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Dense networks with scale-free feature
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While previous works have shown that an overwhelming number of scale-free networks are sparse, there
still exist some real-world networks including social networks, urban networks, information networks, which
are by observation dense. In this paper, we propose a framework for generating scale-free graphs with a dense
feature using two simple yet helpful operations: first-order subdivision and line operation. From the theoretical
point of view, our method can be used not only to produce desired scale-free graphs with a density feature,
i.e., a power-law exponent γ falling into the interval 1 < γ � 2, but also to establish many other unexpected
networked models, for instance, power-law models having a large diameter. In addition, the networked models
generated upon our framework show an especially assortative structure. That is, their own Pearson correlation
coefficients are able to achieve the theoretical upper bound. Last but not the least, we find the sizes of community
in the proposed models to follow the power law in a form with respect to modularity maximization.
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I. INTRODUCTION

Complex networks, usually interpreting diverse complex
systems around us, have attracted more attention in the past.
Studied example networks include the Internet and the World
Wide Web [1], scientific citation and collaboration [2], sexual
contact network [3], metabolic network [4], and predator-prey
chain [5], to name just a few. It is a convention for one to
denote a networked model by a graph G(V, E ) which, in the
simplest form, is a set of vertices in V , representing individual
members of a model, joined together in pairs by edges in
E , indicating relationships between members. With such a
representation, many intriguing properties planted in the topo-
logical structure of networks have been unveiled, for instance,
small-world property [6], power-law degree distribution (i.e.,
the so-called scale-free feature) [7], community structure [8],
self-similarity [9], and assortative mixing [10]. To better un-
derstand the generation principles which control or produce
the emergence of characters mentioned above, a wide range
of technical methods have been developed and then used to
establish a large variety of theoretical models. For example,
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the well-known Watts-Strogatz model was proposed by Watts
and Strogatz [6] to try to explain small-world phenomena in
various real-world networks using two measures: diameter (or
average path length) and clustering coefficient. For probing
mechanisms governing the scale-free feature, a great number
of models have been constructed based on various thoughts
however there seems to be no a complete consensus in the
current science community. Among these, the most prominent
of widely studied networked models is the Barabási-Albert
(BA) model built by Barabási and Albert [7] using two rules,
growth and preferential attachment, where a newly added
vertex tends to connect with higher probability to highly
connected vertices. Throughout this paper, all graphs (models)
addressed are simple and the terms graph and network are
used indistinctly.

While a large number of networked models have been
generated for modeling real-life networks, the most attractive
of them are scale-free networked models. As previously, the
extensive study of models such as these triggers the blos-
som of scale-free graphs study. In 2003, through measuring
the diameter D or average path length APL on scale-free
networks with vertex number |V| and degree distribution
P(k) ∼ k−γ , γ ∈ (2, 3], Cohen and Havlin in [11] proved
using analytical arguments that these networks are small,
i.e., D ∼ ln |V| when γ ∈ (2, 3), and even ultrasmall, i.e.,
D ∼ ln ln |V| when γ = 3. In fact, there are scale-free graphs
with power-law exponent γ = 3 whose diameters are much
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larger than mentioned above; see [12] for more details. As
will be shown shortly, the large diameter phenomena can
also be found on the following scale-free graphs with density
structure, which is the main topic of this paper.

For a theoretical networked model G(V, E ) with an infinity
of vertices, it is easy to show by definition of average degree
〈k〉 = 2|E |/|V| whether that graph is sparse or not. Sparse
models show 〈k〉 → α in the limit of large graph size and the
dense ones are of 〈k〉 � α where α is a constant. Obviously,
all scale-free networks with γ more than 2 are sparse. In
2011, based on extreme value arguments, Genio et al. showed
both numerically and analytically that the probability for
finding a scale-free network with a given γ (∈ [0, 2]) is 0
[13]. Therefore, they demonstrated that all scale-free networks
have sparsity structure. As we will show later, scale-free
graphs with exponent γ = 2 may be easily constructed using a
framework proposed in this paper. In addition, other scale-free
graphs whose exponents γ are in the interval from 1 to 2 are
able to be completely generated in terms of our framework.

The rest of this paper can be organized by the follow-
ing several sections. In Sec. II we lay out the principled
framework for producing the desirable networked models of
great interest. And then, the goal of Sec. III is to discuss in
detail some widely studied topological properties including
degree distribution and clustering coefficient on the models
generated using our framework. Finally, we briefly describe
our conclusions in Sec. IV.

II. INTRODUCTION TO FRAMEWORK FOR PRODUCING
DENSE GRAPHS

In practice, the dense scale-free networks have been paid
little attention in the whole history of scale-free network
studies. However, according to both many real-world example
networks and some fresh instruments in the literature, for
instance, [14] and [15], this branch begins to become active.
Most generally, the simplest method for densifying a sparse
graph G with a given vertex number |V| is to consecutively
add new edges to connect some vertex pairs which are not
connected previously. While such an implementation can
easily achieve a desirable dense graph G ′, some interesting
structural properties rooted on initial graph G may be de-
stroyed thoroughly. As an immediate example, the quantities
closely associated with topological structure of graph G can be
first damaged, for instance, degree distribution and diameter.
Thus, one should attempt to directly produce some desirable
graphs with both density structure and many other topological
properties of scientific interest, such as power-law degree
distribution. Lambiotte et al. in [15] introduced a minimal
generative model, named the copying model, for densifying
networks G(V, E ) in which a new vertex attaches to a ran-
domly selected target vertex and also to each of its neighbors
with probability p. Based on the rate equation approach and
some additional assumptions, they have proven analytically
that in some cases, these networked models may follow the
power-law degree distribution with exponents γ , where γ

satisfies the following equation:

γ = 1 + p−1 − pγ−2. (1)

FIG. 1. The switching procedure from a sparse scale-free graph
into a denser scale-free graph. For a graph G(V, E ), its line graph
based on line operation f can be defined in the following form to be
G ′(V ′, E ′) whose vertex set is V ′ = {ve| f (e) = ve, ∀e ∈ E} in which
the mapping f is to transform an edge to a unique vertex. Two
vertices vei and ve j in V ′ are adjacent if the corresponding edges ei

and e j in E are adjacent in G(V, E ). Such edges constitute the edge
set E ′. Here, average degree 〈k〉 of graph in Fig. 1(a) is equal to 4/3
and average degree 〈k′〉 of its line graph shown in Fig. 1(b) is 2.
Apparently, 〈k′〉 is greater than 〈k〉, implying that line operation f
indeed achieves the transformation from sparser graphs into denser
ones.

As pointed out by the same authors in Ref. [16], in the dense
regime, many features of the degree distribution of networked
models mentioned above become anomalous. For instance,
the degree distribution does not self-average but appears to
slowly converge to a form that is close to, but distinct from, a
log-normal in the large graph size limit.

In brief, how to effectively construct a dense graph with
scale-free structure is a challenging and intriguing problem.
In order to address this issue, we will design a framework
for densifying sparse graphs. Different from those schemes
listed above, our framework is not to directly produce a dense
graph whose degree distribution has a power-law form but to
generate a desirable graph on the basis of a sparse graph. In
fact, it contains two components as follows.

Construction. Here, we develop a theoretical framework
for switching a scale-free graph with sparsity structure into a
candidate graph with density structure. As mentioned above,
we will introduce our framework in two stages. First, a well-
studied operation f from graph theory, named line operation,
is to transform an initial graph G(V, E ) to the corresponding
line graph, also called edge graph, denoted by G ′(V ′, E ′). As
an illustrative example, Fig. 1 shows such an operation f
transforming a sparser graph in the left panel into a denser
one in the right panel.

Consider a given graph G(V, E ) built by the probability
generating function,

G(x) =
∞∑

k=0

pkxk; (2)
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FIG. 2. The diagram of line operation for transforming a sparser
graph into a denser one.

here pk is the fraction of vertices with degree k, its av-
erage degree is able to be expressed as 〈k〉 = G′(1). After
implementing line operation, the line graph G ′(V ′, E ′) has an
average degree equal to

〈k′〉 = 〈k2〉 − 〈k〉
〈k〉 = G′′(1)

G′(1)
, (3)

where 〈ki〉 is the ith moment of vertex degrees of graph
G(V, E ). Armed with the statements, certifying 〈k′〉 more than
〈k〉 is to show G′′(1) no less than [G′(1)]2. In most cases,
the latter holds for a given graph; see Fig. 1. Therefore, this
provides us with an available manner in which we may densify
the topological structure of a sparse graph as plotted in Fig. 2.

On the other hand, the line operation can drastically dam-
age many properties of initial graph G which are closely
related to the topological structure of the underlying graph,
for instance, degree distribution and clustering coefficient.
The topic of this paper is to construct dense graphs with
power-law degree distribution. To this end, the most important
is to choose an available graph G with an expected degree
distribution that can be conveniently deduced to the power-
law form using the line operation in Fig. 2. The selection of
such graphs will be successfully accomplished by adopting
the other component of our framework.

From now on, let us divert insights into the development
of the other component. First, for a given graph G(V, E ), one
can easily obtain its first-order subdivision graph G1(V1, E1)
by inserting one new vertex on each edge in E ; see Fig. 3
for an illustrative example. Such an operation is called the
first-order subdivision in the jargon of graph theory. As we
will demonstrate later, it is the first-order subdivision that
guarantees the construction of seminal graphs that may be
proven to satisfy those requirements mentioned above.

By far, both components of our framework have been
completely established. Now, our task is to clarify the concrete
procedure of running our framework to obtain a dense graph
with a scale-free feature.

Step 1. For an arbitrary sparse graph G(V, E ) whose degree
distribution obeys

P(k) ∼ k−γ , 2 < γ � 3, (4)

if one applies the first-order subdivision to each edge in E ,
then the resulting graph is denoted by G1(V1, E1).

Step 2. For the preceding graph G1(V1, E1), one can manip-
ulate the line operation on each edge in E1. The end graph is
regarded as graph G ′

1(V ′
1, E ′

1).

FIG. 3. The diagram of subdivision. Given an arbitrary graph
G(V, E ), if one inserts a new vertex w to every edge uv ∈ E then
the resulting graph, denoted by G1(V1, E1), is called a first-order
subdivision graph of the original graph. To put this another way, such
a graph G1(V1, E1) can be obtained from graph G(V, E ) by replacing
every edge uv ∈ E by a unique path uwv with length 2.

Figure 4 illustrates the skeleton of our framework de-
scribed here. Below we provide a theoretical proof that shows
that graph G ′

1(V ′
1, E ′

1) is not only dense but also scale free.
In addition, with the help of graph G ′

1(V ′
1, E ′

1), some other
properties of scientific interest will be discussed in the rest
of this paper, some of which, interestingly, can be used as
complementary materials to help us better understand the
fundamental structural features of complex networks.

III. STRUCTURAL PROPERTIES

In this section, we aim at studying some main structural
properties, for instance, degree distribution, of networked
models G ′

1(V ′
1, E ′

1) generated via the framework mentioned
above.

Degree distribution. Implementing the first-order subdivi-
sion will divide each edge uv in E into two edges by inserting
a new vertex w. As a result, the one of the both newborn
edges above will connect old vertex u with degree ku to

FIG. 4. The diagram of our framework for transforming a scale-
free graph with sparsity structure into its corresponding dense graph
with scale-free feature.
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degree 2 vertex w and the other connects degree kv vertex v

to young vertex w. To make further progress, the end graph
G ′

1(V ′
1, E ′

1) has degree distribution in the form

P′(k) = kP(k) ∼ k−γ ′
, 1 < γ ′ � 2. (5)

This suggests that graph G ′
1(V ′

1, E ′
1) obtained from scale-

free graph G(V, E ) by using our framework displays a power-
law degree distribution. In other words, we indeed generate
scale-free graphs with the exponent falling into the interval
from 1 to 2, which is what we wanted.

Average degree. In the large graph size limit, it is straight-
forward using Eqs. (2) and (5) to exactly calculate the solution
for average degree 〈k′〉 in terms of

〈k′〉 ∼
∫ k′

max

0
kP′(k)dk ∼

⎧⎪⎨
⎪⎩

1

2 − γ ′ k
′2−γ ′
max , 1 < γ ′ < 2

ζ (1; k′
max, k′

min) γ ′ = 2

,

(6)
where k′

min and k′
max represent, respectively, the expected min-

imum and largest degrees of vertices of graph G ′
1(V ′

1, E ′
1),

and the symbol ζ (1; u, v) stands for the Riemann zeta function
with constraints, defined as ζ (1; u, v) = ∑u

i=v i−1. It is worth
noting that for a finite number of vertices, the exact form of
Eq. (6) can be found in Ref. [13]. As above, the expected
largest degree value k′

max is precisely equivalent to the greatest
degree kmax of vertices of graph G(V, E ). In general, the
expected value for kmax can be asymptotically expressed with
respect to the vertex number |V| as

kmax ∼ |V|1/(γ−1). (7)

Plugging Eq. (7) into Eq. (6), for an arbitrary γ ′ in the
range (1,2], the average degree 〈k′〉 will become infinite in
the limit of large graph size. This means that scale-free graph
G ′

1(V ′
1, E ′

1) is by definition dense, which is what we want to
see.

Diameter. As the simplest of both measures for investigat-
ing the small-world property of complex networks, diameter
D is the maximum among distances of all vertex pairs. As
stated in [11], scale-free networks are ultrasmall according to
the relationship between diameter D and vertex number |V|.
However, some networked models based on our framework
will be able to exhibit the large diameter phenomenon as
shown shortly. Now, if we suppose the diameter of an initial
graph G(V, E ) is equal to D, then the first-order subdivision
will make the diameter D1 of graph G1(V1, E1) at most equiv-
alent to two times D, i.e., D1 ≈ 2D. After that, it is clear to
see that the diameter D′ of the end graph G ′

1(V ′
1, E ′

1) will
be approximately identical to diameter D1 after applying the
line operation to the graph G1(V1, E1). In another words, the
diameter D′ is the magnitude of order the diameter D, namely,

D′ = O(D). (8)

This implies that if the seminal graph G(V, E ) has a small di-
ameter, then the diameter of the resulting model G ′

1(V ′
1, E ′

1)
will be small. On the contrary, the large diameter of graph
G(V, E ) will ensure that the diameter of graph G ′

1(V ′
1, E ′

1) is
large. As reported in our prior work [12], the growth scale-free
networked model has a very large diameter (D = 2t ; see [12]
for a lot ). Therefore, we can choose such a networked model

as a seed and then obtain a dense graph with both scale-free
feature and large diameter using our framework.

Clustering coefficient. By definition, the clustering coeffi-
cient of a graph G can be written in the following form:

C = 3 × triangle number

number of connected triple
; (9)

here a triangle is a cycle C3 on three vertices and a connected
triple means which vertex is connected to a pair of other
vertices. As described above, using the line operation, vertex
u with degree k′

u of the resulting graph G ′
1(V ′

1, E ′
1) will be

allocated on a clique Kk′
u
, a subgraph in which all vertex pairs

are connected. Hence, the clustering coefficient C′
u of vertex

u is calculated equal to (k′
u − 2)/k′

u. According to Eq. (5),
substituting the consequences calculated above into Eq. (9)
produces

C′ = 1

|V ′|
∑

u∈V ′
1

C′
u ∼

∫ k′
max

k′
min

P′(k)C′
kdk ∼ G(1). (10)

In the large graph size limit, C′ will approach the theoretical
upper bound, i.e., unity.

Armed with Eqs. (6), (8), and (10), we can assert that when
the seminal graph G(V, E ) has scale-free feature and small-
world property, the resulting graph G ′

1(V ′
1, E ′

1) must be both
scale free and small world. Furthermore, if the power-law
exponent γ of the initial graph falls in the range (2,3], then
the end graph has density structure.

Mixing structure. Recent works have shown that in many
networks, a number of vertices tend to be connected to other
vertices like themselves. To analytically depict such a phe-
nomenon, Newman in Ref. [10] introduced a measure r, called
the Pearson correlation coefficient, which is defined in terms
of

r =
|E |−1 ∑

ei j∈E
kik j −

[
|E |−1 ∑

ei j∈E
1
2 (ki + k j )

]2

|E |−1
∑

ei j∈E
1
2

(
k2

i + k2
j

) −
[
|E |−1

∑
ei j∈E

1
2 (ki + k j )

]2 . (11)

In practice, as stated in the process of calculating clustering
coefficient, the resulting graph G ′

1(V ′
1, E ′

1) contains various
types of cliques as subgraphs. As an immediate consequence,
the corresponding r′ will be greater than the r of initial graph
G(V, E ). In order to make our statements more concrete, we
make use of the well-known scale-free graph, the BA model
due to Barabási and Albert in [7], as a seed to generate its
corresponding dense graphs. In principle, such simulations
should use a good unbiased sampling algorithm as reported
in [17]. In essence, the simulations above may be adequately
adopted to illustrate that the theoretical analysis introduced
herein is sound. As with the BA model, we obtain solutions for
Pearson correlation coefficients for six scale-free graphs by
varying the number m of edges originating from each newly
added vertex; see Fig. 5 for more details. It is worth noticing
that as demonstrated in recent literature [18,19], almost all
scale-free networks have been proven to show disassortativity
from various respects including entropy. Hence, our work is
to build up a way to produce such rare types of scale-free
networks without disassortativity.
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FIG. 5. In the left panel, it is obvious to see that for different parameters m, which is number of connections to newly added vertex into the
BA-model, Pearson correlation coefficient r of the BA model will always keep negative and approach 0 in the limit of large graph size. On the
contrary, in the right panel, Pearson correlation coefficients r′ of their corresponding graphs built by means of our framework are all positive
and tend to the theoretical upper bound, i.e., unity.

Community structure. As the final topological measure
discussed in our work, community structure, within which
there is a higher density of edges and between which there is a
few, has been a focus of current research of significant interest,
particularly within statistical physics and computer science
[20]. Here, we utilize one approach in widest current use,
i.e., modularity maximization, to investigate the community
structure of the resulting graph G ′

1(V ′
1, E ′

1) and further probe
the distribution of community size s′ on graph G ′

1(V ′
1, E ′

1).
The modularity of a graph G(V, E ) is given by

Q = 1

2|E |
∑

i j

[
Ai j − kik j

2|E |
]
δgi,g j , (12)

where ki is the degree of vertex i, δi, j is the Kronecker
delta as above, gi represents the community to that vertex i
belongs, and Ai j is the element of the adjacency matrix of
graph G(V, E ) which is equal to 1 when vertex i is adjacent
to vertex j and 0 otherwise. Before processing the following
calculations, let us recall the construction of G ′

1(V ′
1, E ′

1) and
we can evidently see that the sizes of various types of cliques
is in spirit similar to the degree sequence of initial G(V, E ).
With the help of two assertions in [21] [Assertion 1. In a
maximum modularity clustering of graph G(V, E ), none of
the cliques H1; . . . ; Hk is split. Assertion 2. In a maximum
modularity clustering of G(V, E ), every cluster contains at
most one of the cliques H1; ...; Hk .], we can confirm that the
community size s′ distribution has a power-law form

P(s′) ∼ s′γ , 2 < γ � 3. (13)

Surprisingly, such a phenomenon has been discovered in some
real-world complex networks, such as the Amazon copurchas-
ing network in [22].

IV. DISCUSSION AND CONCLUSION

Discussion. We have introduced a framework for pro-
ducing a dense graph with scale-free feature from a given
sparse graph whose degree distribution obeys the power-
law form. From the theoretical point of view, the resulting
graphs based on our framework can be selected to pro-
vide helpful materials for understanding the construction of
scale-free graphs with density feature, a class of networks
that are rarely observed in the study of complex networks.
In addition, these resulting graphs also display some other
interesting topological properties unseen in most scale-free
graphs, such as the higher clustering coefficient shown in
Eq. (10) and the stronger assortative structure plotted in
Fig. 5. Last but not least, the community size distributions
of the resulting graphs may share an identical form with the
degree distribution of the corresponding graphs, as revealed
in Eq. (13).

In conclusion, our theory can provide another class of
generative method for establishing some desirable graphs of
scientific interest. And then, these findings can lead us to
test meaningful hypotheses in an evolving networked model,
particularly, in the scale-free graph.
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