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Hearing Euler characteristic of graphs
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The Euler characteristic χ = |V | − |E | and the total length L are the most important topological and
geometrical characteristics of a metric graph. Here |V | and |E | denote the number of vertices and edges of
a graph. The Euler characteristic determines the number β of independent cycles in a graph while the total
length determines the asymptotic behavior of the energy eigenvalues via Weyl’s law. We show theoretically and
confirm experimentally that the Euler characteristic can be determined (heard) from a finite sequence of the
lowest eigenenergies λ1, . . . , λN of a simple quantum graph, without any need to inspect the system visually. In
the experiment quantum graphs are simulated by microwave networks. We demonstrate that the sequence of the
lowest resonances of microwave networks with β � 3 can be directly used in determining whether a network is
planar, i.e., can be embedded in the plane. Moreover, we show that the measured Euler characteristic χ can be
used as a sensitive revealer of the fully connected graphs.
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I. INTRODUCTION

The problem of the seven bridges of Königsberg consid-
ered by Leonhard Euler in 1736 [1] was one of the most no-
table mathematical achievements which laid the foundations
of graph theory and topology. In 1936 this seeding idea was
used by Linus Pauling in physics [2] in order to describe a
quantum particle moving in a physical network, the model
known today as a quantum graph.

The idea of quantum graphs was further extensively devel-
oped in Refs. [3–7]. In the considered model a metric graph
� = (V, E ) is formed by the edges e ∈ E connected together
at the vertices v ∈ V . Each edge is seen as an interval on (a
separate copy of) the real line R having the length le, then the
vertices can be defined as disjoint unions of edge endpoints.
Let us consider the Laplace operator L(�) = − d2

dx2 acting in
the Hilbert space of square integrable functions on � satis-
fying in addition the standard vertex conditions (also called
natural, Neumann, or Kirchhoff): the function is continuous at
the vertex v, and the sum of oriented derivatives at the vertex
v is equal to zero. Such a Laplacian is uniquely determined by
the metric graph and is self-adjoint, and its spectrum is purely
discrete [6]. Moreover, the operator is non-negative with zero
being a simple eigenvalue (provided the graph is connected)
with the eigenfunction given by the constant. For more details
on quantum graphs, we can refer the reader to the book [6] and
the references therein. Quantum graphs were used to simulate,
e.g., mesoscopic quantum systems [8,9], quantum wires [10],
and optical waveguides [11].

In this article we report breakthrough results on the topol-
ogy of quantum graphs and microwave networks. We show
that measuring several dozen of eigenvalues of the system one
may recover its Euler characteristic without seeing a graph,
i.e., knowing the number of the graph’s vertices and edges. In
particular one may even determine structural properties of the
network, e.g., whether the graph is planar or fully connected.

The original formula for χ [12] requires knowledge of all
eigenenergies of the system and plays a very important role
in the study of inverse problems for quantum graphs, but its
applicability to laboratory measurements is limited, since only
a finite number of eigenenergies can be obtained in any real
world experiment.

From the experimental point of view it is important to
point out that quantum graphs can be modeled by microwave
networks [13–18]. It is attainable because both systems
are described by the same equations: the one-dimensional
Schrödinger equation appearing in quantum graphs is for-
mally equivalent to the telegrapher’s equation for microwave
networks [13,16]. Microwave networks, as the only ones,
allow for the experimental simulation of quantum systems
corresponding to all three classical ensembles in the random-
matrix theory (RMT): the systems with T invariance belong-
ing to a Gaussian orthogonal ensemble (GOE) [13–15,17,19]
and Gaussian symplectic ensemble (GSE) [20], and the sys-
tems without T invariance belonging to a Gaussian unitary
ensemble (GUE) [13,18,21–24].

Microwave networks were successfully used, e.g., to
demonstrate the usefulness of missing level statistics in va-
riety of applications [23] and to show that there exist graphs
which do not obey a standard Weyl’s law, called non-Weyl
graphs [19].

The most important characteristics of a metric graph � =
(V, E ) are the Euler characteristic χ = |V | − |E | and the total
length L = ∑

e∈E le. The Euler characteristic χ determines
the number β of independent cycles in a graph

β = |E | − |V | + 1 ≡ 1 − χ, (1)

while the total length L determines the asymptotics of a
graph’s eigenvalues λn via the Weyl’s formula

λn =
(

π

L

)2

n2 + O(n), (2)
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where O(n) is a function which in the limit n → +∞ is
bounded by a constant. The number of independent cycles
measures how different a graph is from a tree and is equal to
the number of edges that have to be deleted to turn the graph
into a tree.

It might seem that the determination of both characteristics
would require the knowledge of the whole sequence of eigen-
values. Such an assumption is natural in mathematics and al-
lows one to derive the precise formulas for L = π limn→+∞ n

kn

and χ = X (t )|t�t0 [12,25], where

X (t ) := 2 + 2π

∞∑
n=1

cos(kn/2t )

[
sin(kn/4t )

kn/4t

]2

, (3)

and kn are the square roots of the eigenenergies λn and t0 =
1

2lmin
with lmin being the length of the shortest edge of a simple

graph. While derivation of the formula for L is elementary,
formula (3) can be obtained either from the trace formula
[26–28] connecting the spectrum to the set of periodic orbits
on � [12] or by analyzing the heat kernels [26].

The knowledge of the whole spectrum allows one to re-
construct the metric graph, provided the edge lengths are ra-
tionally independent (see, e.g., Refs. [27–29]) thus providing
an affirmative answer to the classical question asked by Mark
Kac [30] adopted to quantum graphs as “Can one hear the
shape of a graph?” [15].

However, in the real world experiments there is no chance
to determine the entire spectrum. For example, in microwave
networks because of openness of the systems and the exis-
tence of internal absorption one can measure up to several
hundreds of eigenfrequencies. Moreover, one cannot guaran-
tee that the edge lengths are rationally independent, therefore
it is natural to investigate the question whether the total length
L and the Euler characteristic χ can be reconstructed directly
from the spectrum without determining a precise form of the
graph. Formulas for L and X (t ) provide such a possibility,
but their character is completely different. The total length
L is a positive real number, and hence to determine it with
a high precision one needs to know high-energy eigenvalues
λn. More eigenvalues are determined the better approximation
of L is obtained. The Euler characteristic χ is an integer
number (often negative), and hence to determine it precisely
it is enough to know the right-hand side of (3) with an error
less than 1/2. Therefore, knowing that in the experiment
only a limited number of the eigenvalues can be measured,
we shall concentrate in this article on determining the Euler
characteristic χ .

II. AN EFFECTIVE FORMULA FOR
THE EULER CHARACTERISTIC

The series in formula (3) for the Euler characteristic is
slowly converging. Its application requires the measurements
of several hundreds or even more of eigenenergies which in
most cases is not achievable. Therefore, we derived a function

X (t ) := 2 + 8π2
∑
kn �=0

sin(kn/t )

(kn/t )[(2π )2 − (kn/t )2]
, (4)

FIG. 1. Panels (a) and (b) show the schemes of a planar quantum
graph with |V | = 4 vertices and |E | = 6 edges and a microwave
network with the same topology. Panels (c) and (d) show the schemes
of a nonplanar quantum graph with |V | = 5 vertices and |E | =
10 edges and a microwave network with the same topology. The
microwave networks were connected to the vector network analyzer
with the flexible microwave cable, which is equivalent to attaching
an infinite lead to a quantum graph [panel (e)]. Panel (f) shows
the examples of the moduli of the scattering matrix |S(ν )| of the
microwave networks with |V | = 4 and |V | = 5 vertices, respectively,
measured in the frequency range ν = 3.0–4.5 GHz.

which gives the Euler characteristic χ = X (t )|t�t0 and is
characterized by a much better convergence. The details of
derivation are given in the Appendix.

III. EXPERIMENTAL IMPLEMENTATION

Let us assume that in the experiment the K lowest res-
onances (eigenvalues) are measured. We shall calculate the
Euler characteristic χ by evaluating the function X (t ) by
substituting the infinite series with a finite sum and assuming
that t � t0. Let us introduce the function XK (t ) corresponding
to formula (4)

XK (t ) = 2 + 8π2
K∑

n=1

sin(kn/t )

(kn/t )[(2π )2 − (kn/t )2]
. (5)

We are going to analyze whether this function gives a
good approximation for the Euler characteristic χ when t =
t0 = 1

2lmin
. Comparing (4) with (A10) we obtain ε = |X (t0) −

XK (t0)|. In order to guarantee the difference ε is less than 1/2,
e.g., 1/4, it is enough to take the first K eigenvalues evaluated
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FIG. 2. The approximation function for the Euler characteristic
XK (t ) calculated for a planar microwave network with |V | = 4
vertices and |E | = 6 edges [panel (a)] and for a non-planar fully
connected microwave network with |V | = 5 vertices and |E | = 10
edges [panel (b)]. The full green and red dash-dotted lines show the
function XK (t ) calculated from the Eq. (A10) for the first K = 28
and K = 106 resonances [panel (a)], and K = 74 and K = 132 res-
onances [panel (b)], respectively. The blue vertical mark shows the
value of t0 = 1

2lmin
used for the evaluation of the required number of

resonances K = 28 [see the formula (A11)] [panel (a)] and K = 74
[panel (b)]. For the comparison we show the function XK (t ) (orange
dotted line) calculated from the Eq. (3) using the first K = 28 [panel
(a)] and K = 74 [panel (b)] resonances. The black full line shows the
expected value of the Euler characteristic χ = −2 [panel (a)] and
χ = −5 [panel (b)]. The black broken lines show the limits of the
expected errors χ ± 1/4.

by the following formula:

K � |V | − 1 + 2Lt0

[
1 − exp

(−επ

Lt0

)]−1/2

. (6)

The details of the proof are given in the Appendix.
The formula for the Euler characteristic (4) was tested ex-

perimentally using planar and nonplanar microwave networks
for which the counting function of the number of resonances
satisfies the Weyl’s law [19]. For such networks the Euler
characteristic is the same as for the corresponding closed
quantum graphs.

In Figs. 1(a) and 1(b) we present the schemes of a planar
quantum graph � with |V | = 4 vertices and |E | = 6 edges
and a planar microwave network with the same topology
as �. The total optical length of the microwave network is
L = 1.494 ± 0.006 m, and the optical length of the shortest
edge is lmin = 0.155 ± 0.001 m. The optical lengths lopt

i of the
edges of the network are connected with their physical lengths
lph
i through the relationship lopt

i = √
εlph

i , where ε = 2.06 is
the dielectric constant of the Teflon used for the construction
of the microwave cables. The quantum graph is a closed
dissipationless system for which according to the definition
of the Euler characteristic χ = |V | − |E | = −2. One should
point out that the lack of dissipation is a standard assumption
considered in the mathematical analysis of graphs.

In Fig. 2(a) we show that formula (A10) can be easily
used to reconstruct the Euler characteristic of the microwave
network in Fig. 1(b) and obtain the correct result χ = −2. As
in all real life systems, this system is open and is characterized
by small dissipation [21]. The resonances ν1, . . . , νN of the
microwave network required for the evaluation of the Euler
characteristic were determined from the measurements of

a one-port scattering matrix S(ν) of the network using the
vector network analyzer (VNA) Agilent E8364B.

One should note that it is customary for microwave systems
to make measurements of the scattering matrices as a function
of microwave frequency ν. Then the real parts of the wave
numbers kn are directly related to the positions νn of the
resonances Re kn = 2π

c νn. The VNA was connected to the mi-
crowave network with the flexible HP 85133-616 microwave
cable which is equivalent to attaching an infinite lead to a
quantum graph [19]. Before each measurement the VNA was
calibrated using the Agilent 4691-60004 electronic calibration
module to eliminate the errors in the measurements.

In order to avoid the missing resonances we analyzed the
fluctuating part of the integrated spectral counting function
Nf l (νi ) = N (νi ) − Nav (νi ) [17], that is, the difference of the
number of identified eigenfrequencies N (νi ) = i for ordered
frequencies ν1 � ν2 � · · · and the average number of eigen-
frequencies Nav (νi ) calculated in the considered frequency
range. Using this well-known method [17] we were able to
identify the first N = 106 resonances in the frequency range
of 0.31–10.76 GHz. The problem with the resolution of the
resonances begins for N � 100–150, but then the sensitivity
of the Euler characteristic (4) for the missing resonances is
very weak.

In Fig. 2(a) we show the approximation function for the
Euler characteristic XK (t ) (A10) calculated using the first
K = 28 (green full line) and K = 106 (red dashed-dotted line)
experimentally measured resonances of the system, respec-
tively. The value K = 28 was estimated from formula (A11)
assuming that ε = 1/4 and taking into account the optical
size of the network Lt0 = 4.82 ± 0.05. In Fig. 1(f) we show,
as an example, the modulus of the scattering matrix |S(ν)|
of the experimentally studied microwave network � with
|V | = 4 measured in the frequency range ν = 3.0–4.5 GHz.
Figure 2(a) demonstrates that it is enough to use the first
K = 28 resonances (green full line) to identify a clear plateau
close to the expected value χ = −2. This plateau extends
from 3 m−1 < t < 6 m−1 and includes the parameter t0 �
3.23 m−1 which was used for the evaluation of the required
number of resonances K = 28 [see formula (A11)]. The Euler
characteristic calculated for K = N = 106 resonances (red
dashed-dotted line) displays a very long plateau along the
expected value χ = −2. The plateau extends from 3 m−1 <

t < 17 m−1 showing that we actually deal with the excessive
number of resonances required for the practical evaluation of
the Euler characteristic. Just for the comparison we also show
in Fig. 2(a) the Euler characteristic calculated from Eq. (3)
using the first K = 28 resonances (orange dotted line). As
expected, formula (3) shows much worse convergence to the
predicted value of χ = −2.

Although for the analysis of the convergence of formula
(4) [see Eq. (A11)] we used the graph’s parameters L and t0
in the real applications we do not need them. The power of
formula (4) stems from the fact that the sequence of the lowest
resonances allows for the determination of the Euler charac-
teristic without knowing physical parameters of the graph. In
practice, if a plateau in XK (t ) along a given integer number
is not observed, it means that the number of resonances
used in the calculations is insufficient and it ought to be
increased.
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It is important to point out that formula (4) allows also
for the determination whether a system is planar. In the
analyzed cases of the graph � and the microwave network the
number of cycles yielded from formula (1) is β = 1 − χ =
3. In accordance with the Kuratowski’s theorem [31] every
nonplanar graph should contain K5 (the complete graph on
five vertices) or K3,3 (the complete bipartite graph on three and
three vertices) as subgraphs. These graphs have six and four
cycles, respectively, therefore, without even seeing a graph or
having a complete information about the number of vertices
and edges we found that the graph is planar and the microwave
network simulates the planar graph.

Let us now analyze the situation of nonplanar fully con-
nected (complete in the mathematical terminology) graphs
and networks. In Figs. 1(c) and 1(d) we present the non-
planar fully connected quantum graph K5, complete graph
on |V | = 5 vertices, characterized by the Euler characteristic
χ = −5, and the microwave network with the same topology.
The total optical length of the microwave network is L =
3.949 ± 0.010 m, and the optical length of the shortest edge is
lmin = 0.202 ± 0.001 m. To perform the measurements of the
first N = 132 eigenresonances the network was connected to
the VNA with the flexible microwave cable [see Fig. 1(e)]. In
Fig. 1(f) we show the modulus of the scattering matrix |S(ν)|
of this network (|V | = 5) measured in the frequency range
ν = 3.0–4.5 GHz.

The approximation function for the Euler characteristic
(A10) calculated for the first K = 74 (green full line) and
K = 132 (red dashed-dotted line) experimentally measured
resonances of the system, respectively, is shown in Fig. 2(b).
The value K = 74 was estimated from formula (A11) assum-
ing again that ε = 1/4 and taking into account the optical
size of the K5 network Lt0 = 9.74 ± 0.10. Figure 2(b) shows
that using K = 74 resonances measured for the nonplanar
microwave network in Fig. 1(d) the correct Euler charac-
teristic χ = −5 can be easily evaluated (full green line). In
this case a long plateau close to the expected value χ = −5
is seen in the parameter range 2.5 m−1 < t < 4 m−1. The
situation improves even further for the Euler characteristic
calculated for K = N = 132 resonances measured in the fre-
quency range of 0.19–5.12 GHz (red dashed-dotted line). In
this case the plateau is extended in the range 2.5 m−1 < t <

7.5 m−1 clearly indicating that the Euler characteristic can
be also properly evaluated using much less resonances. In
Fig. 2(b) we also show the approximation function for the
Euler characteristic XK (t ) calculated from Eq. (3) using the
first K = 74 resonances (orange dotted line). It is visible that
formula (3) yields the results which are far from the predicted
value of χ = −5 and can be used only for a much higher
number of resonances K = 1243 [see formula (A16) in the
Appendix].

For the analyzed graph K5 and the microwave network the
number of cycles calculated from formula (1) is β = 1 − χ =
6. Since the number of cycles is higher than three we cannot
directly assess whether the system is planar or not since the
application of the Kuratowski’s theorem requires full infor-
mation about the topology of the investigated graph, which
in principle is not available. In such a situation, in general,
we can test only whether graphs and networks analyzed by us
are fully connected. The fully connected simple networks and

graphs are especially interesting because there is an explicit
link between the number of vertices |V | of a graph and the
Euler characteristic

|V | = 3 + √
9 − 8χ

2
. (7)

This formula holds for both planar and nonplanar graphs.
Applying formula (7) in the case of the microwave network
� with the measured Euler characteristic χ = −2 we get
|V | = 4. Since the number of vertices yielded by formula
(7) is integer, it means that our planar network is also fully
connected. In the case of the network K5 with the measured
Euler characteristic χ = −5 we directly find that the number
of vertices of the network is |V | = 5, in obvious agreement
with the number of the vertices of the network. Therefore, in
this case the experimental evaluation of the Euler characteris-
tic χ allowed us to find that we deal with the fully connected
nonplanar K5 network.

In summary, we showed that the Euler characteristic χ can
be determined (heard) from a finite sequence of the lowest res-
onances ν1, . . . , νN of a microwave network. We also demon-
strated that the spectrum of a simple microwave network
can be used to find the number β = 1 − χ of independent
cycles. If β � 3 then a studied system is planar. Moreover,
the Euler characteristic χ allows us to identify whether the
networks and graphs are fully connected. In such cases it is
possible to determine the number of vertices and edges of the
systems. Thus, we clearly showed that the Euler characteristic
χ is a powerful measure of graphs’ or networks’ properties,
including topology, complementing in an important way the
inverse spectral methods that require the infinite number of
eigenenergies or resonances for their application.
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APPENDIX

1. An effective formula for the Euler characteristic

Formula (3) for the Euler characteristic derived in
Refs. [12,25] using the trace formula coming from
Refs. [26–28] is not effective when the number of known
eigenvalues is limited.

Therefore, we derived an effective formula for the Euler
characteristic χ with a better convergence of the series. The
formula is obtained by applying the distribution u(k) [12,25],

u(k) := 2δ(k) +
∑
kn>0

[δ(k − kn) + δ(k + k0)] = χδ(k) + L
π

+ 1

π

∑
p∈P

�[prim(p)]S(p) cos[k�(p)], (A1)

where the sum is taken over all periodic orbits P on �, �(p) is
the length of the orbit p, and the coefficients S(p) are products
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of scattering coefficients along the orbit p, to the test function

ϕ(x) =
{

1 − cos(2πx), 0 � x � 1;

0, otherwise,
(A2)

which is continuous and has a continuous first derivative.
Formula (A1) alone shows that knowing the spectrum,

equivalently, the distribution on the left-hand side of formula
(A1), allows one to reconstruct the Euler characteristic χ .

The Fourier transform of the test function ϕ(x) is

√
2πϕ̂(k) =

∫ 1

0
[1 − cos(2πx)]e−ikxdx

= −i(e−ik − 1)
4π2

k[k2 − (2π )2]
, (A3)

and its real part is given by

Re
√

2πϕ̂(k) = − sin(k)

k

4π2

k2 − (2π )2
. (A4)

The key point of the proof is to use the relation between the
Fourier transforms of the distributions and the test functions

u[ϕ̂t (k)] = û[ϕt (x)]. (A5)

Applying û to ϕt (x) for

2t�min � 1 ⇔ t � t0 = 1

2�min
, (A6)

where �min is the length of the shortest edge of the graph and
therefore 2�min is the length of the shortest periodic orbit, we
get

û[ϕt (x)] = χ, t � t0. (A7)

Calculating u[ϕ̂t (k)] we obtain the formula (4) for the Euler
characteristic

χ =X (t )|t�t0 , X (t )=2+8π2
∑
kn �=0

sin(kn/t )

(kn/t )[(2π )2 − (kn/t )2]
,

(A8)
improving formula (3). The possible zeros in the denominator
are not dangerous since they cancel with the zeros in the
numerator.

2. The error estimate for the effective formula

We are interested in estimating how many resonances are
needed to determine the Euler characteristic χ , in other words
how many terms in the series are enough to evaluate X (t ).
Since the Euler characteristic χ takes integer values it is
enough to require that the error ε is less than 1/2:

ε = |X (t ) − XK (t )||t=t0

=
∣∣∣∣∣8π2

∞∑
n=K+1

sin(kn/t0)

(kn/t0)[(2π )2 − (kn/t0)2]

∣∣∣∣∣, (A9)

where

XK (t ) = 2 + 8π2
K∑

n=1

sin(kn/t )

(kn/t )[(2π )2 − (kn/t )2]
. (A10)

Our claim is that it is enough to take

K > |V | − 1 + 2Lt0

[
1 − exp

(−επ

Lt0

)]−1/2

, (A11)

where Lt0 = L
2lmin

. For L
2lmin


 1 condition (A11) can be ap-
proximated by

K > |V | − 1 + 2√
επ

( L
2lmin

)3/2

. (A12)

To prove (A11) we assume first that K is sufficiently large
to guarantee that the denominator in (A9) is negative kK+1 >

2πt0. Taking into account the elementary lower estimate for
the eigenvalues

k2
n �

(
π

L

)2

(n + 1 − |V |)2, (A13)

where |V | is the number of vertices, we arrive at the following
sufficient condition for the denominator to be negative:

K > |V | − 1 + L
�min

. (A14)

Then the series can be estimated as

|X (t0) − XK (t0)|

� 8π2
∞∑

n=K+1

|sin(kn/t0)|
(kn/t0)[(kn/t0)2 − (2π )2]

� 8
(Lt0)3

π

∞∑
n=K+1

1

(n + 1 − |V |)[(n + 1 − |V |)2 − 4L2t2
0 ]

� 8
(Lt0)3

π

∫ ∞

K

dx

(x + 1 − |V |)[(x + 1 − |V |)2 − 4L2t2
0 ]

= Lt0
π

log
(K + 1 − |V |)2

(K + 1 − |V |)2 − 4L2t2
0

, (A15)

where we again used (A13) and substituted series with an
integral on the last step. Requiring that the error is less than ε

leads to (A11).

3. The error estimate for the original formula

Using similar arguments we may derive a rigorous estimate
for the number of necessary resonances K required in the case
of formula (3):

K > |V | − 1 + 32L2

επ2
t2
0 ≡ |V | − 1 + 32

επ2

( L
2�min

)2
. (A16)

Since the ratio L
2�min

in formula (A16) is raised to the second

power the above estimate for L
2lmin


 1 is definitely much
worse than (A12), which clearly explains why the old formula
(3) for the Euler characteristic is ineffective in the real world
applications.
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and L. Sirko, Phys. Rev. E 69, 056205 (2004).
[14] M. Ławniczak, O. Hul, S. Bauch, P. Šeba, and L. Sirko, Phys.

Rev. E 77, 056210 (2008).
[15] O. Hul, M. Ławniczak, S. Bauch, A. Sawicki, M. Kuś, and L.
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