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Filaments of the cellular protein actin can form bundles, which can conduct ionic currents as well as
mechanical and voltage solitons. These inherent properties can be utilized to generate computing circuits
solely based on self-assembled actin bundle structures. Starting with experimentally observed networks of actin
bundles, we model their network structure in terms of edges and nodes. We compute and discuss the main
electrical parameters, considering the bundles as electrical wires with either low or high filament densities. A
set of equations describing the network is solved with several initial conditions. Input voltages, which can be
considered as information bits, are applied in a set of points and output voltages are computed in another set of
positions. We consider both an idealized situation, where pointlike electrodes can be inserted in any points of the
bundles and a more realistic case, where electrodes lay on a surface and have typical dimensions available in the
industry. We find that in both cases such a system can implement the main logical gates and a finite state machine.
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I. INTRODUCTION

Actin filaments (AFs) and tubulin microtubules (MTs)
represent the key components of cytoskeleton networks [1].
They have been experimentally demonstrated and modeled
as ionic wave conducting biowires [2–8], and predicted to
support conformational solitons [9–11], as well as orienta-
tional transitions of dipole moments [12–14]. These propa-
gating localizations could carry information and transform it
when interacting with one another. Hence, these cytoskele-
ton networks could be used as nanoscale computing devices
[15]. This idea dates back to an early concept of subcellular
computing on cytoskeleton networks [16–18] and was later
developed further in the context of information processing on
actin-tubulin networks of neuron dendrites [19]. When im-
mersed in an ion-rich liquid environment, AFs can be viewed
as wires that can conduct electrical currents [3,20]. Previously
we have demonstrated computationally that these electrical
currents can be used to implement Boolean gates [21]. A
single AF hence can be conceived as a computing device in
computational experiments. Its practical implementation un-
der laboratory conditions, however, would be very challenging
and likely beyond current technological possibilities. For this
reason, we decided to adapt our computing schemes to more
realistic scenarios of bundles of AFs instead of single AF units
[22–24]. We developed a model of an actin droplet computer,

where information is represented by traveling spikes of exci-
tation and logical operations are implemented at the junctions
of AF bundles [25–27]. The model developed treats the actin
network as a continuum with propagating abstract excita-
tion waves—modeled with FitzHugh-Nagumo equations. The
model might be phenomenologically correct, but is not able
to sufficiently describe the physics of the waves in the AF
networks. Therefore we here propose a model more solidly
rooted in the underlying physics. We consider the AF net-
works to be made of wires and their bundles to be connected
at node locations. Each bundle has its own set of electrical pa-
rameters and facilitates the movement of ions along its length.

II. THE MODEL

A detailed description of key models that we used as
foundation in this study can be found in [3], which was
aiming at a description of AFs and contains the derivation of
all the formulas. Let us highlight the assumptions on which
the model was build. Each monomer in the filament has
11 negative excess charges. The double helical structure of
the filament provides regions of uneven charge distribution
such that pockets of higher and lower charge density exist.
There is a well-defined distance, the so-called Bjerrum length
λB, beyond which thermal fluctuations are stronger than the
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electrostatic attraction or repulsion between charges in solu-
tion. It is inversely proportional to temperature and directly
proportional to the ions’ valence z:

λB = ze2

4πεε0kBT
, (1)

where e is the electronic charge, ε0 is the permittivity of
the vacuum, ε is the dielectric constant of the solution with
AFs immersed in (estimated to be similar to εwater ≈ 80), kB

is the Boltzmann’s constant, and T is the absolute tempera-
ture. If δ is the mean distance between charges, counterion
condensation is expected when λB/δ > 1. Considering the
temperature is T = 293 K and the ions are monovalent, [3]
finds λB = 7.13 × 10−10 m and [20] λB = 13.8 × 10−10 m
for Ca2+ at T = 310 K. Considering actin filaments, δ is
estimated to be 0.25 nm because assuming an average of
370 monomers per μm there are approximately 4e/nm. Each
monomer behaves like an electrical circuit with inductive,
capacitive, and resistive components. The model is based on
the transmission line analogy.

The capacitance C is computed considering the charges
contained in the space between two concentric cylinders,
the inner with radius half the width of a monomer (ractin =
2.5 nm) and the outer with radius ractin + λB; both cylinders
are one monomer high (5.4 nm). Thus,

C0 = 2πεl

ln
( ractin+λB

ractin

) , (2)

where l ≈ 5.4 nm is the length of a monomer.
The charge on this capacitor is assumed to vary in a

nonlinear way with voltage, according to the formula

Qn = C0
(
Vn − bV 2

n

)
. (3)

Nonlinear voltage dependence of electrochemical capacitance
for nanoscale conductors is due to finite density of states of the
conductors. Details can be found in [28,29]. We did not try to
evaluate this parameter; instead, we used some trial values in
our equations and found that, as long as b is reasonably small,
the solutions converge to the constant ones in the cases that
we considered. So we focused on constant solutions, and we
can say that nonlinearity is not needed for our results.

The inductance L is computed as

L = μN2π (ractin + λB)2

l
, (4)

where μ is the magnetic permeability of water and N is the
number of turns of the coil, that is the number of windings of
the distribution of ions around the filament. It is approximated
by counting how many ions can be lined up along the length
of a monomer as N = l/rh, and it is supposed that the size of
a typical ion is rh ≈ 3.6 × 10−10 m.

The resistance R is estimated considering the current be-
tween the two concentric cylinders, obtaining

R = ρ ln[(ractin + λB)/ractin]

2π l
, (5)

where resistivity ρ is approximately given by

ρ = 1

�K+
0 cK+ + �Na+

0 cNa+
. (6)

FIG. 1. A circuit diagram for the nth unit of an actin filament.
From [3].

Here, cK+ and cNa+ are the concentrations of sodium and
potassium ions, which were considered in previous papers to
be 0.15 and 0.02 M, respectively; �K+

0 ≈ 7.4 (� m)−1 M−1

and �Na+
0 ≈ 5.0 (� m)−1 M−1 are positive constants that de-

pend only on the type of salts but not on the concentration [3].
With this formula R1 is computed and R2 is taken as 1/7R1.
Here R1 accounts for viscosity.

Figure 1 illustrates the circuit schema, where an actin
monomer unit in a filament is delimited by the dotted lines.

The main equation for filaments is the following, derived
from [3] (see Fig. 1 for the meaning of R1, etc.):

LC0
d2

dt2

(
Vn − bV 2

n

)
= Vn+1 + Vn−1 − 2Vn − R1C0

d

dt

(
Vn − bV 2

n

)
−R2C0

{
2

d

dt

(
Vn − bV 2

n

) − d

dt

(
Vn+1 − bV 2

n+1

)

− d

dt

(
Vn−1 − bV 2

n−1

)}
. (7)

In [21] we used this equation to compute the evolution of
some tens of monomers in a filament.

It must be observed that the Bjerrum length will probably
not be constant, but may vary both from point to point and
with time. Also, one could consider the effects described in
[30] leading to charge density waves. However, the effects
reported in that work refer mainly to electrostatically con-
densed bundles, while the bundles in our experimental setting
were built using different network formation processes, that
is via depletion forces. The depletion forces are a funda-
mental, entropic effect, which does not rely on counterion
condensation [31,32]. Thus, the situations, i.e., the charge
distributions, are completely different. Moreover, the present
work is a computational analysis to prepare real experiments
and to speculate about potential solutions, and will use the
simplest possible stimuli, i.e., constant ones. Therefore we did
not consider phenomena that, even if they happened, in this
context might be considered transient.
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TABLE I. C0, L, and R1 for high density bundles.

Width 200 nm 450 nm 700 nm

C0 in pF 33.8 × 10−4 76 × 10−4 11.8 × 10−3

L in pH 1668 8378 20227
R1 in M� 0.173 0.077 0.049

III. EXTENSION TO BUNDLE NETWORKS

In order to extend the model to bundle networks, we must
compute the suitable electrical parameters. The actin filaments
are made of elements, the actin monomers. We will model
bundles as made of elements of the same height of a single
monomer, and width depending on the bundle density. We will
consider two possibilities:

(1) The filament density in the bundle is so low that each
filament stands at a distance greater than twice λB from all
the others. In this situation, we assume that filaments do not
interact and that each one behaves as if it would not be in the
bundle.

(2) The inner-bundle density is high enough that areas
closer than λB to the filaments intersect. In this situation,
we will conservatively assume that the influences of the
filaments’ ions cancel out.

In case 1 we can either consider the parameters for a
filament and solely multiply results by the number of filaments
in the bundle or compute C, L, and R using the standard
formulas for electrical parallel circuits. In case 2 we only use
the bundle radius instead of the filament one in the above
formulas.

Considering a Bjerrum length λB = 7.13 × 10−10 m [3],
results for high density bundles at different bundle widths are
displayed in Table I. Results for low density bundles made of
varying filament numbers are shown in Table II.

In the following we will define equations for nodes. Equa-
tion (7) applies to elements inside the bundle, so we will use
Eq. (8) instead, where n is the index of the element, M is the
number of elements linked to it, and the suffix nk ranges in the
set of such linked elements.

The term Fn represents an input voltage, which is supposed
to be nonzero only for some values of n:

d2

dt2

(
Vn − bV 2

n

)

= 1

LC0

{
M∑

k=1

Vnk − M × Vn + Fn − R1C0
d

dt

(
Vn − bV 2

n

)

− R2C0

{
M × d

dt

(
Vn − bV 2

n

) −
M∑

k=1

d

dt

(
Vnk − bV 2

nk

)}}
.

(8)

These equations can represent any type of element in the
network. When M = 2, they coincide with (7) and represent
internal elements of a bundle. When M = 1, they refer to a
free terminal element of a bundle that is not connected to
anything else. We note that in [21] we used a slightly dif-
ferent equation for this case, namely we always kept M = 2.

TABLE II. C0, L, and R1 for low density bundles.

Filaments 1 25 50 75

C0 in pF 102.6 × 10−6 4.1 × 10−6 2 × 10−6 1.4 × 10−6

L in pH 1.92 7.66 × 10−2 3.83 × 10−2 2.56 × 10−2

R1 in M� 5.7 0.23 0.11 0.08

The present form is more consistent with the model and its
generalization. Other values of M represent generic nodes.

IV. THE NETWORK

We used a stack of low-dimensional images of the three-
dimensional actin network, produced in experiments on the
formation of regularly spaced bundle networks from homo-
geneous filament solutions [27]. The network was chosen
because it resulted from a protocol that reliably produces regu-
larly spaced networks due to self-assembly effects [27,33] and
thus could be used in prototyping of cytoskeleton computers.
From the stack of images we extracted a network description,
in terms of edges and nodes, and used it as a substrate to
compute the electrical behavior. The extracted structure takes
into account the main bundles in each image, with their
intersections, and an estimate of bundles that can connect
nodes in two adjacent images. It is not an accurate portrait
of all the bundles, but it captures the main characteristics of
the network.

The main steps to compute the network structure were:
(1) After some preprocessing of the images (e.g., thresh-

olding, contour finding, distance transform, etc.), we looked
at the points placed at the local maxima of distance from
background. We considered that these are the nodes of the
network. Each node found in this way has a center and a
radius (corresponding to the circle that can be inscribed in the
foreground).

(2) We then tried to link nodes to each other with straight
lines or elliptical arcs, checking that they do not go out of the
bundles (with some tolerance, as the bundles are often bent).
For this, starting from, e.g., node 1, we considered the point
spaced about 16 pixels along the line from node 1 to, e.g.,
node 2. If its color was above the threshold, we went on to
the next point 16 pixel farther. If not, we considered the points
in a neighborhood 4 pixel wide: if at least one was above the
threshold, we considered that the edge is still in the bundle
and went on, if not we stopped.

(3) If we could not find any straight line, we tried some
elliptical arcs, with big axis = distance between nodes and a
range of small axes, using the same procedure

(4) When we were able to reach, e.g., node 2 from node 1,
we added the edge to the network, with its length (distance of
the linked nodes for straight edges or approximate ellipse arc
length for the others) and width = the average of the radii of
its nodes; when we were not able to reach node 2 we did not
add the edge; if a node was not connected to anything we did
not consider it anymore.

(5) We also tried to detect edges between images. For this,
we merged the bundles of two consecutive ones, shrunk them
a bit, and applied the method of step 2 to link nodes. We used a
lower tolerance in this step and considered straight lines only.
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TABLE III. Parameters of the actin network used in the modeling.

Parameter Value

Number of nodes in the main connected graph 2968
Number of edges in the main connected graph 7583
Max number of nodes linked to a node 13
Average number of nodes linked to a node 5.07
Standard deviation of nodes linked to a node 2.14
Average radius of edges in pixels 8.48
Max radius of edge in pixels 20
Min radius of edge in pixels 3
Standard deviation of radii of edges in pixels 2.62
Average edge radius, one pixel is 244.14 nm 2.07 μm
Average length of edges in pixels 70.11
Max length of edge in pixels 465.40
Min length of edge in pixels 4.12
Standard deviation of lengths of edges in pixels 41.54
Average edge length, one pixel is 244.14 nm 17.12 μm

All computations described here and in the other sections
were performed using Python including its libraries Mat-
plotlib [34] and Scipy [35].

At the end we got a table of pictures (nodes); for each node
we got its radius as well as position and the list of nodes that
we were able to reach starting from there; and another table
with edges and their characteristics. Based on this, we derived
the data in Table III.

These figures can be compared to typical characteristics
found in experiments [27].

The bundles are formed by depletion forces and neighbor-
ing filaments will maximize their overlap region; the bundles
will be at least as long as the longest filaments, experimentally
it is even hard to form super long bundles. A typical length
distribution of actin filaments has mean value of about 9–
10 μm, which is already rather long, and a range between 10
and 50 μm for bundles. In our model, the length distribution
is quite skewed, with 80% edges lengths in the range 10–30
μm and another 7% in the range 30–50 μm.

About bundle sizes, 84% of radii in the model are in the
range of 1.22–3.42 μm. This can be considered a reasonable
estimation and compares well to the experiments [27].

The average number of filaments in bundles is quite diffi-
cult to measure experimentally. An estimation based on com-
paring the fluorescence intensity of a bundle against a single
filament yielded a result of 45 (±25) filaments per bundle
[36]. Considering even small bundles having 100 nm radius,
we find that they can accommodate more than 100 filaments,
considering a radius of 5.4 nm plus 2λB. For this reason, the
low density model for bundles is probably appropriate, and
we decided to not consider possible interactions between actin
filaments within the bundles.

As an illustration, in Fig. 2 the white lines drawn on the
original image represent the computed edges.

In a realistic experiment, one would have to set a support
with electrodes in contact with the network. In a typical
configuration, we will consider a grid of 5 × 6 electrodes, for
instance, on a thin glass; their diameter is 10 μm and center-
to-center distances are 30 μm. We considered two situations:
(1) the network is grown in droplets sitting on the glass

FIG. 2. Two-dimensional centers and edges of a Z slice.

surface, which holds the electrodes. This is actually very close
to the experimental setup described in [27,37]. And (2) the
array of electrodes is set inside the network, i.e., in the middle
of the actin droplet along its vertical axis. This might be the
case if the networks were grown around the electrode layer or
if it were placed in the network later. Figure 3 is an illustration
of the network grown on top of the electrode-containing glass.

The general features of the network are listed in Table III.

V. PRELIMINARY RESULTS

We used the simplest possible form for the input functions
Fn, which are constant functions:

for 0 < t < t1 Fn ≡
⎧⎨
⎩

1 if n ∈ N1,

0 if n ∈ N0,

−1 if n ∈ N−1,

(9)

FIG. 3. The grid of electrodes as it appears when the network
formed on top of the supporting glass.
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FIG. 4. Evolution of the potential of first, middle, and last el-
ements of an open high density (H.D.) bundle 32 elements long,
450 nm thick. Input was set at 1 and −1 at the first and last elements.

where N1, N0, and N−1 are three sets of indices and t1 is the
duration of the input stimuli, which can be equal to or less
than the whole experiment time.

Numerical integration has been performed for bundles
consisting of some tens of elements using various stimuli and
electrical values. We considered both open bundles with free
extremal elements, and closed ones where every element is
connected to two others. Examples can be found in Fig. 4
(high density open bundle) and Fig. 5 (low density closed
bundle).

These numerical experiments demonstrate that in all the
cases considered, the solutions become constant after a tran-
sient time. Moreover, when the inputs are blocked all the
solution converge to the same constant value, so that no
currents can be detected.

We therefore considered constant stimuli lasting for all the
experiment time and searched for constant solutions. Input

FIG. 5. Evolution of the potential of some elements of a closed
low density (L.D.) bundle 32 elements long, made of 50 filaments.
Input was set at 1 and −1 at elements with index 0 and 15.

TABLE IV. Number of possible NOT gates.

Run Thresh. 2 Thresh. 1 Thresh. 0.5

1 8266 8944 8409
2 3688 4660 4682
3 5730 7043 7455

bits are defined as a pair of points of the network, so that a +1
potential (in arbitrary units) is applied at one of them and −1
at the other to encode a value 1 of the bit; when no potential
is applied, the bit value is zero.

Analogously, we chose pairs of points and measured the
difference of their potential to read an output bit. A suitable
threshold has been defined to distinguish the 1 and 0 values.

VI. RESULTS

A. Ideal electrodes

In this section we consider ideal electrodes that (1) can be
placed in any point on the network surface or inside it and (2)
are so small that they would be in contact with one element
of a single bundle only. Moreover, we use a slightly idealized
network of spherical shape.

1. Boolean gates

We have randomly chosen eight sites in the network and
considered them as four pairs to represent four input bits.

Then we applied in turn all the possible input states from
(0000) to (1111) and solved the system (8). It reduces to a
linear algebraic structure and simplifies finding the values of
the potential in the nodes. Then we checked, for all the sets
of input states that correspond to a logical input, which output
bits correspond to the expected results for a gate.

For instance, to find the NOT gates we considered in-
put state sets ((0000),(0001)), ((1000),(1001)) etc.; then we
looked for all the output bits that are 1 for the first state and 0
for the second of one of the input sets.

The same procedure was used to find OR, AND, and XOR

gates. We used three values for the output threshold: 2, 1, and
0.5.

The results of three runs are shown in Tables IV, V, VI,
and VII revealing that once an input position is chosen, it
is possible to find a suitable number of edges that behave as
output for the main gate types.

2. Time estimates

We also computed the time that the network would need to
converge to the constant solutions taking the time into account
needed for an element to discharge. As a first estimate, we

TABLE V. Number of possible OR gates.

Run Thresh. 2 Thresh. 1 Thresh. 0.5

1 4385 8191 12 494
2 6360 8188 11 336
3 5835 8260 11 063
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TABLE VI. Number of possible AND gates.

Run Thresh. 2 Thresh. 1 Thresh. 0.5

1 3600 3562 2577
2 4506 43842 3119
3 4954 5076 3726

used the value R1C0, that is the discharge time of a pure
RC circuit. Using the parameters for a single filament (or for
low density bundles made of independent filaments), we got
2.248 × 10−3 s to travel the 3 843 876 elements of the whole
network. Parameters for a high density network, adjusted for
the estimated width of each bundle, gave a time of 2.25 ×
10−3 s. In both cases, the velocity is of the order of 4.7 m/s,
two orders of magnitude larger than the estimate found in [20]
with a different model (pure RC), but in the range estimated
in [3] using the presented method.

B. Realistic electrodes

In this section we consider electrodes that could be ac-
tually available, with their supporting glass. Moreover, we
use the real network dimensions (the confocal images are
250 × 250 μm2 and they are spaced 110 μm in depth).

We considered both the case with the network being on
top of the glass holding the electrodes, and the case when
the electrodes are placed inside the network, along the middle
plane of the confocal image stack.

In the case of the network on top of the glass, we have
randomly chosen eight electrodes and considered them as four
pairs to represent four input bits.

We applied in turn all the possible input states from (0000)
to (1111) and solved the system (8). Then we computed
the potential differences for all the pairs of electrodes that
were not used as input and applied a suitable threshold to
distinguish 0 and 1 bits. The threshold we used was the
median of the differences.

As 10 electrodes out of the 18 connected to the network
were not used as input, we had 45 potential output bits. We
found that, considering all the possible input and output bits,
we have 101 NOT gates, 113 OR gates, 46 AND gates, and 13
XOR gates.

It must be noted that the same pair of output electrodes may
have been counted many times in these numbers. For instance,
the potential difference of electrodes between 46th and 32nd
electrode (electrodes in row 4 column 6 and in row 3 column
2), were considered a possible NOT gate for all the cases listed
in Table VIII.

In the case of the network with electrodes placed in the in-
terior of the network, we have randomly chosen 12 electrodes
and considered them as 6 couples to represent 6 input bits.

TABLE VII. Number of possible XOR gates.

Run Thresh. 2 Thresh. 1 Thresh. 0.5

1 1543 2155 3749
2 584 986 1799
3 1009 1499 3083

TABLE VIII. Possible NOT with a single edge.

Input state Output value NOT on bit

1100 1 4
1101 0
1010 1 4
1011 0
1000 1 4
1001 0
0110 1 4
0111 0
0100 1 4
0101 0
0111 0 2
0011 1
0101 0 2
0001 1
1011 0 1
0011 1
1001 0 1
0001 1

We applied in turn all the possible input states from
(000000) to (111111) and solved the system (8). Then we
computed the potential differences for all the pairs of elec-
trodes that were not used as input and applied a suitable
threshold to distinguish 0 and 1 bits. The threshold we used
was the median of the differences.

As 15 electrodes out of the 27 connected to the network
were not used as input, we had 105 potential output bits. We
found that, considering all the possible input and output bits,
we have 1885 NOT gates, 1279 OR gates, 783 AND gates, and
467 XOR gates.

VII. FINITE STATE MACHINE

The actin network implements a mapping from {0, 1}k to
{0, 1}k , where k is a number of input bits represented by
potential difference in pairs of electrodes, as described above.
Thus, the network can be considered as an automaton or
a finite state machine, Ak = 〈{0, 1},C, k, f 〉. The behavior
of the automaton is governed by the function f : {0, 1}k →
{0, 1}k , k ∈ Z+. The structure of the mapping f is determined
by exact configuration of electrodes C ∈ R3 and geometry of
the AF bundle network.

The machine A4 represents the actin network placed onto
an array of electrodes. In this case, having at our disposal
45 potential output bits, the number of combinations of 4 of
them is 148 995. We therefore limited the study at the output
positions that assume a 1 value more than 6 and less than 11
times for the 16 input states. In this way we found 11 output
bits and computed the state transitions for the 330 machines
that one can obtain choosing 4 out of them, k = 4.

The machine A6 represents the actin network where the
array of electrodes is inside the network. In this case, having
at our disposal 105 potential output bits, the number of
combinations of 6 of them is quite large. We therefore limited
the study at the output positions that assume a 1 value 32 times
for the 64 input states. In this way we found again 11 output
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FIG. 6. State transitions graphs for (a) A4 and (b) A6, trimming threshold is θ = 0.1. Nodes are labeled by digital representation of 4-bit
(a) and 6-bit (b) states.

bits and computed the state transitions for the 462 machines
that one can obtain choosing 6 out of them, k = 6.

We derived structures of functions f4 and f6, governing
behavior of automata A4 and A6, as follows. There is po-
tentially an infinite number of electrode configurations from
R3. Therefore, we selected 330 and 462 configurations C
for machines A4 and A6, respectively, and calculated the
frequencies of connections of input to output states, obtaining
two probabilistic state machines = 〈{0, 1}, p, k, f 〉, where
p : {0, 1}k {0,1} → [0, 1], the p assigns a probability to each
mapping from {0, 1}k to {0, 1}. Thus, a state transition of Ak is
a directed weight graph, where weight represents a probability
of the transition between states of Ak corresponding to nodes
of the graph. The weighted graph can be converted to a non-
weighted directed graph by removing all edges with weight
less than a given threshold θ . In the following we perform
trimming for several thresholds with 0.1 increment.

The graph remains connected for θ till 0.1 (Fig. 6).
The graph for A4 is characterizing for having no un-
reachable nodes and several absorbing states [Fig. 6(a)]
while the graph for A6 has a number of unreachable
nodes (Garden-of-Eden states) and less, than A4, absorbing
states [Fig. 6(b)].

The state transition graph of A6 becomes disconnected for
θ = 0.2 [Fig. 7(b)] and the graph of A4 remains connected
[Fig. 7(a)].

Another way of converting weighted, probabilistic, state
transition graphs into nonweighted graphs is by selecting for

each node x a successor y such that the weight of the arc (xy)
is the highest among all arcs outgoing from x. These graphs
G4 and G6 of most likely transitions are shown in Fig. 8.
The graph G4 [Fig. 8(a)] has two disconnected subgraphs,
eight Garden-of-Eden states, and two absorbing states
corresponding to (1111) and (0000); the graph has no cycles.
The graph G6 has five disconnected subgraphs [Fig. 8(a)].
Two of them have only absorbing states, corresponding to
(00000) and (101010), and no cycles. Three of the subgraphs
do not have an absorbing state but have cycles: (111110) →
(111111)→(111110), (001111)→(001111)→(100110)→
(111100) → (001111) and (000011) → (110001) →
(001001)→(000010)→(100001)→(001100)→(000011).

VIII. DISCUSSION

By using a physical model of ionic currents on a nonlinear
transmission network we demonstrated how a computation of
Boolean functions can be implemented on actin networks and
what type of distribution of Boolean gates can be obtained. In
the model we employed a geometry of the three-dimensional
actin bundle network derived from experimental laboratory
data. Our results might act as a feasibility study for future
experimental laboratory prototypes of cytoskeleton comput-
ing devices. We have also derived finite state machines realiz-
able on the actin networks. The importance of the machines
is twofold. First, their state transition graphs might act as
unique fingerprints of actin networks formed at the different
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FIG. 7. State transitions graphs for (a) A4 and (b) A6, trimming threshold is θ = 0.2. Nodes are labeled by digital representation of 4-bit
(a) and 6-bit (b) states, respectively.

experimental or physiological conditions. Second, the struc-
ture of the machines could advance studies in computational
power of actin networks in the context of formal language
recognition.

We recall that probabilistic finite-state machines are syn-
tactic objects which can model and generate distributions
over sets of possible infinite cardinality of strings, sequences,
words, phrases, terms, and trees. In particular they are known
to recognize uncountably many languages. The interested
reader is referred, e.g., to [38,39].

Of course the actin structures described by our model
would not immediately be used to build powerful calculating
machines like our modern computers. However, our results
may serve as a proof of principle that such structures may
be able to fulfill rudimentary processing tasks. For example,
if computing chips could be build with these structures, they
would be completely biodegradable and recycling would not
be an issue. This may pave the way for modern, green tech-
nologies. Of course all these statements are too far reaching
for such a study, which is a basic research approach. Gener-
ally, the type of actin networks we used in our experiments are
especially suitable for such an initial approach since they form
very robust, highly reproducible structures, which remain
stable over weeks.

Moreover, we emphasize that understanding the electri-
cal properties of actin networks, or more explicitly of actin
bundles and their networks, would provide a broad range of
information. In the field of biophysics many different labs

around the world measure electrical properties, especially the
impedance, of a cell as a potential readout for pathological
transformation, for instance, during cancer development [1].
Different cells do show different impedance results, however,
the origin of the difference is still not resolved. Our findings
prove that signal transduction depends on the geometry of the
system, a principle which ultimately may help to understand
the cellular studies.

The following issues could be addressed in the future. We
did not consider the currents generated by ions flowing in the
liquid medium containing the network, which could produce
some amount of noise. The model could be improved in this
aspect. We did not account for the fact that differences of
electrical potentials along the bundles could give rise to local
patterns of ion concentrations, and these, in turn could change
the bundle resistance R1. This could be a retrofit mechanism
that we propose to study in future work.

It should also be noted that similar implementations of
the model involving MTs instead of AFs are possible with
minor modifications. Random arrangements of MTs in buffer
solutions have been analyzed experimentally regarding their
conductive and capacitive properties [40–42]. It was observed
that MTs measurably increase the solution’s conductance
compared to free tubulin at lower ionic concentrations while
the opposite is true at high ionic concentrations. This effect
can be explained using the Debye-Hueckel model as due
to the formation of a counterionic layer, whose thickness is
concentration and temperature dependent according to the
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FIG. 8. Graphs representing most likely transitions G4 (a) and G6 (b) of A4 (a) and A6 (b).

Debye length formula. At high ionic concentrations, MTs act
as low-resistance cables while at low ionic concentrations
their contribution to impedance is mainly capacitive. At the
peak value, the intrinsic conductivity of MTs has been found
to be two orders of magnitude greater than that of the buffer
solution. On the other hand, at low protein concentration, free
tubulin dimers decrease the solution’s conductance, and it was
modeled as being due to tubulin attracting ionic charges and

lowering their mobility. Both tubulin and MTs were found to
increase capacitance of buffer solutions, due to their formation
of ionic double layers. Consequently, MT networks exhibit
fascinating electrical properties, which change as a function
of ionic concentration and pH providing an opportunity
to additionally control the functional characteristics of
the networks assembled from MTs. We intend to derive a
complete model based on MT networks in a future study.
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[7] D. L. Sekulić, B. M. Satarić, J. A. Tuszynski, and M. V. Satarić,
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