is larger in zone R when repellent is
present. Again the difference is far greater than the statistical
uncertainty in σ 2. If the fit value of σ could be wholly at-
tributed to random impulses, then an enhancement of σ would
be interesting in light of what is known about chemotaxis by
bacteria and other organisms. Bacteria that move according to
the “run and tumble” technique vary the frequency at which
they tumble depending on the local environment [24,38–41].
Ants could plausibly adjust their σ value, modifying their
random walk characteristics, when they find themselves in an
unpleasant region.

However, the apparent increase in the best-fit value of
σ in zone R is sensitive to field effects. According to the
model, the ant suffers a velocity change as it overcomes a
potential barrier. Because of this, {�v2

x } should be large for
a subset of data localized at the border of zone R. Naively
fitting p(�vx ) to Eq. (2) would result in an inflated σ value.
So ant chemotaxis, via the modification of σ in response to
the repellent, is not easy to see in our data. We now turn to
deterministic effects, which are clearer.

C. Deterministic motion

1. Time-dependent squared velocity

The model predictions for the average squared velocity
{v2

‖} and {v2
⊥} among an ensemble of ants, which entered the

interior of a clean arena at time t = 0, is shown in Fig. 5.
Here v‖ is the velocity component parallel to the boundary
strip from which the ant entered and v⊥ is perpendicular to
it. The initial value of {v2

⊥} is small, since members recently
stopped at the boundary, but {v2

‖} is large because ants move
rapidly along the boundary. While {v2

⊥} initially increases
because random impulses accelerate ants, it later decreases
because the fastest ants leave the arena interior first, reducing
the average velocity among those that remain. In contrast {v2

‖},
large initially, decreases monotonically because of the latter
effect.

The velocities are expressed in units of v∞ in Fig. 5(b).
We have a rough estimate v∞ = 5.3 cm/s from the shoulder
feature in Fig. 3. Using this and σ 2

x = 1.51 cm2 s−2, we get
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FIG. 5. (a) Cartoon illustrating the meaning of the velocities v2
‖ and v2

⊥ for solid and dashed curves. We calculated and measured ensemble
averages of these quantities as functions of time in the clean arena. (b) Model prediction: {v2

‖} (blue dashed curve) and {v2
⊥} (red solid curve)

calculated for model ants. Time is in units of τ and velocity in units v∞. (c) Experimental result for ants in the clean arena. As in (a) ants
entered the interior from |x| = L/2 − d for solid curves and |y| = L/2 − d for dashed curves.

a basic time scale τ = 2.4 s and length scale v∞τ = 12.8 cm
for the model. The size of the arena L is comparable to v∞τ ,
so ants come close to achieving equilibrium in the arena
interior.

The corresponding experimental quantity is shown in
Fig. 5(c), with {v2

x (t )} and {v2
y (t )} plotted for ants entering

the interior from all edges. The velocity components perpen-
dicular to the boundary follow the same trend as the model
prediction for v⊥ while parallel components behave similarly
to v‖. Of course, the model does not capture the noisy behavior
of the experimental curves, especially at large times where the
ensembles are depleted and data describe the erratic behavior
of a small number of ants.

Seeing that qualitative features of the model and data are
similar, we attempt a quantitative comparison. From the initial
value of {v2

‖}, we get v∞ ≈ 6.5 cm/s, which is a bit larger than
the value suggested by the shoulder feature. The time of the
peak in {v2

⊥(t )} occurs at time t/τ ≈ 0.5 in the model and
closer to t ≈ τ in the experiment. So, we have agreement to
within a factor of order unity in both cases.

2. Position dependence of squared velocity

The model position dependence of {v2
x } and {v2

y } is
sketched in Fig. 6. These quantities approach v2

∞ in the open
arena but are depressed at the boundary and border to zone
R. Notably, they approach the same equilibrium value within
zone R, in the repellent, as in clean regions. Once a model ant
overcomes the potential and arrives in zone R, it forgets about
this experience and random impulses restore its speed to v∞.

Experimentally, {v2
x } and {v2

y }, shown in Fig. 6, are qual-
itatively consistent with the model predictions. For the clean
arena, {v2

x } is small near the edges then rises to a maximum
and becomes weakly position-dependent near the middle of

the arena. The maximum
√{v2

x } ≈ 5.4 cm/s gives another
experimental estimate of v∞ that is consistent with previous
values. The x dependence of {v2

y } is dominated by boundary
effects: near x = ±L/2 most ants are moving quickly along

the edges and
√

{v2
y } ≈ 4.8 cm/s is close to v∞. Near x = 0,

a large fraction of ants move rapidly along y = ±L/2 with a
small vy component, so {v2

y } is reduced.
The repellent causes disturbances in {v2

x } at the borders
to zone R but has no noticeable effect on {v2

y }. When � =
2.5 cm, we see a depression in {v2

x } in zone R. The expected
recovery within zone R is, perhaps, seen from the small peak
occurring right at x = 0. This recovery is more clearly seen
when � = 10 cm, as {v2

x } has minima at the borders to zone R
and increases to either side of it.

We can see, from Fig. 6, why shoulder features were
missing from the distribution of vx when repellent was present
in zone R, width � = 10 cm. Ants do not have enough space
free from disturbances, between the arena boundary and the
borders to zone R, to achieve equilibrium velocity.

3. Field and potential

Supposing that the ant cannot leave the arena, the boundary
is associated with an infinitely high potential barriers. For the
repellent, we use a square potential barrier of height V0. The
associated field Ex = −dV/dx is a pair of δ-function spikes,
of opposite sign, at the borders to zone R. These are depicted
in Fig. 7. We gave the spikes finite width.

The experimental field Ex(x) is obtained by ordering ex-
perimental data according to x and taking a running average
over �vx. The potential is obtained by integrating the field.
The results are shown in Fig. 7(a). For the clean arena (not
shown) the x-averaged value of �vx, interpreted as the field
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FIG. 6. (a) Rough sketch of the x-dependent value of {v2
x } predicted for the model with repellent in zone R. The plateau height is vx = v2

∞.
Experimental results for {v2

x } and {v2
y } for (b) a clean arena, (c) with repellent in zone R with width � = 2.5 cm and (d) with � = 10 cm.

Ex, is close to zero in the interior. At the boundaries Ex is large
over a short range, directed into the arena. These boundary
fields, seen at x = ±L/2 in Figs. 7(b) and 7(c), look the same
without or with repellent.

With repellent in zone R, we see spikes in the measured Ex

at the borders to zone R. Their finite width can be attributed to
several factors. For one, the border to zone R is not perfectly
straight in reality. For a more interesting one, the ant has finite
spatial resolution in its determination of the field that varies
according to the speed and angle at which it crosses into zone
R. The experimental potential V (x) is also plotted. A square
barrier, roughly resembling the ideal model, is seen when
the width of zone R is � = 10 cm. In the case of � = 2.5 cm,
the square barrier has narrowed to a peak.

The experimental values for the height of the potential
barrier V0 fall in the range of 0.3–0.7 cm2 s−2. This is likely
an underestimate of the barrier height. Determining the field
and potential in this manner is numerically delicate: one has
to choose bins for the running average that are big enough to
ensure random impulses average to zero but small enough to
preserve some spatial resolution.

4. Crossing probability and residence time

The crossing probability PC and time TR spent continuously
in zone R were discussed above. According to the model
calculations, described in Appendix B, PC decreases with
barrier size V0 because ants are slowed as they enter zone R.
For the clean arena, V0 = 0, so PC is reduced by the presence
of the repellent. The same slowing effect results in an initial
increase in TR with V0, so a weak repellent will increase the
time ants spend in zone R as compared to a clean region of the
same size. With a sufficiently large V0, TR decreases because
ants are immediately repelled.

We measured PC and TR for the data subset in which the
ant entered zone R with position |y| <= L/2 − d , to reduce
boundary effects, and give the values in Table III. The crossing
probability is lower when repellent is present. But ants reside
within zone R for a longer time when it is contaminated with
the chemical repellent than when clean. This counterintuitive
behavior agrees with the model prediction.

It should be emphasized that the quantitative values of
PC and TR calculated using our model (see Appendix B
for details) do not agree with the data. For � = 10 cm and
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� = 2.5 cm, the model predictions of PC = 0.7 and PC =
0.92 are smaller than measured values. The residence times
TR, calculated using the crude but simplifying continuum
approximation to the discrete random walk, were an order of
magnitude smaller than measured values. But the qualitative
effect of repellent on PC and TR is notable.

D. Summary

The simplistic theoretical model accounts for almost all
statistical properties of ant motion in the experiment. Recall
that the model includes a constant probability distribution
p(η) for random impulses, with zero mean, mean-square σ 2,
and negligible time correlations. It also includes a field due
to interactions with the boundary and the chemical repellent,
where the latter can be adequately modeled by a scalar po-
tential that has a positive value V0 if repellent is present and
is zero elsewhere. The navigation algorithm implied by this
model is purely local, i.e., ants modify their path in response to

TABLE III. The measured probability PC that an ant crosses zone
R, length �, and measured time TR it remains continuously in zone
R. Both depend on whether zone R has no repellent, i.e., is “clean”
or is coated evenly with the repellent citronella oil, “repel.” Statistical
error in PC and TR were about 0.02 and 0.05 s, respectively.

PC TR (s)

� = 10 cm{clean
repel 0.91 ± 0.03 1.85 ± 0.08

0.51 ± 0.04 2.08 ± 0.08

� = 2.5 cm{clean
repel 0.95 ± 0.02 0.52 ± 0.02

0.79 ± 0.03 0.87 ± 0.04

their current position and velocity, without taking into account
distant surroundings.

The theory is characterized by a small number of pa-
rameters: say v∞, σ 2 and V0, the first two of which are
obtained from data for the clean arena. It provides a scheme
for simulating motion in more general conditions.

V. CONCLUSIONS

The motion of individuals belonging to the species Oe-
cophylla smaragdina of weaver ants was studied in a small
square arena by measuring the ant position as a function of
time. The arena was a tile that was either clean, or with a
defined region coated with citronella oil, a substance that
repels ants. The aim was to determine a simple underlying
algorithm that governs ant navigation, in particular the method
they use to avoid the repellent.

We found that a version of the Langevin theory of Brown-
ian motion provides a good description of statistical properties
of the data. The equation of motion for ants is Newton’s
second law with a random force, with zero time average
and a fixed, robust probability distribution function p(η) e−|η|
giving uncorrelated random impulses that act at each time
step. The repellent can be modelled by an effective potential
energy, and associated field, that results in ants receiving
a negative impulse when they enter the region coated with
repellent.

Most aspects of the data can be adequately accounted for
with this minimal model, including counterintuitive properties
like the fact that ants spend more time continuously within a
region with repellent present than they would in a clean region
of the same size. The algorithm may be used to simulate
motion, allowing investigations of more complex properties
of motion to be done computationally.
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FIG. 8. The image processing steps used for tracking weaver ant motion. (a) Imaging: data saved as a digital image sequence with a certain
spatial resolution (limited by square pixel length �x) and temporal resolution (limited by frames per second 1/�t) over a total duration of
300 s. (b) In-house algorithms isolate and identify the ant position and assign it spatial coordinates (the position of the optical center of mass)
by removing it from of an individual ant from the background, as further detailed in the text.
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APPENDIX A: IMAGE PROCESSING

1. Insects

We used multiple colonies of weaver ants, Oecophylla
smaragdina, which were captured at Suranaree University of
Technology, Nakhon Ratchasima, Thailand (14◦ 52′ 22.5′′N,
102◦ 1′ 25.32′′E). We used a clean plastic box to capture a sin-
gle ant and transported it to the laboratory without touching it.

2. Experimental setup

Before video recording, we placed the ant gently in the
arena. The arena is a 30 × 30 × 0.6 cm3 ceramic floor tile,
with the large face horizontal. It is partly submerged in water.
The water surface is 0.1 cm below the top of the tile, so ants
that reach the edge of the tile encounter this short drop into
water. They rarely attempt to leave the tile. We maintained
a temperature of 25 ◦C during the video recording in the
laboratory. Each ant underwent a single trial, lasting 5 min. Its
motion was recorded using a digital HD video camera (digital
sampling rate of 30 frames per second).

3. Image processing

In this process, we tracked the ant position using a MATLAB

program and image-tracking process as follows:
(1) Import a color image of each frame of the video and

select an image that includes the centered square plate and a
rim, of width 0.5 cm, of surrounding water.

(2) Convert each color image to a gray scale and construct
a background image by averaging over all frames.

(3) From each gray scale image, we subtract the back-
ground. This gives us a picture of the ant.

(4) Adjust the intensity (contrast and saturation) of the
resulting image to see the ant more clearly and then convert
each gray scale image to a binary image (black-white scale)
by choosing a suitable intensity threshold.

(5) To reduce noise, remove all points that are significantly
bigger or smaller than the average ant size.

(6) We identify a spatial coordinate r(t ) = (x(t ), y(t )) at
each time step using the mean of the binary function.

Note that, we extract a spatial position of an ant using two
consecutive frames. This means that �t = 2/30 s is the small-
est time step we can use. According to the spatial resolution
of the camera, x = 0.03 cm per pixel is the smallest distance
we can resolve. In Fig. 8, these image processing steps are
illustrated.

To fit the measured probability distribution of velocity
changes p(�vx ) and p(�vy), we initially used both parame-
ters σ and m appearing in Eq. (3). For given values of σ and m
the value of χ2 = χ2(σ, m), which we defined in Eq. (7). was
calculated. In Fig. 9 we show χ2 over a range 0 < σ < 3 and
0 < m < 2 for the case where |x|, |y| < L/2 − d in a clean
arena (this is a subset free from boundary effects). The red dot
in the figure indicates the point σ, m where χ2 is minimum.

There is a valley in Fig. 9, surrounding the minimum, in
which χ2 remains fairly close to its minimum value. We take
advantage of this by fixing m = 1 and finding the σ that mini-
mized χ2. That is, we approximated the best two-parameter fit
by the best one-parameter fit with m = 1. A Gaussian, σ = 2
lies outside this valley and, moreover, Gaussian fits do not
have the appropriate qualitative shape near the origin.

APPENDIX B: THEORETICAL MODEL

Here we more fully develop the model sketched in Sec. III
and use it to calculate several measurable properties of ant
motion. These are all ensemble averages, which can be ap-
proximated without using simulations of the random motion.
Because of the square symmetry of the arena, the motion
along x and y are independent. Many quantities can be ob-
tained in a one-dimensional picture and the generalization to
two dimensions is straightforward.

Consider a large ensemble of ants moving in one dimension
with their velocities determined by one component of Eq. (1).
The ensemble has a probability distribution �(x, v, t ) over
position x, velocity v, at time t . A normalized probability
distribution over position (velocity) alone is obtained by in-
tegrating �(x, v, t ) over all velocity (position). The average
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FIG. 9. The χ 2 value, obtained from fits of the experimental histograms of (a) p(�vx ) and (b) p(�vy ) to Eq. (2), is color-plotted as a
function of the two free parameters m and σ of Eq. (2). Darker color indicates a smaller value of χ 2 and thus a better fit. The optimal values
(a) m = 1.12 and σx = 0.94 cm/s, (b) m = 1.12 and σy = 0.90 cm/s, are indicated by blue dots. Since χ2 remains comparably small over a
broad region in (m, σ ), it is convenient to fix m = 1 and use σ as the only parameter.

of a function f (x, v, t ) at time t is

{ f (t )} =
∫ ∞

−∞
dx

∫ ∞

−∞
dv�(x, v, t ) f (x, v, t ). (B1)

Of particular interest are mean values {v(t )}, {x(t )}, and
variances

σ 2
v (t ) = {v2(t )} − {v(t )}2,

σ 2
x (t ) = {x2(t )} − {x(t )}2. (B2)

Suppose that each member of the ensemble begins with
x(0) = x0, and v(0) = v0 in an infinite, clean arena. The ve-
locity and position change as v(t + �t ) = v(t ) − v(t )�t/τ +
η(t ) and x(t + �t ) = x(t ) + v(t )�t , where η(t ) is a random
variable, with a probability distribution p(η) = p(−η). Thus
{η} = 0 and {η2} ≡ σ 2 where σ is the standard deviation
of random impulses. In an ensemble average, terms odd in
η vanish so {v(t + �t )} − {v(t )} = −{v(t )}(�t/τ ). In the
�t → 0 limit this becomes d{v}/dt = −{v}/τ . In the same
way, we find d{v2}/dt = −2{v2}/τ + σ 2/�t , d{xv}/dt =
−xv/τ + {v2}, d{x}/dt = v, d{x2}/dt = 2{xv} that can all be
integrated.

In writing the solution {v2(t )} = v2
∞ + (v2

0 − v2
∞)e−2t/τ ,

we introduce a terminal speed v∞ defined by v2
∞ =

σ 2τ/(2�t ). Velocity will now be written in units of v∞, time
in units of τ and distance in units of τv∞ so all three vari-
ables become dimensionless. The mean values are v̄(t, v0) =
{v(t )} = v0e−t and

x̄(t, x0, v0) = {x(t )} = x0 + v0(1 − e−t ) (B3)

and the standard deviations given by

σ 2
v (t ) = 1 − e−2t , σ 2

x (t ) = −3 + 2t + 4e−t − e−2t . (B4)

At large t the spread in velocity σv (t ) → 1 while σx

increases without bound in an infinite arena. Note that after
a time t ≈ τ an ant forgets its initial state and approaches its
equilibrium velocity. After moving a distance d ≈ v∞τ away
from a disturbance, it similarly approaches equilibrium.

We will write G(x; x̄, σ ) for a normalized Gaussian in the
variable x, with mean x̄ and standard deviation σ . The ini-
tial distribution can then be written �0(x, v) = �(x, v, 0) =
δ(x − x0)δ(v − v0) = G(x; x0, ε)G(v; v0, ε) using a particu-
lar representation of a delta function with an infinitesimal
quantity ε. The equilibrium distribution for the infinite arena
is �(x, v,∞) = �∞(v) = G(v; 0, 1). To approximate time
evolution of an ensemble, replace Gaussian parameters with
time-dependent values that give the mean and standard devia-
tion found above. Thus the time-dependent distribution is

�(x, v, t ) = G(x; x̄[t, x0, v0], σx[t])G(v; v̄[t, v0], σv[t])

(B5)

when �0(x, v) = δ(v − v0)δ(x − x0). An arbitrary initial dis-
tribution is first written as

�0(x, v) =
∫ ∞

−∞
dx′

∫ ∞

−∞
dv′�0(x′, v′)G(x; x′, ε)G(v; v′, ε)

(B6)

and primed variables treated as initial values to get

�(x, v, t ) =
∫ ∞

−∞
dx′

∫ ∞

−∞
dv′�0(x′, v′)

× G(x; x̄[t, x′, v′], σx[t])G(v; v̄[t, v′], σv[t]).

(B7)

In two dimensions, the distribution function is
�(x, vx, t )�(y, vy, t ) and Eq. (B7) generalized to include
integrals over y′, v′

y with two more Gaussians of the same
form.

The results above apply to a clean, infinite arena. The
effect of the field, which is important at the arena boundary
and at the borders to zone R when the chemical repellent is
present, will be treated as initial values of these equations.
The simplest model of the interaction with the boundary is to
have ants stop abruptly at an edge and forget their previous

052404-13



THEERAWEE THIWATWARANIKUL et al. PHYSICAL REVIEW E 101, 052404 (2020)

(c)(a)

(b)

t/τ

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

{(v /v
∞

)2}

{(v /v
∞

)2}

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

v
min

/v
∞

T
R 

/ T
R

max

P
C

-10 -5 0 5 10 5151-

x (cm)

-10 -5 0 5 10 5151-

x (cm)

{(v
x
/v

∞
)2}

V(x)

E
x
(x)

V
0

zone ℛ

ℓ

(d)

FIG. 10. Model predictions. (a) Plots of {v2
⊥} and {v2

‖} for ants in the interior vs time. (b) The crossing probability PC and residence
time TR in zone R plotted vs vmin/v∞ where v2

min = 2V0. (c) The potential V (x) vs position, showing V0 in zone R and the resulting field
Ex (x) = −dV/dx. (d) A sketch of the average squared velocity vs position.

motion. When the ant reaches the boundary at x = ±L/2 its
velocity vx drops to zero while its motion in the y direction
is unaffected. For a clean arena that is sufficiently large,
i.e., L � 1 (in units of τv∞), ants far from boundary are in
equilibrium.

First, consider the time dependence of the squared veloc-
ity of ants in the clean arena that have entered the central
region, which is a square of length L′ = L − 2d centered in
the arena of length L where d � L. An ant starting at the
boundary x = −L/2 with vx = v⊥ = 0 needs a typical time
t = t1 to reach the central region, which is found by inverting
{x2(t1)} = d2. The standard deviation of velocity at this time
is σ1 = σv (t1) � 1. Only ants with vx > 0 enter the central re-
gion from this side, so we use G+(x; x̄, σ ) = 2θ (x)G(x; x̄, σ )
with θ (x < 0) = 0 and θ (x > 0) = 1, to write the distribu-
tion for members entering at t = 0 as �(x, vx, 0) = δ(x +
L′/2)G+(vx; 0, σ1). For motion along y we assume that most
ants, being far from the boundary y = ±L/2, are in equi-
librium, so �(y, vy, 0) = (1/L′)θ (L′/2 − |y|)G(vy; 0, 1). The
time evolution is introduced via Eq. (B7) and

{
v2

α (t )
} =

∫ L′/2

−L′/2
dx

∫ L′/2

−L′/2
dy

∫ ∞

−∞
dvx

∫ ∞

−∞
dvy

× v2
α�(x, vx, t )�(y, vy, t ), (B8)

where α = x, y.
The results of Eq. (B8) appear in Fig. 10(a). At small

times, {v2
⊥(t )} increases because ants accelerate as they move

away from the boundary. After a time of order τ , it reaches
a peak that is some fraction of v2

∞, then it starts to decrease.

Members that leave the central region are removed from the
ensemble and, since fast ones leave first, {v2

⊥(t )} decreases. In
contrast, the initial value {v2

y (0)} = {v2
‖ (0)} = v2

∞ is maximal,
so {v2

‖ (t )} decreases monotonically.
Next, we introduce the chemical repellent to the central

zone R, defined by |x| < �/2 where � < L, which adds a field
Ex(x) to Eq. (1). The effective potential V (x) = V0 in zone R
and V (x) = 0 elsewhere. When an ant crosses into zone R,
it suffers an impulse �vx = −vmin = −2(V0)1/2 opposite to
the direction of its velocity. The potential results in a reduced
density of ants in zone R, since some are prevented from
entering the zone.

Consider an ensemble approaching the border to zone
R. Since this border is far from the boundary, we assume
the distribution is in equilibrium upon arrival at the border.
While crossing into zone R, some members are repelled by
the barrier and the rest have their velocity reduced by vmin.
The resulting distribution, just after arriving into zone R at
x = −�/2 is �0(x, vx ) = δ(x + �/2)θ (vx )G(vx + vmin; 0, 1).
This ensemble, which lost some members at the border, has
to be normalized.

To calculate the crossing probability PC and residence time
TR, we first find these quantities PC (x, vx ) and TR(x, vx ) for an
ant with a certain initial position x and a certain velocity vx.
These functions can be weighted with the initial distribution
to estimate their measurable values. The expected crossing
probability is PC = ∫

dvx�0(−�/2, vx )PC (−�/2, vx ) and res-
idence time is TR = ∫

dvx�0(vx )TR(−�/2, vx ), where we are
using a 1D picture for simplicity.
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The initial expected values of probability and residence
time must be equal to their ensemble averages calculated one
time step later, so

PC (x, vx ) = {PC (x[�t], vx[�t])}, (B9)

TR(x, vx ) = �t + {TR(x[�t], vx[�t])}, (B10)

where the second equation has an extra term because the
expected residence time remaining decreased the one time
step. We substitute x[�t] = x + vx�t and vx[�t] = vx −
vx�t/τ + η then Taylor-expand in �t and drop terms odd
in η from the ensemble average. The first order terms van-
ish if the functions above depend on a single variable,
i.e., if PC (x, vx ) = PC (r) with r = x + vxτ and the same for
TR(x, vx ). The surviving terms up to second order result in

∂2PC/∂r2 = 0, ∂2TR/∂r2 = −1 (B11)

in dimensionless variables. With the boundary conditions
P(−�/2) = T (�/2) = T (�/2) = 0 and P(�/2) = 1 we find

PC (−�/2, vx ) = PC (vx ) = vx/�, (B12)

TR(−�/2, vx ) = TR(vx ) = vx(� − vx )/2. (B13)

These expressions are small-velocity approximations and
meaningless for v > �. To crudely treat large velocities, we
can set the crossing probability to 1 and residence time to 0
for vx > �.

Since P(vx ) is a monotonically increasing function of
vx, with the slowest ants having no chance of successfully
crossing zone R, the effect of the potential barrier is to reduce
the typical initial velocity vx and decrease PC . The function
TR(vx ) is nonmonotonic. It increases with velocity at small
vx, because slightly faster ants penetrate further into zone R
so it takes them longer to retreat back. It decreases at large
vx, because the fastest ants race through zone R in less time.
There is a corresponding nonmonotonic dependence of TR

on the potential barrier height. Consequently, a weak barrier
potential V0 will result in ants spending more time in zone R
than they would if V0 = 0. That is, according to this model,
ants will spend more time in a region with a mild repellent
present than they would in a clean region of the same size.

Note that the quantitative value of PC , obtained from this
model, is considerably lower than the measured value. Also,

the predicted resident time TR is much smaller than the mea-
sured value. The qualitative effect is illustrated in Fig. 10(b)
by the plot of TR normalized to its maximum value versus vmin.
For these plots we used � = L/3 and, wherever necessary,
numerical values v∞ = 5.3 cm/s and τ = 2.4 s.

Finally, consider the dependence of {v2
x (x)} on position

x in equilibrium (i.e., the time average of this quantity). It
is obtained using Eq. (B1) with �(x, vx, t ) set equal to the
equilibrium distribution. Again, we seek only a qualitative
result. Since the equilibrium distribution does not change with
time, it satisfies

vx∂�/∂x + (∂vx/∂t )∂�/∂vx = 0. (B14)

To simplify the problem, we use a weak-field limit and assume
the distribution is close to the zero-field equilibrium �∞(vx ),
so �(x, vx ) = �∞(vx ) + �1(x, vx ) where the second term,
absent were it not for the field, is small. Equation (B14)
becomes

∂�1/∂x − E (x)�∞(vx ) − ∂�1/∂vx = 0, (B15)

where we dropped terms odd in η, used v2
x = 1 in the long

time limit, and ignored terms like E (x)�1(x, vx ) that are
second order in the weak field. The field due to the repellent
is E (x) = −V0δ(x + l/2) + V0δ(x − l/2). It causes steplike
jumps in the distribution �1(l/2, vx ) at the borders to zone
R. Integrating Eq. (B15) over a small region centered on the
border to R gives∫ −l/2+ε

−l/2−ε

dx∂�1/∂x = ��1(−l/2, vx ) = −V0�∞(vx ).

(B16)
This is a localized disturbance caused by the field. As we
move into the zero-field region, �1(x, vx ) decays to zero and
{v2

x (x)} approaches 1.
The zero-field version of Eq. (B15) is satisfied by any func-

tion �1(x, vx ) = �1(x + vx ), so a possible form �1(x, vx ) =
exp(−K[x + vx − x0])�1(x0) decays as we move away from a
disturbance at x0. Ants moving out of zone R receive an initial
burst due to the force from the repellent and have a corre-
spondingly larger slope K . The distribution at the boundary is
�(−L/2, vx ) = �(L/2, vx ) = δ(vx ). We treat this as another
localized disturbance that decays. This qualitative behavior is
sketched in Fig. 10(d).
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