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Stochasticity is introduced to a well studied class of recursively grown graphs: (u, v)-flower nets, which
have power-law degree distributions as well as small-world properties (when u = 1). The stochastic variant
interpolates between different (deterministic) flower graphs thus adding flexibility to the model. The random
multiplicative growth process involved, however, leads to a spread ensemble of networks with finite variance for
the number of links, nodes, and loops. Nevertheless, the degree exponent and loopiness exponent attain unique
values in the thermodynamic limit of infinitely large graphs. We also study a class of mixed flower networks,
closely related to the stochastic flowers, but which are grown recursively in a deterministic way. The deterministic
growth of mixed flower-nets eliminates ensemble spreads, and their recursive growth allows for exact analysis
of their (uniquely defined) mixed properties.
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I. INTRODUCTION

Generative graph models that reliably display properties
found in real-world networks created something of a renais-
sance in the study of complex networks around the begin-
ning of the millennium [1–6]. Most of these initial mod-
els were built on the assumptions that the network had to
be stochastic, produce a compact graph, and include some
form of preferential attachment [2,7–9]. However, a subset
of models did away with randomness, relying instead on
deterministic recursive rules for their generation [10–15], and
more recently this approach has been revisited in [16,17].
One important early model, the so-called DGM network, or
alternatively the pseudofractal scale-free web (PSW), became
a baseline example and has been studied with respect to
many network properties over the years, including loopiness
[18], diffusion [19], percolation [20], spectral properties [21],
and minimum dominating sets [22]. A generalization of this
important network: (u, v)-flower nets, was introduced in [14]
and enabled the construction of pseudofractal networks with
varying network properties. Of particular interest in [14]
was a linearly scaling self-similarity leading to an associated
transfinite dimension, which led to a relabeling of the special
small-world cases as transfractals. A similar generalization
was put forward around the same time in [9], which focused
exclusively on variations of the PSW. Recursive constructions
have the advantage of allowing for exact analysis of the
graphs’ structural and dynamical properties but are overly
rigid, as they lack stochasticity. A weighted version of the
PSW was introduced in [23], which did allow for asymmetry
in edge weights. It is reasonable to ask whether some measure
of stochasticity can be introduced without losing all of the
beneficial analysis tools that have been developed for strictly
recursive structures.

In this paper we introduce stochasticity to a recursive
construction called the (u, v)-flowers [14], by mixing two

(or more) deterministic rules in a random fashion. Because
of the random multiplicative nature of the growth process, the
resulting distributions for the number of links and sites display
a small but finite variance (relative to the average) even in the
thermodynamic limit of infinitely large graphs. Nevertheless,
some structural characteristics, such as the degree-exponent,
attain a sharp, well-defined value, and can now be tuned at
will by varying the randomness parameters. We also explore
an alternative deterministic method for mixing the recursive
rules, to construct (unique) graphs that mimic stochastic flow-
ers, yet eliminate the ensemble spread while still allowing for
exact analysis of their properties.

The rest of this paper is organized as follows. A brief
review of (u, v)-flowers is provided in Sec. II. The stochastic
growth process that mixes randomly between different re-
cursive rules is explained in Sec. III. This section includes
also an analysis of the distributions of the number of links
(M) and nodes (N) and their moments, as well as of the
degree exponent and the loopiness exponent of the graphs.
(The loopiness exponent α measures how h∗—the most likely
length of cycles in the graph—scales with its order, h∗ ∼ Nα

[18].) Mixed flowers and their generation by deterministic
mixing of recursive rules is described in Sec. IV, and their
size, order, and statistics of cycles is analyzed exactly. We
conclude with a summary and discussion of the results in
Sec. V.

II. RECURSIVE FLOWER NETS

The (u, v)-flower net [14], whose nth generation is denoted
by Fn(u, v), is constructed by a recursive process. Flower-nets
model many real-world properties (e.g., power-law degree
distributions, small world when u = 1, hierarchical commu-
nity structure), and they importantly allow for exact analysis
of their structure and of dynamical processes on them. The
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FIG. 1. The (n + 1)th generation of Fn(1, v) is constructed by using either of two methods: (a) Attach a path of v links in parallel to each
link of the previous generation, or (b) paste 1 + v copies of the nth generation into a cycle, joining the copies hub to hub. (c) F3(1, 2), or the
DGM network built to its third generation. The hubs are marked by larger full circles.

simplest case, of (u, v) = (1, 2), also known as the DGM
network, was first described by Dorogotsev et al. [12] as a
pseudofractal. The more general subset of small world cases
(u = 1) with generic v values were later dubbed transfractals
in [14], due to a transfinite dimensionality defined in terms
of a self-similarity that scales linearly in the distance between
nodes.

The construction process begins (at generation n = 0) with
the complete graph on two nodes, K2. To obtain the (n + 1)th
generation, each link in generation n is replaced by a parallel
pair of paths of link lengths u and v. This process is shown
in Fig. 1(a) for the case of u = 1. It was noted in [12] and
later treatments [14,15] that the (n + 1)th generation could
also be obtained by pasting w = u + v copies of generation
n at their hubs—the two original nodes from generation
n = 0. This approach, illustrated in Fig. 1(b), is the basis to
the copy machine method for generating adjacency matrices
(see Appendix C of [19]), and is useful for computational
simulations. Figure 1(c) provides an illustration of F3(1, 2),
or the DGM network built to its third generation.

The number of links, Mn, and nodes, Nn, in a flower graph
of generation n is [14,19,20]

Mn = wn, (1)

Nn = w − 2

w − 1
wn + w

w − 1
, (2)

where w = u + v [thus, w = 3 for the (1,2)-flower and w = 4
for the (1,3)-flower].

A flower-graph of generation n > 0 consists of nodes of
degree k = 2, . . . , 2n. The number of nodes of degree 2m in a
flower graph of generation n is

N2m,n =
{

(w − 2)wn−m, m < n,

w, m = n.
(3)

In scale-free nets, in general, the number of nodes with degree
larger or equal to k scales as N>k ∼ k1−γ . According to
Eq. (3), N>2l ∼ w−l (for n � l � 1), so the degree exponent
of flower graphs is

γ = 1 + ln w

ln 2
. (4)

The loopiness exponent of (1, v)-flower graphs has been
derived in [18]:

α = ln v

ln w
, (5)

that is, α = ln 2/ ln 3 for the (1,2)-flower, and α = ln 3/ ln 4
for the (1,3)-flower. Finally, in (1,2)-flowers, the clustering
coefficient [1,24] of nodes of degree k = 2m is Ck = 2/k.
Then, using the result from Eq. (3), the average clustering
coefficient for Fn(1, 2) is [12]

〈C〉n = 6n + 9

2n−2 · 5(3n + 3)
→ 4

5
, as n → ∞ . (6)

[(1, v)-flowers with v > 2 have zero clustering.] Both the
decay of Ck with growing degree and the finite average of the
overall clustering coefficient are characteristic properties of
real-life complex networks.

III. STOCHASTIC FLOWER GRAPHS

Stochasticity is introduced to (u, v)-flower nets so as to
interpolate between the deterministic nets and form what we
call stochastic flower graphs. The increased flexibility gained
in this way makes stochastic flower graphs better suited for
modeling of real-life networks. At the same time, they are
largely amenable to the type of exact analysis that made flower
nets so useful. We focus on the small-world case (where
u = 1), to concur with most everyday life complex nets, but
similar constructions could be envisioned for u > 1 as well.

During the stochastic generation process, we vary v on a
link-by-link basis: each edge ei (in generation n) is replaced
by two parallel paths of lengths 1 and vi, or (1, vi )-paths,
where vi is selected from v = [v1, v2, . . . ] with probabilities
p = [p1, p2, . . . ], respectively. For simplicity, we restrict the
present study to the simplest case of v = [2, 3] and p =
[p, 1 − p]; in other words, each link is replaced by either
(1,2)-paths [as in the construction of the (1,2)-flower] with
probability p, or by (1,3)-paths [as for the (1,3)-flower]
with probability 1 − p ≡ q. The first few generations of
these ([2, 3]; p)-stochastic flower graphs, denoted hereafter
by Sn([2, 3]; p), are shown in Fig. 2. One would expect the
properties of Sn([2, 3]; p) to interpolate smoothly between
those of (1,2)-flowers and (1,3)-flowers, naively replacing w

in Eqs. (1)–(4) with the “average” w̄ = 3p + 4q = 3 + q. We
shall see that this naive expectation works quite well, to some
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FIG. 2. Ensembles of Sn([2, 3]; p), for n = 0, 1, and 2. The probability of obtaining any of the graphs in each ensemble is indicated. Notice
the reduced symmetry for most members of the second generation. The graphs become more disordered, or asymmetric, as n gets larger.

extent. For the loopiness exponent, however, naively replacing
v with v̄ = 2p + 3q = 2 + q and w with w̄ in Eq. (5), fails to
produce the right answer.

The hub-pasting approach of Fig. 1(b) works also for the
stochastic flower graphs: to obtain generation n + 1, simply
paste either three graphs from generation n (with probability
p), or four graphs (with probability q). The graphs to be pasted
together are drawn randomly from the ensemble of graphs
of generation n, with their respective probabilities. It can be
shown by induction that the link-by-link replacement and the
pasting of subgraphs result in identical stochastic ensembles.
The equivalence of these two methods of construction is im-
portant because it is often advantageous to use one form or the
other for the analysis of structural properties and dynamical
processes by exact analytic recursions.

A. Distributions of links and nodes

Suppose Sn([2, 3]; p) has M links, with probability
P links

n (M ). An iteration of the graph would then yield 3M + m
links (m = 0, 1, . . . , M ), with probability

(M
m

)
pM−mqm. Thus,

P links
n+1 (M ) =

∑
M ′

∑
m

m + 3M ′ = M

P links
n (M ′)

(
M ′

m

)
pM ′−mqm ,

(7)

where the outer sum runs over all possible values of M ′ and
the inner sum runs over all possible values of m such that
3M ′ + m = M (P links

n = 0 for unattainable values of M). One
can then use Eq. (7), along with P links

0 (M ) = δM,1, to generate
all the P links

n (M ) recursively.
Let 〈Mr〉n = ∑

M MrP links
n (M ) denote the rth moment for

the number of links in generation n. It then follows from
Eq. (7) that

〈Mr〉n+1 =
∑

M

M∑
m=0

P links
n (M )

(
M

m

)
pM−mqm(3M + m)r . (8)

Beginning with the first moment (setting r = 1), we have

〈M〉n+1 =
∑

M

M∑
m=0

P links
n (M )

(
M

m

)
pM−mqm(3M + m)

= 3〈M〉n +
∑

M

P links
n (M )q

∂

∂q
(p + q)M

= (3 + q)〈M〉n , (9)

which along with the initial condition 〈M〉0 = 1, yields

〈M〉n = (3 + q)n . (10)

This is identical to Eq. (1), obtained by the naive substitution.
For the second moment, similar manipulations lead to the

recursion relation

〈M2〉n+1 = (3 + q)2〈M2〉n + pq(3 + q)n, (11)

and, along with 〈M2〉0 = 1, we get

〈M2〉n =
(

1 + pq

(2 + q)(3 + q)

)
(3 + q)2n

− pq

(2 + q)(3 + q)
(3 + q)n. (12)

The derivation of recursion relations for higher moments
is generally cumbersome, however, the first two moments
suffice to explore the convergence of the distribution in the
thermodynamic limit (of n → ∞). Indeed, the variance of the
distribution for generation n, is

σ 2
M,n = 〈M2〉n − 〈M〉2

n = qp
(3 + q)n((3 + q)n − 1)

(2 + q)(3 + q)
,

so that

σ 2
M,n

〈M〉2
n

= qp
1 − (3 + q)−n

(2 + q)(3 + q)
→ qp

(2 + q)(3 + q)

≡ μ(p)2, as n → ∞ . (13)

In other words, the distribution of the number of links, scaled
to their average, P links

n (M/〈M〉n), converges exponentially in
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FIG. 3. The distribution of links P links(M ) when p = 0.5 for
generations n = 2–5 plotted against M − 〈M〉. Inset: The scaled
distribution P links((M − 〈M〉)/〈M〉) quickly converges to a limit
curve with n.

n (or equivalently, as 1/Mn). Notice that the standard deviation
of the converged distribution is a nonvanishing fraction of the
average: for example, p = 0.5 leads to μ(p)2 = 1/35. On the
other hand, since the support of Pn(M ) is M ∈ [3n, 4n] and
σM,n → μ(p)(3 + q)n, the standard deviation is a vanishing
fraction of the support in the thermodynamic limit, and in that
sense the distribution can be considered “sharp.”

Figure 3 shows the distributions for the number of links
P links

n (M ) in generations 2 through 5 for p = 0.5. The bimodal
feature is an artifact of the two possibilities for n = 1: the
(1,2)-flower (with probability p) or the (1,3)-flower (proba-
bility q). If one takes either of these two cases as the starting
configuration (instead of K2), the peaks reappear, due to the
split in the next generation, but are now much closer together.
This trend continues as the initial seed network gets larger and
larger.

Working out the distribution for the number of nodes
P nodes

n (N ) proves more difficult. In particular, beginning with
a graph of Mn links and Nn nodes; if m of the links are
selected to generate a (1,3)-path [and the remaining Mn − m
to (1,2)-paths], then the resultant graph in generation n + 1
consists of

Mn+1 = 3Mn + m ,
(14)

Nn+1 = Nn + Mn + m ,

links and nodes, respectively. Thus, while links can be ana-
lyzed in closed form, as done above, the number of nodes,
Nn, cannot be studied independently from the number of
links, Mn.

A simple way to overcome this difficulty is to define a
generating function for the joint probability distribution for
the number of links and nodes in generation n, Pn(M, N ), as

fn(x, y) =
∑
M,N

P (M, N )xMyN . (15)

For example, for the usual initial condition of S0([2, 3]; p) =
K2, P0(M, N ) = δM,1δN,2, and thus f0(x, y) = xy2. Since each

link that evolves into a (1,2)-path (with probability p) in-
troduces two new links and one new node, while each link
that evolves into a (1,3)-path (with probability q = 1 − p)
introduces three new links and two new nodes, the generating
function for the evolved graph can be obtained from the map-
ping: x �→ px · x2y + qx · x3y2, y �→ y (the nodes, represented
by y, do not evolve), and thus

fn+1(x, y) = fn(px3y + qx4y2, y). (16)

The fn’s can then be obtained by iterating this relation.
From the joint probability distribution for links and nodes

one can obtain the distribution for links or nodes alone:

P links
n (M ) =

∑
N

P (M, N ); P nodes
n (N ) =

∑
M

P (M, N ).

(17)

The summation over N can be effected by setting y = 1,
i.e., fn+1(x, 1) = f links

n+1 (x) = f links
n (px3 + qx4), leading to the

results for P links discussed above. Summing over M in this
way is more complex, because due to the coupling between
M and N the substitution of x = 1 should be done only at the
end, after having iterated the full expression with x and y to the
n-th generation. Instead, we derive equations for the moments
of N .

Using Eqs. (15) and (16), we have

〈N〉n+1 = y
∂

∂y

∑
M,N

Pn(M, N )(px3y + qx4y2)MyN | x=1
y=1

= (1 + q)〈M〉n + 〈N〉n. (18)

Putting in the result from Eq. (10) for 〈M〉n, along with 〈N〉0 =
2, and solving for 〈N〉n, we find

〈N〉n = 1 + q

2 + q
(3 + q)n + 3 + q

2 + q
, (19)

which again coincides with the result for (u, v)-flowers,
Eq. (2), with the expected substitution w̄ = (3 + q).

For the second moment, we begin similarly with

〈N2〉n+1 = y
∂

∂y
y

∂

∂y

∑
M,N

Pn(M, N )(px3y + qx4y2)MyN | x=1
y=1

= qp〈M〉n + (1 + q)2〈M2〉n

+ 2(1 + q)〈MN〉n + 〈N2〉n. (20)

Thus, in order to solve for 〈N2〉n, we require a formula for
〈MN〉n, which we get from an additional recursion relation:

〈MN〉n+1 = x
∂

∂x
y

∂

∂y

∑
M,N

Pn(M, N )(px3y + qx4y2)MyN | x=1
y=1

= (3 + q)〈MN〉n + (1 + q)(3 + q)〈M2〉n

+ pq〈M〉n. (21)

Starting with the initial condition, 〈MN〉0 = 2, and the results
of Eqs. (10) and (12) one can then solve explicitly for 〈MN〉n;
armed with this result and the initial condition of 〈N2〉0 = 4,
one can then use Eq. (20) to obtain an explicit solution for
〈N2〉n. The actual expressions are lengthy and we instead
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present only the large-n asymptotic limits:

〈MN〉n ∼ 6(1 + q)2

(2 + q)2(3 + q)
(3 + q)2n, as n → ∞,

〈N2〉n ∼ 6(1 + q)3

(2 + q)3(3 + q)
(3 + q)2n, as n → ∞. (22)

We conclude that, as in the case for links, P nodes
n (N ) too has a

standard deviation proportional to its average

σ 2
N,n

〈N〉2
n

→ qp

(2 + q)(3 + q)
≡ ν(p)2 , (23)

and with the same fractional ratio, i.e., ν(p) = μ(p)
[Eq. (13)].

In what follows we show that despite the spread in the
distributions of structural properties such as the number of
links and nodes, characteristic exponents of stochastic flow-
ers, such as the degree exponent and the loopiness exponent,
attain perfectly well-defined sharp limits.

B. Degree exponent

For a stochastic flower of generation n > 0, Sn([2, 3]; p),
the degree sequence is still {k} = {2, 22, . . . , 2n}, same as for
n-generation (u, v)-flowers in general. The average number
of nodes with degree larger than 2m scales like N>2m ∼ w̄n−m.
However, as implied by the foregoing discussion on the dis-
tribution of N , the typical fluctuation in N>2m is of the same
order as its average, that is,

N>2m ∼ (1 + σ )w̄n−m , (24)

where −ν(p) � σ � ν(p) is a random variable [c.f. Eq. (23)].
Thus, a plot of ln N>k vs. ln k would result in a curve that me-
anders typically between the two parallel lines of −m ln w̄ +
ln(1 ± ν(p)) plotted against m ln 2. A linear fit to that curve,
as n → ∞, would therefore converge to the degree exponent

γ = 1 + log w̄

log 2
= 1 + ln(3 + q)

ln 2
(25)

with an error that vanishes as 1/n [or more precisely, as
ln[(1 + ν)/(1 − ν)]/n ln 2]. Thus, the degree exponent γ

achieves a well-defined value in the thermodynamic limit,
despite the nonvanishing fluctuations in N .

C. Loopiness and clustering

The loopiness exponent α characterizes how the most
likely length of a cycle in the graph, h∗, scales with its order
(number of nodes, N) [18]:

h∗ ∼ Nα. (26)

The statistics of loops was also explored for two types of ran-
dom scale-free graphs in [25], and subsequent work explored
efficient algorithms for obtaining the statistics of cycles in
generic graphs [26,27]. Following the development in [18],
we denote the number of loops, or cycles of length h in a
graph of generation n, by Cn(h); and the number of paths of
length h connecting the two hub nodes in generation n, by
Ln(h). Using the recursive construction of pasting copies of
generation n to produce generation n + 1, one can write exact

FIG. 4. Plot of ln Cn(h) vs. h for generations n = 3, 4, 5, and 6 in
stochastic flower graphs with p = 1/2. The inset shows P (h/h∗)—
the probability distribution density of h-cycles scaled to their most
likely length, h∗.

recursion relations for these quantities. In a (1,2)-flower, for
example,

Ln+1(h) = Ln(h) +
∑

j+k=h

Ln( j)Ln(k) ,

Cn+1(h) = 3Cn(h) +
∑

j+k+l=h

Ln( j)Ln(k)Ln(l ) . (27)

The first equation expresses the fact that a path between the
two hubs in generation n + 1 could go through the single
subunit of generation n, or span the other two v-subunits;
similarly, cycles of length h could be found in each of the three
subunits, or made up of three paths spanning the generation-n
subunits across their hubs (second equation). Once again, the
generating functions

Ln(z) =
∑

h

Ln(h)zh , Cn(z) =
∑

h

Cn(h)zh , (28)

simplify the analysis, as the convolution terms become then
simple products. Applying these ideas to the Sn([2, 3]; p)
stochastic flowers, we get

Ln+1(z) = Ln(z) + pL2
n (z) + qL3

n (z)
(29)

Cn+1(z) = (3 + q)Cn(z) + pL3
n (z) + qL4

n (z).

The first line, in this case, denotes the fact that apart from
spanning a path through the single n-subunit, the (n + 1)-path
could go through either two v-subunits (with probability p), or
three v-subunits (probability q = 1 − p), depending on which
v was selected in the recursive construction; and similarly for
the second line.

Starting with the initial condition L0(z) = z and C0(z) = 0,
Eqs. (29) can be iterated and Cn(h) can then be obtained from
the coefficient of zh in Cn(z). In Fig. 4 we plot the statistics
of cycles obtained in this way for generations n = 3, 4, 5, 6
and p = 1/2. The results show that the most probable cycle
length h∗ grows by a factor of 3 from one generation to the
next. That is also true for other values of p < 1 (not shown).
Since h∗ ∼ 3n and Nn ∼ w̄n, we conclude that the loopiness
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FIG. 5. (a) Generation of Tn+1 and Qn+1 from Tn’s and Qn’s by the rule set {QT T ; T QT Q}. The hubs are indicated by large solid circles.
(b) T3, obtained by the rule set {QT T ; T QT Q}.

exponent of Sn([2, 3]; p) is

α = ln 3

ln w̄
= ln 3

ln (3 + q)
, p < 1 . (30)

[For the deterministic case of p = 1, one obtains (1,2)-
flowers, with α = ln 2/ ln 3.] We see that naively replacing
v with v̄ = 2p + 3q in Eq. (5) does not work, and instead
any finite q yields a loopiness exponent characteristic of (1,3)-
flowers.

Note that while the recursions (27) for Fn(1, 2) are exact,
the same is not true for the analogous recursions (29) for the
Sn([2, 3]; p). The problem is that Ln(h) and Cn(h) in this case
do not have a single sharp value (as for deterministic flowers),
but represent a distribution of values. Furthermore, the re-
placement of the distributions by their average does not work,
as these distributions do not converge to δ functions as n →
∞, and the equations are nonlinear [in general, 〈 f (Ln)〉 
=
f (〈Ln〉)]. Nevertheless, the naive approach followed here, of
replacing the distributions by their average, yields the correct
result (30) for α, as shown in the next section.

Clustering in stochastic flowers can be dealt with, at least
qualitatively, by following the same procedure of replacing
distributions with their averages. Following this approach for
Sn([2, 3]; p), we find

〈C〉n = p

2n−1

w̄ − 1

(w̄ − 2)w̄n + w̄

[
w̄ + w̄ − 2

2w̄ − 1
((2w̄)n − 2w̄)

]
,

(31)

and in the limit of n → ∞

〈C〉∞ = 2p(w̄ − 1)

2w̄ − 1
= 2p(3 − p)

7 − 2p
. (32)

Thus, Sn([2, 3]; p) retains the feature of finite average clus-
tering in the thermodynamic limit. As expected, 〈C〉∞ inter-
polates between 0 for p = 0, or F (1, 3), to 4/5 for p = 1, or
F (1, 2).

To better address the tricky issues arising from ensemble
spread, we next introduce a class of mixed flower-graphs that
are fully deterministic, yet closely mimic typical members of
the stochastic ensemble of Sn([2, 3]; p).

IV. MIXED FLOWER GRAPHS

We now introduce a class of mixed flower nets whose recur-
sive construction is completely deterministic; there is a single
instance of each mixed flower net. The recursive construction
generates two networks in tandem: Tn, that starts from an
initial three-cycle seed, T1, in generation n = 1, and Qn, that
starts from a four-cycle seed, Q1. Tn+1 and Qn+1 are obtained
by pasting three or four networks of generation n at their hubs,
respectively, according to some prescribed rule. Figure 5(a)
shows a specific example of such a rule: Tn+1 is obtained by
pasting Qn, Tn, Tn together at the hubs, starting with Qn and
proceeding counterclockwise. The hubs of Tn+1 are the hubs
of the first subnet in the sequence (Qn, in this case). Similarly,
Qn+1 is obtained by pasting Tn, Qn, Tn, Qn at the hubs, starting
with Tn and proceeding counterclockwise. The hubs of Qn+1

are the hubs of the first subnet in the sequence (Tn). This
particular set of rules can then be denoted more succinctly as
{QT T ; T QT Q}. Figure 5(b) shows T3, obtained by this rule
set. Since mixed flowers are deterministic constructs, their
structural properties can be obtained from exact recursion
relations, as shown by the few examples below.

A. Size and order of mixed flower graphs

Focusing, as an example, on the mixed flower nets resulting
from the rule set {QT T ; T QT Q}, the number of links in Tn

(M�,n) and in Qn (M�,n) obey the recursion relation

[
M�,n+1

M�,n+1

]
=

[
2 1
2 2

][
M�,n

M�,n

]
. (33)

This, together with the initial conditions M�,1 = 3, M�,1 = 4,
yields

M�,n =
(

3

2
+

√
2

)
rn−1
+ +

(
3

2
−

√
2

)
rn−1
− ,

M�,n =
(

2 + 3
√

2

2

)
rn−1
+ +

(
2 − 3

√
2

2

)
rn−1
− ,

(34)
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where

r± = 2 ±
√

2

are the eigenvalues of the matrix A = (2 1
2 2

)
. For the number of

nodes, N�,n and N�,n, we have[
N�,n+1

N�,n+1

]
=

[
2 1
2 2

][
N�,n

N�,n

]
−

[
3

4

]
, (35)

the difference being that here we subtract the nodes identified
in the pasting of the subgraphs, to avoid overcounting. In view
of the initial conditions N�,1 = 3, N�,1 = 4, the solutions are

N�,n = 1
2 (rn

+ + rn
−) + 1 ,

N�,n = (1 +
√

2)rn−1
+ + (1 −

√
2)rn−1

− + 2 . (36)

We see that the growth of links and nodes in all cases is
dominated by the larger eigenvalue of A, r+: M�,n ∼ M�,n ∼
N�,n ∼ N�,n ∼ rn

+, as n → ∞. Comparing this observation
with the result for stochastic flowers, 〈M〉n ∼ 〈N〉n ∼ w̄n;
w̄ = 3 + q, we deduce that the rules of growth in our ex-
ample result in a (deterministic) mixed flower (either Tn

or Qn) that mimics stochastic flowers with p = 2 − √
2 ≡

p̃ ≈ 0.5858, Sn([2, 3]; 2 − √
2). From a different perspective,

p̃M�,n + q̃M�,n ≡ M̄n and p̃N�,n + q̃N�,n ≡ N̄n are L1-norms
of eigenvectors of A corresponding to r+, and M̄n and N̄n are
identical to 〈M〉n and 〈N〉n of Eqs. (10) and (19), for p = p̃.

B. Degree exponent of mixed flowers

The degree sequence of both Tn and Qn is {k} =
{2, 22, . . . , 2n}, same as for (u, v)-flower nets and stochastic
flowers in general. The number of nodes of degree k = 2m

scales as

N2m,n = Nn−m+1 − Nn−m ∼ rn−m
+ ,

according to Eq. (35). Therefore, N>2m ∼ r−m
+ ∼ (2m)1−γ , for

1 � m � n, and

γ = 1 + ln w̃

ln 2
, (37)

where w̃ = r+ = 3p̃ + 4q̃ = 3 + q̃, exactly as expected.
It is interesting to note that the ordering of the pasting

of the various copies in the recursive construction has no
effect on A, nor on Mn, Nn, p̃, and γ . For example, the rule
{T QT ; QQT T } yields exactly the same results as discussed
above for the rule {QT T ; T QT Q}. The deterministic networks
resulting from these two rule sets are different nevertheless—
the difference manifests in other structural properties of the
graphs.

C. Statistics of cycles and clustering of mixed flower graphs

As we have seen, the mixed flower {QT T ; T QT Q} mim-
ics Sn([2, 3]; p̃), while remaining deterministic. It therefore
affords us an opportunity to explore the statistics of cycles
in an exact fashion—without the replacing of distributions by
their averages, used in the analysis of Sec. III C.

Following a similar notation to that of Sec. III C, the
generating functions for the statistics of paths and loops obey

FIG. 6. ln �n(h) vs. the cycle length h for the {QT T ; T QT Q}
flower, as computed from Eqs. (38) for generations n = 3, 4, 5, 6
(solid curves). For comparison, we also plot the statistics of cycles for
the analogous Sn([2, 3]; p̃) flower, as obtained from the approximate
Eqs. (29) (broken curves). While disagreement is expected, the
identical scaling, of h∗(n) ∼ 3n, in both cases, is a nice feature of
the approximation. Inset: The distribution of �n(h/h∗) tends to a δ

function as n → ∞.

the recursion relations:

∧n+1 = ∧2
n + �n

�n+1 = ∧2
n �n +2�n + �n

�n+1 = ∧n �2
n +∧n

�n+1 = ∧2
n �2

n +2�n + 2�n

; ∧1 = z + z2,

; �1 = z3,

; �1 = z + z3,

; �1 = z4.

(38)

(Here, we have replaced L�,n, C�,n, L�,n, and C�,n with the
more visually obvious notations ∧n, �n, �n, and �n, respec-
tively.) We stress that the above relations are exact, as the
graphs involved are unique and there is no ensemble spread
in the statistics of loops of a given length h; rather, ∧n(h),
�n(h), �n(h), and �n(h) and their corresponding generating
functions are all deterministically determined quantities.

In Fig. 6 we present results for �n(h) for generations
n = 3, 4, 5, 6. Once again, the most likely length for cycles,
h∗, increases by a factor of 3 from one generation to the next,
leading to the same loopiness exponent, α = ln 3/ ln w̃, as was
found for stochastic Sn([2, 3]; p) flowers. For comparison, we
also show in the plot the statistics of Cn(h) (broken lines),
obtained for Sn([2, 3]; p̃) and the initial conditions of a tri-
angle cycle in generation n = 1 [L1(z) = z + z2, C1(z) = z3].
That the approximate curves for Sn([2, 3]; p̃) and the exact
curves for the analogous {QT T ; T QT Q} do not match comes
as no surprise, but it is still reassuring that the approximate
approach for stochastic flowers yields the correct scaling and
the exact loopiness exponent, nevertheless.

The statistics of cycles provides an example to the im-
portance of the mixed-flowers rule ordering. Indeed, the rule
{T QT ; QQT T } leads to identical statistics for Mn and Nn

as the rule {QT T ; T QT Q}, as previously observed, but to
different recursion relations for cycles: for example ∧n+1 =
∧n �n +∧n, instead of the first relation in Eq. (38), and like-
wise for the other relations. This results in the same scaling
and loopiness exponent, but the �n(h) are not equal in the
two cases.
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Clustering in mixed flower graphs can be studied analyti-
cally with (exact) recursion relations. The results are similar
to those of deterministic Fn(1, 2) and stochastic Sn([2, 3]; p)
with Ck ∼ 1/k and 〈C〉n > 0 as n → ∞. Consider, for exam-
ple, the clustering coefficient of nodes of degree k = 2 in a de-
terministic graph of generation n. These nodes arise only from
the iteration of links in generation n − 1: a link evolving into a
triangle yields one two-degree node with clustering coefficient
C = 1, while each link evolving into a square yields two
two-degree nodes with C = 0. In the thermodynamic limit of
n → ∞ the fraction of nodes evolving into triangles (squares)
is p̃ (1 − p̃). In that case, the average clustering of two-degree
nodes is C2 → p̃/(2 − p̃). Since nodes of degree 2 constitute
a finite fraction of the nodes in the network, even as n →
∞, the overall clustering coefficient is finite 〈C〉∞ > 0 (for
p̃ > 0). At the opposite end, consider nodes of degree k = 2n

in an n-generation network. For the rule {QT T ; T QT Q} we
get

C�
2n = 2n + 2/3

2n(2n − 1)
, C�

2n = 2n−1

2n−1(2n − 1)
, (39)

for nets starting from a triangle or square seed, respec-
tively. In either case, C�,�

2n → 1/(2n − 1) ∼ 1/k as n → ∞.
The details of how Ck converges to its 1/k behavior and
the actual value for 〈C〉∞ depend on the initial seed and the
ordering in the rules of mixing. Similar remarks can be made
for diffusion times between nodes [19,28], to mention one
other obvious example where the ordering of mixing is of
consequence.

V. CONCLUSION

In conclusion, we have explored two different ways to
interpolate between the structural properties of (u, v)-flower
graphs. Stochastic flowers are obtained by selecting u and
v in a random fashion, according to a prescribed set of
probabilities. The closely related mixed flower graphs, on
the other hand, are obtained by mixing between the rules of
growth of different (u, v)-flowers in a deterministic fashion.

Both stochastic and mixed flowers yield themselves to
analysis, by exploiting their recursive constructions. Some
structural properties of stochastic flowers, such as their size
and order, fail to converge in the thermodynamic limit of in-
finitely large graphs—a property we referred to as “ensemble
spread.” Nevertheless, characteristic exponents of structural
properties, such as the degree exponent and loopiness expo-
nent, converge nicely and might be found by replacing the
distributions in the recursion relations with their averages,
even when the recursion relations are nonlinear.

Mixed flowers circumvent the problem of ensemble spread
altogether, as there is a unique, deterministic configuration
for each mixed flower of any size. On the other hand, our
examples suggest that they mimic stochastic flowers very
closely. It can in fact be shown (future work) that some mixed
flowers are members of the ε-typical ensemble of stochastic
flowers, with respect to the asymptotic equipartition property
[29].

For the ease of exposition, we have focused on the simplest
examples of stochastic and mixed flowers. Our examples for
each can be generalized in several obvious ways: Stochastic
flowers could be obtained by choosing randomly between
more than two sets of (u, v) values in each recursive growth.
Mixed flowers, likewise, could be obtained by mixing more
than two sets of rules for (u, v)-flowers, and a finer gradation
in the mixing can be effected by designing rules to produce
generation n + m from generation n (with m > 1, instead
of m = 1). We have also limited our study to a dearth of
structural properties: order, size, degree exponent, statistics of
cycles, and clustering. Many other structural properties, such
as assortativity [30] and dynamical properties, such as diffu-
sion between nodes [19,28,31], can be studied analytically by
similar recursive means.
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