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We study the homogeneous symmetrical threshold model with independence (noise) by pair approximation
and Monte Carlo simulations on Erdős-Rényi and Watts-Strogatz graphs. The model is a modified version of the
famous Granovetter’s threshold model: with probability p a voter acts independently, i.e., takes randomly one of
two states ±1; with complementary probability 1 − p, a voter takes a given state, if a sufficiently large fraction
(above a given threshold r) of individuals in its neighborhood is in this state. We show that the character of the
phase transition, induced by the noise parameter p, depends on the threshold r, as well as graph’s parameters. For
r = 0.5 only continuous phase transitions are observed, whereas for r > 0.5 discontinuous phase transitions also
are possible. The hysteresis increases with the average degree 〈k〉 and the rewriting parameter β. On the other
hand, the dependence between the width of the hysteresis and the threshold r is nonmonotonic. The value of r,
for which the maximum hysteresis is observed, overlaps pretty well with the size of the majority used for the
descriptive norms in order to manipulate people within social experiments. We put the results obtained within
this paper into a broader picture and discuss them in the context of two other models of binary opinions: the
majority-vote and the q-voter model. Finally, we discuss why the appearance of social hysteresis in models of
opinion dynamics is desirable.
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I. INTRODUCTION

It is not surprising that binary opinion models are ex-
tremely popular among sociophysicists, given that the 1/2-
spin Ising model is not only one of the most popular models
of theoretical physics, but also absolutely fundamental for the
theory of phase transitions. However, what is probably more
surprising is that the binary-choice models have received con-
siderably more theoretical attention than other choice mod-
els among social psychologists, sociologists, and economists
[1,2]. One of the most important class of such models are the
threshold models [3,4] taking root in the pioneering paper by
Granovetter [5].

The idea behind these models is extremely simple—an
agent takes state 1 (which can be interpreted as agree, adopt
the innovation, join the riot, etc.) if a sufficiently large fraction
(above a given threshold) of people in his or her neighborhood
is in state 1. Originally the model was investigated under the
assumption of perfect mixing (all-to-all interactions). How-
ever, in 2002 Watts adapted Granovetter’s threshold model
to a network framework [3]. We will use the same approach
here, and therefore individuals will be influenced only by
the nearest neighbors; i.e., interactions will take place only
between agents that are directly linked.

There are two important differences between the Watts
threshold model and other models of binary opinions, such
as the Galam model [6–8], the majority-vote (MV) [9–20],
the q-voter (qV) [21–28], or the threshold q-voter (TqV)
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model [29–32]. The first difference, often considered the most
important, is the heterogeneity—each agent is described by an
individual threshold, and therefore some agents adopt a new
state very easily, whereas others don’t [3]. The second differ-
ence, which should be particularly important for physicists,
is the lack of the up-down symmetry. Once an agent adopts
a state 1 it cannot go back to the previous one. To make
the threshold model comparable with other binary opinion
models, we have introduced recently the homogeneous sym-
metrical threshold model [33]. Here we will call this model
simply the symmetrical threshold (ST) model for brevity.

Previously we have studied two versions of the ST model,
each with a different type of nonconformity (anticonformity
or independence) on the complete graph [33]. Therefore we
were able to obtain exact analytical results within the mean-
field approach. Analogously as in other models of binary
opinions, the introduction of nonconformity, whether in the
form of anticonformity or in the form of independence, re-
sulted in the appearance of the agreement-disagreement phase
transitions. We have shown, that for the threshold r = 0.5,
which corresponds to the majority-vote model, the phase
transition is continuous, whereas for r > 0.5 discontinuous
phase transitions appear within the model with independence.
For the model with anticonformity, phase transitions are con-
tinuous for an arbitrary value of r. A similar phenomenon has
been observed previously for the q-voter model—within the
model with anticonformity, only continuous phase transitions
are observed, whereas within the model with independence
(known also as the nonlinear noisy voter model), discontinu-
ous phase transitions appear for q > 5 [28,34,35].

In this paper we focus on the ST model with independence,
because the hysteresis and tipping points, two signatures of
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a discontinuous phase transitions, are common features of
complex social systems [36–38]. We study the model on
Erdős-Rényi (ER) and Watts-Strogatz (WS) graphs [39]. For
the ER graph the pair approximation (PA) should give an
accurate result, whereas the WS graph allows us to tune the
structure from (1) the complete graph, for which the mean-
field approximation (MFA) gives an exact result, through (2)
random graphs for which the PA should work properly, to (3)
small-world networks, which resemble the basic features of
the real social networks. Because it has been shown recently
that the size of the hysteresis may depend on the graph’s
properties, we focus on this issue and check to what extend
results found within the MV model and the qV model are
universal [14,15,19,20,28,40].

II. MODEL

We consider a system of N individuals placed in the
nodes of an arbitrary graph. Each node represents exactly
one individual (interchangeably called an agent, a spin, or a
voter). We consider a model of binary opinions, beliefs, and
decisions, and thus each voter at time t is described by a binary
dynamical variable Si(t ) = ±1(↑ / ↓). At each elementary
update �t :

(1) A site i is randomly chosen from the entire graph,
(2) An agent at site i acts independently with probability

p, i.e., changes its opinion to the opposite one Si(t + �t ) =
−Si(t ) with probability 1

2 ,
(3) With complementary probability 1 − p it conforms to

its ki neighbors if the fraction of its neighbors in the same state
is larger than r:

(a) Si(t + �t ) = 1 if more than rki neighbors are in the
state 1 or

(b) Si(t + �t ) = −1 if more than rki neighbors are in
the state −1.
As usual, a single Monte Carlo step consists of N updates,

�t = 1/N , which means that one time unit corresponds to
the mean update time of a single individual. Under the above
algorithm the following changes are possible in the system:

↑↑ . . . ↑︸ ︷︷ ︸
>�rki�

⇓ 1−p−→ ↑↑ . . . ↑︸ ︷︷ ︸
>�rki�

⇑,

↓↓ . . . ↓︸ ︷︷ ︸
>�rki�

⇑ 1−p−→ ↓↓ . . . ↓︸ ︷︷ ︸
>�rki�

⇓,

. . . . . . . . .︸ ︷︷ ︸
any

configuration

⇑ p/2−→ . . . . . . . . .︸ ︷︷ ︸
any

configuration

⇓,

. . . . . . . . .︸ ︷︷ ︸
any

configuration

⇓ p/2−→ . . . . . . . . .︸ ︷︷ ︸
any

configuration

⇑, (1)

where ⇓ and ⇑ denote states of a target agent, and �rki� is
the floor function of rki. In any other situation, the state of the
system does not change.

In the Watts threshold model flipping from ↑ to ↓, was for-
bidden [3]. Therefore, the model was asymmetrical contrary
to the majority vote or the q voter.

In the original threshold model an arbitrary value of r ∈
[0, 1] is possible, which is a reasonable assumption for the
asymmetrical model describing the adoption to the new state.
In the symmetrical case, the situation for r < 0.5 is less
obvious. It can be easily seen within the following example:
let the threshold r < 0.5 and the neighborhood of a target
voter consist of 50% positive and 50% negative agents. It
means that both opinions (positive and negative) could be
adopted by the voter. Which one should be chosen in such
a situation?

There are several possibilities to solve the above ambiguity,
e.g., we can assume that (1) a voter prefers to change opin-
ion and therefore will always change it to the opposite one
whenever possible [30,32], (2) a voter prefers to keep an old
opinion—this assumption overlaps r � 0.5 [29,33], or (3) a
voter makes a random decision to flip or keep an old state.
Each of these scenarios can be used. However, for modeling
opinion or belief formation the second one, r � 0.5, seems to
be the most justified from the social point of view [31].

III. ANALYTICAL APPROACH WITHIN PAIR
APPROXIMATION

Our analytical approach is based on the pair approximation
(PA), an improved version of the standard mean-field approx-
imation (MFA), which already has been applied to various
binary-state dynamics on complex networks [28,32,41,42].

Because at each elementary update only one voter can
change his or her opinion, thus the number of agents with
positive opinion N↑ increases or decreases by 1 or remains
constant. As in Ref. [34] we denote by c = N↑/N the concen-
tration of the positive opinion, which in an elementary time
step increases or decreases by 1

N or remains constant. We also
denote transition probabilities as in Ref. [22]:

γ + = Prob

[
c(t + �t ) = c(t ) + 1

N

]
,

γ − = Prob

[
c(t + �t ) = c(t ) − 1

N

]
,

γ 0 = Prob [c(t + �t ) = c(t )] = 1 − γ + − γ −. (2)

For N → ∞ we can safely assume that random variable c
localizes to the expectation value, and we get the following
continuous-time dynamical system:

dc

dt
= γ + − γ −, (3)

in the rescaled time units t . The simplest and the most popular
approach under which formulas for transition probabilities
γ ± can be derived analytically is the simple mean-field ap-
proximation [21–23,29–31,33]. It gives very good agreement
for the complete graph, but rarely for more complicated
structures, because it neglects all fluctuations in the system
by assuming that the local concentration of spins up is equal
to the global one.

Another method, which works particularly well for ran-
dom graphs with low clustering coefficient, is the pair

052316-2



SYMMETRICAL THRESHOLD MODEL WITH INDEPENDENCE … PHYSICAL REVIEW E 101, 052316 (2020)

0.0

0.5

1.0

p∗1 p∗2

c

0.0

0.3

0.6

0.0 0.5 1.0

p∗2

b

p
0.5 0.8 1.0

p∗2

c

FIG. 1. Dependencies between the stationary value of the con-
centration of spins up c and active bonds b and the noise p obtained
within the PA for sample values of parameters 〈k〉 = 80 and r = 0.6.
Results are presented in three phase-space projections: (c, p), (b, p),
and (b, c). For p < p∗

1 the only stable solution is the ordered phase,
in which the symmetry between ↑ and ↓ states is broken, whereas
for p > p∗

2 the only stable solution is the disordered phase.

approximation. Within the PA we describe the system by
two differential equations—one for the time evolution of the
concentration c of spins up and the second one for the time
evolution of the concentration b of active bonds or links
(bonds between two opposite spins) [2,28,41]:

dc

dt
= −

∑
j∈{1,−1}

c j

∑
k

P(k)
k∑

i=0

(
k

i

)
θ i

j (1 − θ j )
k−i

× f (i, r, k, p) j, (4)

db

dt
= 2

〈k〉
∑

j∈{1,−1}
c j

∑
k

P(k)
k∑

i=0

(
k

i

)
θ i

j (1 − θ j )
k−i

× f (i, r, k, p)(k − 2i), (5)

where c j is the concentration of spins in state j = ±1 and
thus c1 = c, c−1 = 1 − c, P(k) is the degree distribution of
a graph and 〈k〉 is the average node degree. The parameter
θ j is the conditional probability of selecting a node that
is in the opposite state to its neighbor in a state j, which
is equivalent to the probability of choosing an active link
from all links of a node in state j and can be approximated
by [2,28]

θ j = b

(2c j )
, (6)

where f (i, r, k, p) is the flipping probability, i.e., the probabil-
ity that a node in state j changes its state under the condition
that exactly i from its k links are active.

Within our version of the threshold model, a voter flips
with probability 1/2 due to the independence, which takes
place with probability p or due to the conformity, which takes
place with probability 1 − p if more than �rk� of its nearest
neighbors are in the opposite state and thus

f (i, r, k, p) = p

2
+ (1 − p)1{i>�rk�}, (7)

where 1{i>�rk�} is the indicator function, i.e. giving 1 for i >

�rk� and 0 otherwise.
In this paper, we focus mainly on the WS graph, because

it allows us to tune the structure from the one with a high
clustering coefficient and high average path length to the one
with a low clustering coefficient and low average path length,
by changing the parameter (rewiring probability) β without
changing the average node degree 〈k〉. The degree probability
P(k) for such a network equals [43]

P(k) =
min(k−〈k〉/2,〈k〉/2)∑

n=0

(〈k〉/2
n

)
(1 − β )nβ〈k〉/2−n

× (β〈k〉/2)k−〈k〉/2−n

(k − 〈k〉/2 − n)!
e−β〈k〉/2. (8)

The PA works properly for small clustering coefficients which
correspond to large values of β. Moreover, under the assump-
tion β → 1, calculations simplify substantially, since Eq. (8)
reduces to

P(k) = (〈k〉/2)k−〈k〉/2

(k − 〈k〉/2)!
e−〈k〉/2. (9)

Therefore, we take in further calculations P(k) given by
Eq. (9), which is very close to the Poisson distribution cen-
tered at mean value 〈k〉 for the ER graph.

After inserting f (i, r, k, p), given by Eq. (7), into Eqs. (4)
and (5) we obtain

dc

dt
= −

∑
j∈{1,−1}

c j

∑
k

P(k)

×
[

j p

2
+ j(1 − p)

k∑
i=�rk�+1

(
k

i

)
θ i

j (1 − θ j )
k−i

]
,

(10)
db

dt
= 2

〈k〉
∑

j∈{1,−1}
c j

∑
k

P(k)

[
pk

(
1

2
− θ j

)

+ (1 − p)
k∑

i=�rk�+1

(
k

i

)
θ i

j (1 − θ j )
k−i(k − 2i)

]
. (11)

The steady states can be obtained by solving the following
equations:

dc

dt
= 0, (12)

db

dt
= 0. (13)
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Analogously as for the q-voter model with independence, we
are not able to solve the above equations explicitly, but we
can obtain inverse relation p = p(c), instead of c = c(p) [34].
For the concentration of active bonds we can present only an
implicit solution.

One solution of Eq. (12), namely, c = 1/2, is straightfor-
ward because it is seen that for this value the right side of
Eq. (10) equals zero, i.e., point c = 1/2 is the fixed point for
all values of p. On the other hand, the right side of Eq. (11)
is nonzero at c = 1/2 for arbitrary p; thus from Eq. (13) for
c = 1/2 we can derive the relation p(b):

p =

∑
k

P(k)
k∑

i=�rk�+1

(k
i

)
bi(1 − b)k−i(k − 2i)

−〈k〉( 1
2 − b

) + ∑
k

P(k)
k∑

i=�rk�+1

(k
i

)
bi(1 − b)k−i(k − 2i)

. (14)

We see that b → 0 gives p = 0 and b → 1/2 gives p = 1.
To show the behavior of the system for c �= 1/2 we insert Eq. (10) to Eq. (12), which allows us to derive the relation

p =

∑
k

P(k)
k∑

i=�rk�+1

(k
i

)[
cθ i

↑(1 − θ↑)k−i − (1 − c)θ i
↓(1 − θ↓)k−i

]

1
2 − c + ∑

k
P(k)

k∑
i=�rk�+1

(k
i

)[
cθ i

↑(1 − θ↑)k−i − (1 − c)θ i
↓(1 − θ↓)k−i

] , (15)

where we denote θ1/−1 by θ↑/↓ for clarity. Note that the above
equation is in fact the relation p = p(c, b), because both b and
c are implicitly included in θ↑ and θ↓ according to Eq. (6).
Thus, to solve the above equation we need the relation b =
b(c), which can be obtained by inserting the above equation
into Eq. (13):

0 =
∑

k

P(k)
k∑

i=�rk�+1

(
k

i

){
cθ i

↑

× (1 − θ↑)k−i[〈k〉(1 − 2b) + (1 − 2c)(k − 2i)]

+ (1 − c)θ i
↓(1 − θ↓)k−i[(1 − 2c)(k − 2i) − 〈k〉(1 − 2b)]

}
(16)

As we have noticed above, Eq. (15) gives the relation p =
p(c, b), which can be plotted in three different planes, as
shown in Fig. 1. There are two critical points, seen in this plot:
(1) p = p∗

1, in which the solution c = 1/2 loses stability (so-
called lower spinodal) and (2) p = p∗

2, in which the solution
c = c(p) �= 1/2, given by Eq. (15), loses stability. There are
several possibilities to calculate p = p∗

1 [22,28,31]. Here we
use method based on the observation that p = p∗

1 corresponds
to the point c = 1/2 in the relation b = b(c) (right bottom
panel of Fig. 1). Therefore, first we take a limit c → 1/2 in
Eq. (16), which gives

0 =
∑

k

P(k)
k∑

i=�rk�+1

(
k

i

)
bi(1 − b)k−i

×
[

k − 〈k〉(1 − 2b)

(
1 + kb

1 − b

)

− 2i + 〈k〉(1 − 2b)

(
1 + b

1 − b

)
i

]
. (17)

and then derive b from the above equation. Finally we insert
this value of b into Eq. (14), which gives p = p∗

1. The upper

spinodal, i.e., point p = p∗
2, where p = p(c) has two maxima

(see Fig. 1), can be calculated numerically from Eq. (15) by
taking a maximum value of p.

IV. DISCUSSION OF THE PAIR APPROXIMATION
RESULTS

It was shown that for the majority-vote model with inertia
there are two ingredients responsible for the discontinuous
phase transitions: (1) the level of inertia and (2) the average
node degree 〈k〉 [15,19]. Similarly, for the q-voter model (1)
the size of the influence group q and (2) 〈k〉 are key factors
influencing the type of the phase transition [28,34,40]. The
question is if the same can be seen within the ST model.

The first ingredient influencing the phase transition is
studies in the previous paper already within the mean-field
approach [33]. We have observed continuous phase transitions
for r = 0.5 and discontinuous ones for r > 0.5. We have
obtained a similar result within the PA, as shown in Fig. 2: for
small values of r we observe a continuous phase transition,
whereas for large r a discontinuous one. This result is similar
to results obtained within the MV model with inertia and the
qV model. In both models discontinuous phase transitions
were observed only for the sufficiently large value of inertia
θ [15,19] or the large size of the influence group q [28,34].
It should be noticed that both the large size of the influence
group q and the high threshold r correspond to the high value
of inertia:

qV model: it is unlikely that we find a unanimous group of
size q if q is large

ST model: it is unlikely that we find a fraction of agents in
the same state larger than r if r is large.

Therefore, in both cases a voter is unlikely influenced by
neighbors, i.e., its inertia is larger.

Now it is time to investigate the second ingredient, namely,
to check whether 〈k〉 influences phase transitions within the
ST model. In Fig. 3 we present the dependence between the
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FIG. 2. Phase diagram for the average degree 〈k〉 = 50. Lines
with • and � represent spinodals obtained within PA from
Eqs. (15)–(17), i.e., limits of the region with metastability, in which
the final state depends on the initial one.

stationary concentration of spins up c and the noise p for
several values of the average node degree of the network
〈k〉 and two values of the threshold r. Again we see that
for r = 0.5 only continuous phase transitions are observed
independently of 〈k〉. However, for r = 0.6 the character of
the phase transition changes with 〈k〉. Similarly as for the
MV model with inertia and the qV model, the width of the
hysteresis increases with 〈k〉 [15,19,40].

To the best of our knowledge, the dependence between the
size of the hysteresis and 〈k〉 was not investigated precisely for
the MV model with inertia. However, for the q-voter model it
has been shown that 〈k〉 influences substantially the width of

0.0
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1.0

0.0 0.5 1.0

Complete Graph

(a)

c

p
0.0 0.5 1.0
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(b)

p

FIG. 3. Dependence between the stationary concentration of
spins up c and the noise p for several values of the average node
degree 〈k〉 and two values of the threshold: (a) r = 0.5 and (b) r =
0.6. Thin (red and blue colors online) lines refer to different values
of 〈k〉 ∈ {10, 20, 40, 80} from left to right, whereas thick black lines
represent the mean-field solution. Arrows indicate the direction in
which 〈k〉 increases.
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FIG. 4. The width of hysteresis p∗
2 − p∗

1 (left panel) and the jump
of the public opinion c (right panel) as a function of the average node
degree 〈k〉 for threshold r = 0.6 obtained within PA.

the hysteresis and has almost no influence on the jump of the
order parameter, defined as [40]

m = N↑ − N↓
N

= 2
N↑
N

− 1 = 2c − 1. (18)

In this paper we did not introduce the order parameter m,
because we made all calculations in terms of c. Of course, we
could easily reformulate all results using the simple relation
between m and c, given by Eq. (18).

In Ref. [40] the jump of m has been measured at upper
spinodal. Therefore we also measure a jump of c at this point,
i.e. c(p∗

2) − 0.5. As we see in Fig. 4 both hysteresis as well as
the jump of c depend on 〈k〉. However, these dependencies
are very different. There is only one common feature seen
in both relations—below a certain value of 〈k〉 both p∗

2 − p∗
1

as well as c(p∗
2) − 0.5 are equal zero, which indicates a

continuous phase transition. Above this value the width of
hysteresis increases almost linearly, for some intermediate
values of 〈k〉, but then the growth significantly slows down and
the hysteresis asymptotically approaches the limiting value,
which is visible in Fig. 5. In result a hysteresis is an S-shaped
curve, and the limiting value is given by mean-field size of the
hysteresis [33]. On the other hand, the jump of concentration
of spins up increases only slightly, but this growth is very
rapid and takes place in a relatively small range of 〈k〉. For
larger values of 〈k〉 the jump of c does not change, similarly
as for the q-voter model [40].

Until now we have analyzed the influence of 〈k〉 on the
phase transition only for r = 0.6. Of course, the same can be
done for an arbitrary value of r, as shown in Fig. 5. We see that
the width of the hysteresis indeed increases monotonically
with 〈k〉. However, the dependence on the threshold r is
much more interesting. There is an optimal value of r, which
decreases with 〈k〉, for which the hysteresis has the maximum
size.

Because empirical studies suggest that the mean number of
friends varies typically from 5 to 150, depending on the rated
emotional closeness between them [44], an optimal value of r
is that for which the maximum size of hysteresis appear lies
in (0.65,0.85). We find this result particularly interesting from
the social point of view, which will be commented on in the
Conclusions.
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the average degree of a graph 〈k〉 obtained within the PA.

V. MONTE CARLO SIMULATIONS

We validate our analytical PA results with Monte Carlo
(MC) simulations on ER and WS graphs [39]. We expect that
the PA should give correct results for ER and WS graphs
with β = 1. As we have observed in the Introduction, the
WS algorithm allows us to tune the structure of the graph
from a regular (β = 0) to a random one (β = 1). It also
reduces to the complete graph for 〈k〉 = N − 1. Moreover, in
the whole spectrum of parameter β the average node degree is
conserved. This makes the WS graph particularly interesting
for our studies.

As expected, MC simulations for ER as well for WS
graphs with β = 1 overlap the PA results, even for small
values of 〈k〉; see Fig. 6. Moreover, this agreement is seen in
all dependencies, namely, c = c(p), b = b(p), b = b(c). The
question is if and how the parameter β will influence results.

In Fig. 7 the parameter β varies from 0.1 to 1. The width
of the hysteresis p∗

2 − p∗
1 increases with β for r > 0.5 within

the PA as well as MC simulations. To obtain the hystere-
sis from MC simulations we conduct simulations from two
types of initial conditions: ordered (c(0) = 1) and disordered
(c(0) = 1/2), as indicated in Fig. 7(a). As usual, in general
the PA gives consistent results with MC simulations only for
sufficiently large values of the rewiring probability β and big
enough system size N , which is quite clear. First, within the
PA we approximate all triangles, which are frequent in the
case of high clustering coefficient, by pairs. Therefore, the
higher clustering coefficient is (i.e., the lower β), the less
accurate results are given by the PA. Second, PA equations
are derived for the infinitively large system, and therefore
the larger the system is, the better compatibility with the PA.
Therefore to make a comparison with the PA we have chosen
relatively large N = 104.

However, one may also ask how results scale with the
system size. We have expected that our model will scale
analogously to other binary models with up-down symmetry.
Indeed, as shown in Fig. 8, critical exponents coincide with
classical exponents for the Ising model, which have been also
observed on various random networks [45], including Watts-
Strogatz graphs [46]. Such a mean-field exponents have been
also reported for various opinion dynamic models [47,48].

VI. CONCLUSIONS

The hysteresis and tipping points are common features
of complex social and psychological systems [36,38,49–51].
For example, empirical studies suggest that public opinion
exhibits both phenomena, which means that it remains seem-
ingly resistant to change (which is related to hysteresis), and
then a sudden, abrupt shift of opinion can be observed at the
tipping point [36,38]. The notion of the tipping point, similar
to the notion of the hysteresis, two signatures of discontinuous
phase transitions, has been present in the social sciences for
many years; for an early review of the importance of the no-
tion of social hysteresis in social science see Ref. [50]. In the
social sciences, the hysteresis is used to explain inelasticity of
change and manifests as a slow response of societies to new
problems, even if they are recognized by experts [36].

When it comes to the theoretical description of hysteresis
in social science, different approaches are possible. One of
the possibilities is Bourdieu’s concept of the hysteresis effect
[52], within which hysteresis is a consequence of interrela-
tions between habitus (a property of actors, e.g., individuals,
groups, or institutions) and field (social space); for a review
see Ref. [53]. According to this concept, the hysteresis effect
means that in the changed circumstances, individuals maintain
their acquired dispositions, even when they are not suited to
the new social context. Surprisingly, Bourdieu’s concept is
perfectly consistent with the idea of hysteresis appearing in
the physics of phase transitions.

Although it may seem that the social hysteresis and the tip-
ping point are just fancy buzzwords, empirical social studies
have confirmed that they are not just abstract ideas [36,38,51].

These findings, among others, inspired researchers to look
for the hysteresis in models of opinion dynamics [15,19,40].
For example, an additional noise has been introduce to the MV
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FIG. 6. Comparison between results obtained within the PA (denoted by lines) and Monte Carlo simulations (denoted by symbols) for
r = 0.5 (upper panels) and r = 0.6 (bottom panels). In the left column [panels (a) and (d)] results for two types of graphs are presented:
Watts-Strogatz with β = 1 [upper part, obtained from the initial condition c(0) = 1] and Erdős-Rényi [bottom part, obtained from the initial
condition c(0) = 0]. In the remaining panels results for WS graphs with β = 1 are presented, but for ER graphs the results are the same. Solid
lines correspond to stable, whereas dashed lines to unstable, solutions of Eqs. (12) and (13). For all diagrams the size of the system N = 104

and the thermalization time t = 104. Results are averaged only over five samples, but for this size of the system it is sufficient, as seen above.

model, but is was shown that it does not affect the type of the
phase transition, and it remains continuous irrespective of the
network degree and its distribution [14,20]. On the other hand
it was shown that discontinuous phase transitions may appear
in the MV model with inertia, when the inertia is above an
appropriate level [15]. Later a question about the fundamental
ingredients for discontinuous phase transitions in the inertial
majority vote model was asked [19]. It was shown that low 〈k〉
leads to the suppression of the phase coexistence. A similar
result has been also reported for the q-voter model [40].

This motivated us to check if the same behavior will be
observed within the ST model introduced in Ref. [33]. We
have shown, using PA and MC simulations, that indeed the
type of the phase transition within ST model depends on
threshold r, as well as the properties of the network 〈k〉 and β;
i.e., hysteresis increases with 〈k〉 and β. On the other hand, the
dependence on r is nonmonotonic, which will be commented
on below.

We discuss ST in the context of MV and qV models,
because they have much in common, which has been already
discussed in Ref. [33]. In particular, ST model with anticon-
formity is the generalization of the basic majority-vote model,
which corresponds to r = 0.5. Moreover, the ST model with
r = 1 reduces to the q-voter model on the random regular
graph with degree q, i.e., if ∀iki = k = q. Finally, the ST
model with an arbitrary value of r corresponds to the threshold
q-voter model on the random regular graph with ∀iki = k = q
[29–32].

Moreover, as we have noticed in Sec. IV, the parameters
that are mainly responsible for the discontinuous phase tran-
sitions, namely, the level of inertia θ in the MV model with
inertia, the size of the influence group q in the qV model,

and the threshold r needed for the social influence in the ST
model, play in a sense a similar role. The larger q or r is, the
harder it is to influence a voter, which as a result increases
inertia on the microscopic level.

Because the hysteresis can be viewed as an inertia of the
system on the macroscopic level, it would not be surprising
that the inertia on the microscopic level supports the hystere-
sis. However, as shown in Fig. 5, the relation between the size
of the hysteresis and parameter r is not that trivial, i.e., it is
nonmonotonic, having the maximum value for a given value
of r, which depends on 〈k〉. This is a particularly interesting
result from the social point view and worth discussions here.

It is known that social influence increases with the size of
the influence group as well as the unanimity of the group.
However, this dependence is far from being trivial. First, it
increases only up to a certain level. The social influence is
stronger if the group of influence consists of four, instead of
two, people. However, above a certain threshold it remains on
the same level. Moreover, above this threshold, around 7–11
people, the social influence decreases [54].

Therefore, in social experiments, in which descriptive
norms are used to influence people, social psychologists use
neither unanimity nor a simple majority. Instead they use a
certain supermajority, often around 75%. For example, they
manipulate people to reuse towels in hotels with the fake
descriptive norm saying something like: “75% of our guests
are reusing towels.” There is no strong evidence that 75% is
the magic number, and in some other experiments larger ma-
jorities were used, as briefly reviewed in Ref. [31]. The main
message we want to convey here is that the larger majority
does not always result in stronger social influence. It seems
that some optimal values exist, and these values probably
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FIG. 7. Dependence between the stationary concentration of spins up c and the noise p for r = 0.6, 〈k〉 = 150 (upper row), r = 0.8,
〈k〉 = 150 (middle row), r = 0.6, 〈k〉 = 20 (bottom row), and several values of the rewriting parameter: (a), (d), and (g) β = 0.1, (b), (e), and
(h) β = 0.5, (c), (f), and (i) β = 1. Monte Carlo results for two types of initial conditions [as indicated in panel (a)] and N = 104 are denoted
by symbols, whereas lines correspond to PA results. The thermalization time t = 106 for initial condition c(0) = 0.5 and t = 2 × 104 for initial
condition c(0) = 1. Results are averaged over five samples.

depend on the size of the influence group: for small groups
unanimity is needed but for large groups some threshold value
is more appropriate, significantly larger than 50%, but smaller
than 100%. How is this related with the results obtained here?

As we have observed in Sec. IV, it was found empirically
that in real social networks 〈k〉 ∈ (5, 150). This finding may
seem surprising if we realize that, for example, on Facebook
the current limit for the number of friends is 5000 people.
Indeed, the growth of online communication raises a question
about the scalability of the number of friends with the size of
a social network. However, it seems that it is not a matter of
the size of the whole social network that matters but rather the
cognitive limits of our brain. As shown by Dunbar, the typical
size of social groups correlates closely with the size of the
neocortex. As a result the structure of online social networks
mirrors the offline network of face-to-face contacts and con-
sists of layers at 5, 15, 50, and 150 individuals [44]. For these
values the optimal threshold of r, for which the largest social
hysteresis is observed, lies in the range (0.65,0.85), depending
on the average size of the influence group 〈k〉. We admit

that what we measure is not the power of social influence,
but the size of the hysteresis. However, having in mind that
the hysteresis is usually observed in social systems, we can
speculate that there are some optimal values in the level of
social influence and these values influence the hysteresis that
is usually observed in social systems.

We are aware that it maybe merely intriguing but the
meaningless coincident. However, we believe that this finding
deserves more attention and studies within other models of
opinion dynamics.

Data sharing is not applicable to this article as no new data
were created or analyzed in this study.
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