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Statistical topology of bond networks with applications to silica
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Whereas knowledge of a crystalline material’s unit cell is fundamental to understanding the material’s
properties and behavior, there are no obvious analogs to unit cells for disordered materials despite the frequent
existence of considerable medium-range order. This article views a material’s structure as a collection of local
atomic environments that are sampled from some underlying probability distribution of such environments, with
the advantage of offering a unified description of both ordered and disordered materials. Crystalline materials
can then be regarded as special cases where the underlying probability distribution is highly concentrated around
the traditional unit cell. The H1 barcode is proposed as a descriptor of local atomic environments suitable for
disordered bond networks and is applied with three other descriptors to molecular dynamics simulations of silica
glasses. Each descriptor reliably distinguishes the structure of glasses produced at different cooling rates, with
the H1 barcode and coordination profile providing the best separation. The approach is generally applicable to
any system that can be represented as a sparse graph.
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I. INTRODUCTION

A bond network is one in which atoms connected by
covalent bonds form a network that extends throughout the
material. The nature of covalent bonding is such that every
atom of a given species generally forms the same number
of covalent bonds (referred to below as the valence), though
Fig. 1 shows that this does not significantly restrict the
overall network connectivity. The purpose of this article is
to characterize this connectivity and to enable quantitative
comparison of the connectivity of different bond networks.
Since the connectivity is entirely defined by knowledge of
the existence of atoms and the bonds connecting them, the
resulting analysis does not depend on variations in bond ener-
gies or the precise geometries of local atomic environments.
That is, a bond network is considered as a graph (in the sense
used in discrete mathematics) where the atoms constitute the
vertices (possibly labeled by atomic species) and the covalent
bonds the edges. Some geometric information is implicitly
retained, as the bond lengths and bond angles constrain the
allowable network topologies and vice versa [1,2]. It is partly
for this reason that other purely topological quantities such as
coordination number and ring statistics are commonly used to
quantify the structure of bond networks and why we propose
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that our methodology will provide an informative language to
describe these systems.

While this article specifically considers local atomic envi-
ronments in silica glasses, the approach is generally applicable
to any system that can be represented as a sparse graph
(one with low-valence vertices). A bond network for, e.g.,
a metallic glass [3], could be defined by constructing the
Voronoi tessellation and identifying every face of a Voronoi
polyhedron with a bond. Similarly, tile edges in a Penrose
tiling [4], films in a two-dimensional soap froth, and grain
boundaries in a polycrystalline thin film [5] could all be
considered as bonds connecting corners or junction points.
It is true that considering only the graph structure of these
systems discards the geometric information, but this can be an
advantage if the purpose is to identify exceptional local en-
vironments. Such environments generally have an associated
topological signature, and considering only the local graph
structure can simplify the analysis significantly. Moreover,
retaining excessive local information can actually frustrate the
users ability to distinguish disordered structures for reasons
explored in Sec. III B.

Let the distance between two atoms be defined as the num-
ber of edges along the shortest path between the correspond-
ing vertices. A local atomic environment of radius r centered
at an atom v is then defined as the subgraph consisting of all
atoms within distance r of v and all covalent bonds between
atoms in this set, as in Fig. 2. The atom v, with a distinguished
position at the center of the local atomic environment, is
called the root. A perfect crystalline solid, by definition,
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FIG. 1. Ordered (a) and disordered (b) bond networks containing
2-valent red (light gray) atoms and 3-valent blue (dark gray) atoms.

contains a small number of topological types of local atomic
environments; considering the polymorphs of silica (SiO2) as
examples, there is just one environment in cristobalite and
two in coesite if the roots are restricted to silicon atoms.
By contrast, a disordered solid contains many topological
types, although these do not all necessarily have the same
probability of occurrence. This suggests that every material
with a given chemical composition and processing history
has a characteristic probability distribution of local atomic
environments, with crystalline solids as special cases where
the probability distribution is highly concentrated. Knowledge
of this probability distribution would then subsume that of the
unit cell and apply to ordered and disordered bond networks
alike. This approach has the further advantage of being sen-
sitive to both continuous and discontinuous variations in the
rates of occurrence of local atomic environments and could
therefore be used for, e.g., phase detection, identification of
crystal nuclei, or verification that computationally generated
structures correspond to experimental ones.

A central concern that has yet to be addressed is precisely
which local atomic environments should be considered
equivalent and which distinct. We propose that there is no
single notion of equivalence that is preferable in all situations.
Four possibilities are discussed below in the context of
molecular dynamics simulations of silica glasses produced at
different cooling rates. For this application, the equivalence
relation that allows the atomic networks to be most easily
distinguished on the basis of local structural differences is
preferred. If instead the relative nucleation rates of competing
crystalline phases was the subject of study, then perhaps
the one that could most easily distinguish the characteristic

FIG. 2. A local atomic environment of radius 5 inside a larger
bond network. The root atom is marked by a star.

probability distributions of different crystalline phases would
be more preferable.

In previous work [6,7], two local environments were con-
sidered to be equivalent up to graph isomorphism, effec-
tively employing all of the available topological information
to compare local atomic environments. While theoretically
satisfying, this can cause the number of equivalence classes
(distinct types of local environments) to grow very quickly
with the radius of the neighborhood. For example, using this
equivalence relation gives 9 × 104 distinct equivalence classes
in a sample of 105 environments in silica glass at a radius
sufficient to differentiate the crystalline forms of SiO2. This
is not a useful summary of the local structure; the true proba-
bility distribution of local atomic environments would require
an infeasibly large sample population to estimate and even if
known would consider nearly every environment as unique.

This proliferation of equivalence classes is addressed by
considering three further equivalence relations which are
coarser (encode less information) than graph isomorphism
and effectively assign a summary of topological properties
to a local atomic environment. Two are based on classical
descriptors, namely the coordination profile which records
the coordination numbers of atoms at each distance from
the root, and the primitive ring profile, which records the
number and length of primitive rings containing the root. The
third equivalence relation is the H1 barcode, a novel ring-
based descriptor that is defined in terms of the first homology
group. The H1 barcode is better at distinguishing local atomic
environments in crystalline and glassy silica than the primitive
ring profile, particularly when every atom in the network is
required to have the standard valence.

There is an extensive literature on local structural descrip-
tors for bond networks (the introduction of Ref. [7] gives a
brief survey). Specifically for covalent glasses, our approach
is most similar to the local clusters of Hobbs et al. [8]. The
local cluster of an atom is the union of all primitive rings
(defined below) containing that atom, and the equivalence
relation on local clusters is graph isomorphism. This approach
is, however, found to suffer from the same proliferation of
equivalence classes described above for the graph isomor-
phism equivalence relation. Ring statistics are perhaps the
most commonly used local structural descriptor for silica
networks [9], with a survey of several different classes of
distinguished rings given in Ref. [10]. We study one descriptor
based on ring statistics, the primitive ring profile. The prim-
itive ring data are used to classify local environments into
different equivalence classes rather than to compute global
ring statistics though, providing information about the adja-
cency of rings and allowing for different methods of analysis.
Recently, persistent homology was applied to the study silica
networks [11]; while the H1 barcode introduced here can be
defined in terms of persistent homology, it gives qualitatively
different information than the methodology of Ref. [11].

Previous studies have identified various structural proper-
ties of silica glasses that depend on, e.g., the cooling rate from
the liquid [12–16]. Our methodology is applied to simulations
of silica glasses quenched from the liquid at three different
rates. Overall, glasses that form with faster cooling rates are
found to exhibit more disorder, have a higher frequency of
rings with six or eight atoms (three or four silicon atoms), and
have more coordination defects.
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FIG. 3. An example local atomic environment and its H1 bar-
code, primitive ring profile, and coordination profile.

II. CLASSIFICATION OF LOCAL ATOMIC
ENVIRONMENTS

Let V be the set of atoms comprising a bond network. A
structural descriptor of a bond network is defined as a function
X that assigns to the atom v a summary X (v) of the properties
of the local atomic environment around v. This induces an
equivalence relation on atoms v ∈ V in the sense that atoms
v1 and v2 are considered to be equivalent if X (v1) = X (v2).
Given two descriptors X and Y , X is said to be coarser than
Y if equivalence under Y implies equivalence under X for all
pairs of atoms (i.e., the information provided by Y contains
that provided by X ). Each of the descriptors considered here
depends on the radius r of the local environment, and each
has the property that Xr is coarser than Xr+1 for all r > 0 (i.e.,
higher values of the radius provide more information).

Let the equivalence class x denote the set of all atoms
v such that X (v) = x. Since the underlying probability dis-
tribution on equivalence classes is not usually known for a
given descriptor X and atom set V , our approach instead
uses empirical probability distributions. The empirical prob-
ability distribution of X on V assigns to every equivalence
class x the probability that X (v) = x for a randomly chosen
atom v ∈ V , or

PX (x) = |{v ∈ V : X (v) = x}|/|V |.
A descriptor X and two bond networks with atom sets V1 and
V2 then result in two discrete probability distributions PX (x)
and QX (x), and a measure of the similarity of these discrete
probability distributions could be used to define the similarity
of the bond networks (e.g., a metric on discrete probabil-
ity distributions induces a pseudometric on bond networks).
While the symmetrized Kullback-Leibler (KL) divergence
[17] is used for this purpose below, other possibilities include
the standard L1 or L2 metrics or a Wasserstein distance that
incorporates information about the geometric similarity of
equivalence classes [7].

Three of the four descriptors below encode intuitive topo-
logical information about a local atomic environment, al-
though the technical descriptions of the descriptors can be
deceptively involved. It is useful to frequently consult ex-
amples of local atomic environments and the corresponding
descriptors while reading the descriptions below to develop
the above-mentioned intuition. One example is provided in
Fig. 3, and many more of relevance to silica glasses are given
in Appendix D.

FIG. 4. Two configurations with three primitive rings of length
four. Panel (a) has three algebraically independent rings and panel
(b) has only two.

A. Graph isomorphism

The most detailed of the descriptors uses graph isomor-
phism to construct equivalence classes of local atomic envi-
ronments. This requires that two local atomic environments
be considered equivalent if there is an invertible mapping of
atoms from one to the other that preserves atomic types and
bonds. The resulting equivalence class specifies all topolog-
ical information about the local atomic environment. From
the standpoint of ring statistics, graph isomorphism controls
the number and length of rings as well as their adjacency and
distance from the root. The methodology described in Ref. [7]
was used to calculate the corresponding descriptor; that is, a
local environment was represented by an adjacency matrix
written in canonical form using the software package Nauty
[18].

B. The coordination profile

The coordination profile is the simplest descriptor consid-
ered here. At radius r this is a vector of r unordered lists
where the ith list gives the coordinations (valences) of all
atoms at distance i from the root. An example of a local atomic
environment and its coordination profile is shown in Fig. 3; the
root has valence four, each of the atoms in the first neighbor
shell has valence two, and the valences alternate with neighbor
shell number. Observe that the coordination profile at radius
r implicitly includes information about the bonds between
atoms in the rth and (r + 1)th shells; this means that the co-
ordination profile at radius r provides a coarser classification
than graph isomorphism at radius r + 1, but not at radius r.

For a perfectly coordinated silica network—one where
every oxygen is adjacent to two silicons and every silicon is
adjacent to four oxygens—the coordination profile contains
equivalent information to the number of atoms in each neigh-
bor shell around the root. This is known as the shell count of
the local atomic environment. For example, the radius 5 shell
count of the configuration in Fig. 3 is (1, 4, 4, 12, 12, 33).

C. The primitive ring profile

A primitive ring [19,20] is defined as a ring of bonded
atoms (v1, v2, . . . , vk, v1) such that the shortest path connect-
ing any pair of atoms in the ring is contained within the ring.
That is, the shortest path between vi and v j for all 1 � i <

j � k is either vi, vi+1, . . . , v j or v j, . . . , vk, v1, v2, . . . , vi.
For example, the configurations in Fig. 4 both have three
primitive rings. Note that if v is an atom in a bond network,
then a primitive ring containing v is primitive with respect to
the local atomic environment rooted at v if and only if it is
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primitive in the entire network as well; this is not necessarily
true if a ring does not contain v. The primitive ring profile of
radius r of an atom v gives the lengths of all primitive rings
which contain v and at most 2r total atoms, as in the example
in Fig. 3. Unlike the coordination profile, the primitive ring
profile stabilizes at a relatively small value of the radius r
(there are often alternate paths connecting distant parts of
large rings). The algorithm of Yuan and Cormack [21] is used
to compute primitive rings.

The ring lengths given here are twice the usual values in
the silica literature where only silicon atoms are reported [9].
For example, a 12-ring in this article contains 6 silicon and 6
oxygen atoms.

D. The H1 barcode

The H1 barcode is proposed here as a set of intervals
corresponding to algebraically independent rings in a local
atomic environment and is defined in terms of the first ho-
mology group. An interval of the form ( j, k) with 0 � j < k
corresponds to a ring of unknown length whose atoms are all
between distance j and k of the root. An interval (0, k) more
specifically corresponds to a ring containing the root atom and
either 2k − 1 or 2k total atoms. If there are fewer intervals
of the form (0, k) than primitive rings passing through the
root, then there is an interval of the form ( j, k) which encodes
information about the relationships between the primitive
rings; Fig. 3 gives an example.

1. Definition of homology

The definition of homology as it relates to the H1 barcode
is more involved than the definitions of the other descriptors
considered here; this arises from the requirement that the
rings be algebraically independent. As motivation for the
discussion below, consider that while there is no unique
basis for the Euclidean plane, every basis contains precisely
two vectors. That is, the space is clearly two dimensional
despite the ambiguity of this choice. The situation is (perhaps
surprisingly) similar for rings in a bond network. Consider
the three rings in Fig. 4(b); in a sense that is made precise
below, any two of these rings can be composed to generate
the third in the same way that any two linearly independent
vectors in the plane can be regarded as a basis. While the
identity of the rings is not well defined, the number of such
algebraically independent rings certainly is well defined, and
the H1 barcode indicates the changes to this number as a
function of r.

The first homology group is a vector space whose dimen-
sion equals the number of algebraically independent rings
in a bond network (refer to Ref. [22] for an introduction to
general homology theory). If G is a bond network, then the
chain group C0(G) is defined as the vector space of all formal
sums

∑k
i=1 aivi, where ai ∈ R and vi is an atom of G; this

effectively attaches a real number to each atom. Similarly,
C1(G) is the vector space of all formal sums

∑k
i=1 ai(vi,wi ),

where ai ∈ R and (vi,wi ) is a pair of atoms of G connected by
a bond, with the relation (vi,wi ) = −(wi, vi ); this effectively
attaches a real number to each oriented bond. If an element of
C1(G) is regarded as defining the rate of fluid flow along each
bond of the network, then it is natural to ask the corresponding

rate of fluid accumulation around each atom. The linear
function ∂ : C1(G) → C0(G) is defined by

∂

[
k∑

i=1

ai(vi,wi )

]
=

k∑
i=1

aivi − aiwi

and effectively calculates this quantity for every atom of the
network simultaneously. The first dimensional homology of G
is then the kernel of ∂ or the set of all balanced fluid flows:

H1(G) = {σ ∈ C1(G) : ∂ (σ ) = 0}.
H1(G) is generated by oriented rings of G or, equiva-
lently, every balanced fluid flow can be constructed as
a superposition of linearly independent flows around a
well-defined number of closed circuits (though the set
of closed circuits is not uniquely defined). For example,
in Fig. 4(b), (a, b) + (b, c) + (c, d ) + (d, a) ∈ H1(G) but
(a, b) + (b, c) + (c, d ) + (a, d ) /∈ H1(G). Also, note that if
σ1, σ2, and σ3 are the three primitive rings

σ1 = (a, b) + (b, c) + (c, d ) + (d, a)

σ2 = (a, b) + (b, e) + (e, d ) + (d, a)

σ3 = (b, c) + (c, d ) + (d, e) + (e, b),

then there exists the relation

σ1 = σ2 + σ3.

That is, as claimed in the opening of this section, only two of
the three rings are algebraically independent.

The rank of the vector space H1(G) gives the number
of algebraically independent rings of G. For example, the
ranks of the first homology groups of the configurations in
Figs. 4(a) and 4(b) are 3 and 2, respectively. Practically
speaking, the rank of H1(G) can be efficiently computed using
only information about the Euler characteristic and number
of connected components of G (two atoms are in the same
connected component if there is a path connecting them):

χ (G) = no. of atoms − no. of bonds

= no. of components − rank[H1(G)].

Solving for the rank of H1(G) gives the concise equation

rank[H1(G)] = no. of components (1)

− no. of atoms + no. of bonds.

Finally, we emphasize that the vector space H1(G) does not
have a distinguished basis of “shortest” rings; each pair of
primitive rings in Fig. 4(b) is a viable basis.

2. Definition of the H1 barcode

If v is a root atom in a bond network G and i � j, then
the i, j-shell annulus S(i, j) at v is the subgraph composed of
all atoms between distances i and j from v and the included
bonds. F (i, j) is defined as the number of algebraically inde-
pendent rings of S(i, j) or

F (i, j) = rank{H1[S(i, j)]}. (2)

For example, the local atomic environment in Fig. 5 has
F (0, 5) = 3, F (0, 4) = 2, and F (2, 5) = 1. If (i, j) ⊆ (k, l ),
then rings that are algebraically independent in S(i, j) remain
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FIG. 5. Two shell annuli of a local atomic configuration and the
corresponding H1 barcode.

algebraically independent in S(k, l ), implying that F (i, j) �
F (k, l ). It follows that there is a unique set of intervals B (the
H1 barcode) such that

F (i, j) = |{I ∈ B : I ⊆ (i, j)}|.
The information in B for a root v is displayed in a barcode, as
in Fig. 5 for which B = {(0, 4), (0, 4), (2, 5)}.

The H1 barcode could alternatively be defined in terms
of the zigzag persistent homology [23] or extended per-
sistent homology [24] of the distance function to the root
vertex. Those concepts could also be used to define other
descriptors that contain different information about the local
atomic environment. Here the H1 barcode was computed using
Möbius inversion as described in Appendix A, and (perhaps
surprisingly) was faster than an algorithm based on extended
persistent homology.

E. Speed of computation

The local atomic environments of a bond network are
classified by iterating through a list of all possible root atoms
and computing the selected descriptor for the local atomic
environment around each one. The numbers of occurrences
of every observed equivalence class are stored in a hash
table, with an overall runtime that is linear in the number
of root atoms. While the majority of the runtime is spent on
computing the descriptors, the asymptotic runtime of these
algorithms is not particularly relevant as the local atomic
environments contain a small number of atoms. Computations
were performed on a 2.3-GHz AMD Opteron processor with
64 GB of RAM, and the code was compiled with GCC version
7.3.1. The source code is open source and is available online.1

Table I shows the time required to classify 105 atomic
environments at radius r = 6. The coordination profile was
the fastest, requiring only 1.8 s to compute as this descriptor

1https://github.com/bschweinhart/Swatches.

TABLE I. Seconds required to classify 105 atomic environments
at radius 6. The data are from a molecular dynamics simulation
of glasses cooled at 5 × 1011 K/s, which is described in the next
section.

Method Time (s)

H1 barcode 12.6
Primitive ring 23.6
Coordination 1.8

involved no additional computations once the local atomic
environment was known. The H1 barcode required 12.6 s by
comparison. The primitive ring profile was the slowest of the
three, requiring 23.5 s in the best case. Our implementation
used the Yuan and Cormack [21] primitive ring algorithm
where the global structure of the bond network is used to
accelerate the computation of individual profiles. Without this
optimization the runtime for the primitive ring profile was
127.1 s, still substantially faster than the algorithm of Hobbs
et al. [8] which required 476.7 s.

III. APPLICATIONS TO SILICA

Silicon dioxide, otherwise known as silica, exists in a
variety of crystalline and glassy forms at ambient conditions.
Silicon atoms are generally bonded to four oxygen atoms,
and oxygen atoms are generally bonded to two silicon atoms,
though this is not universally true in poorly relaxed systems,
and the coordination of Si atoms can be as high as 6 when
under compression [25]. The four structural descriptors of
local atomic environments described in Sec. II were applied to
three crystalline forms of silica and to silica glasses generated
by molecular dynamics simulations, quenched from the liquid
at 5 × 1011 K/s, 5 × 1012 K/s, and 5 × 1013 K/s. An infor-
mative descriptor of local structure would ideally distinguish
all of these cases. All local atomic environments are rooted at
silicon atoms in the following.

The details of the molecular dynamics simulations are
described in Appendix C. For each quench rate, 100 config-
urations of 3000 atoms (1000 Si atoms and 2000 O atoms)
were generated, resulting in data sets of 105 local atomic
environments rooted at silicon atoms. The Si-O bonds are
defined as pairs of Si and O atoms closer than 2.2 Å, the
first minimum of the radial distribution function of the sil-
ica glasses. This produces environments that are relatively
stable to perturbations of the cutoff; if the cutoff is changed
by ±0.2 Å, then 98.3% of the radius 6 environments in
glass quenched at a rate of 5 × 1011 K/s are unchanged.
The corresponding percentages for glasses quenched at rates
of 5 × 1012 K/s and 5 × 1013 K/s are 97.0% and 95.0%,

respectively. As such, a different choice of cutoff within that
range would not significantly affect the analysis below.

Coordination defects are present at low rates in all the
quenched silica glasses. As expected [14], they occur most
often at the highest cooling rate for which 1.47% of silicons
are 5-valent, 0.96% of oxygens are 3-valent, and 0.22% of
oxygens are 1-valent. Although rare from the standpoint of
individual atoms, the percentage of radius 6 environments that
contain at least one coordination defect is 24.2%, 41.5%, and
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TABLE II. The H1 barcode, primitive ring profile, and shell count
for three crystalline forms of silica: α-quartz (Q), cristobalite (C),
and tridymite (T).

H1 barcode Primitive rings Shell count

Q 3 × (0, 6), 3 × (2, 6) Six 12-rings (1, 4, 4, 12, 12, 36, 30)
C 4 × (0, 6), 5 × (2, 6), Twelve 12-rings (1, 4, 4, 12, 12, 36, 24)

4 × (4, 6)
T 3 × (0, 6), 7 × (2, 6), Twelve 12-rings (1, 4, 4, 12, 12, 36, 25)

1 × (4, 6)

64.1% for glasses cooled at 5 × 1011 K/s, 5 × 1012 K/s, and
5 × 1013 K/s, respectively. Some of the descriptors consid-
ered here are more sensitive to these coordination defects than
others. To illustrate this and to give a different perspective
on the relative merits of the descriptors, our methodology is
applied both to the full samples of 105 atomic environments
at each quench rate and to the subsamples of perfectly coordi-
nated environments.

Crystalline forms of silica are considered in Sec. III A
before proceeding to the glassy structures. The Shannon
entropies of the empirical probability distributions are com-
puted in Sec. III B, indicating the extent to which the vari-
ous descriptors provide informative descriptions of the local
structure as a function of radius. Based on this preliminary
analysis and on that of the crystalline structures, further
analysis is restricted to the H1 barcode, primitive ring profile,
and coordination profile at radius 6 and graph isomorphism at
radius 5. Section III C uses the mutual information to compare
the information provided by the different descriptors. Finally,
we compare the local structure of silica glasses produced by
different cooling rates in Sec. III D.

A. Crystal structures

Table II shows the H1 barcode, primitive ring profile, and
coordination profiles of local atomic environments rooted at
the silicon atoms of three different crystalline forms of silica,
namely α-quartz, cristobalite, and tridymite (the absence of
coordination defects makes the shell count equivalent to the
coordination profile here). None of the descriptors is able to
differentiate between the crystal structures for radii r � 5.
The H1 barcodes and coordination profiles of cristobalite and
tridymite begin to differ at radius r = 6, but the primitive
ring profile is unable to distinguish these structures at any
radius. This indicates that any descriptor of local atomic
environments in silica should be computed at radius 6 or
above to be substantially informative.

B. Shannon entropy

An ideally informative descriptor of local atomic envi-
ronments would retain enough information to differentiate
environments but not so much as to regard each one as unique.
Whether a descriptor is too informative can be evaluated by
computing the Shannon entropy [26] of the corresponding
empirical probability distribution. Recall from Sec. II that,
given a bond network with atoms V , a descriptor X allows
the definition of an empirical probability distribution PX on

TABLE III. Scaled Shannon entropies of the empirical proba-
bility distributions for various descriptors for 4 � r � 9. Data are
computed for a sample of 105 local atomic environments in silica
glasses cooled at 5 × 1011 K/s.

r Graph iso. P. cluster H1 P. rings Coordination

4 0.136 0.101 0.099 0.094 0.142
5 0.445 0.358 0.270 0.226 0.299
6 0.983 0.861 0.471 0.381 0.473
7 1.000 0.999 0.704 0.550 0.678
8 1.000 — 0.902 0.706 0.846
9 1.000 — 0.986 0.821 0.965

equivalence classes x. The Shannon entropy associated with
the descriptor X is defined as

H (X ) = −
∑

x

PX (x) log[PX (x)].

H (X ) is minimized by a descriptor that places all atoms in
a single equivalence class, resulting in an entropy of 0. On
the other hand, H (X ) is maximized if each atom is in an
equivalence class unto itself, resulting in an entropy of

H (X ) = −
∑
v∈V

1

|V | log(|V |−1) = log(|V |).

Normalizing H (X ) by 1/ log(|V |) gives scaled entropies be-
tween 0 and 1, with the property that X is an uninformative
descriptor of local structure if the scaled entropy is close to
either bound (though for different reasons).

Table III gives the scaled Shannon entropies for the sample
of 105 local atomic environments in silica glasses cooled at a
rate of 5 × 1011 K/s. In addition to graph isomorphism, the
H1 barcode, the primitive ring profile, and the coordination
profile, the primitive cluster of Hobbs et al. [8], is also calcu-
lated (truncated by the radius). Recall from the Introduction
that the primitive cluster is the union of the primitive rings
containing the root vertex, and that equivalence classes of
primitive clusters are defined using graph isomorphism.

The scaled entropies for graph isomorphism and primi-
tive clusters are already close to 1.0 for r = 6, indicating
that they do not provide an informative classification at this
radius because the empirical probability distribution cannot
be constructed. This is a consequence of the fact that the
number of distinct equivalence classes observed approaches
the total number of environments in the sample (9.8 × 104

different graph isomorphism classes and 8.6 × 104 different
primitive cluster classes). On the other hand, the primitive
ring profile, H1 barcode, and coordination profile have scaled
entropies ranging from 0.381 to 0.473 at r = 6 and provide
informative classifications at this radius. The primitive ring
profile can even be used for larger radii since the number of
possible equivalence classes grows more slowly as a function
of radius for this descriptor. Since the Shannon entropy is
relatively insensitive to the tail of the probability distribution
(by design), analogous data for the subsample of perfectly
coordinated environments are nearly identical.
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TABLE IV. The uncertainty coefficients of three classifiers at r =
6 and graph isomorphism at r = 5 applied to a data set of 105 local
atomic environments in silica glasses cooled at 5 × 1011 K/s.

H1 (6) P. rings (6) Coord. (6) Graph iso. (5)

H1 (6) 1.00 0.52 0.83 0.62
P. rings (6) 0.65 1.00 0.62 0.63
Coordination (6) 0.83 0.50 1.00 0.61
Graph iso. (5) 0.66 0.54 0.65 1.00

C. Mutual information

A natural question to ask is whether different descriptors
encode similar information about local atomic environments.
This is measured by means of the uncertainty coefficient
U (X |Y ) between the empirical probability distributions in-
duced by descriptors X and Y ; the uncertainty coefficient
effectively indicates the amount of information about PX that
can be deduced given prior knowledge of PY [27]. The precise
definition involves the empirical joint distribution

PX,Y (x, y) = |{v ∈ V : X (v) = x,Y (v) = y}|/|V |.
The mutual information [26] of PX and PY can then be defined
as

I (X ;Y ) =
∑
x,y

PX,Y (x, y) log

[
PX,Y (x, y)

PX (x)PY (y)

]
.

Finally, the uncertainty coefficient between PX and PY is the
ratio of the mutual information to the Shannon entropy of PX ,
or

U (X |Y ) = I (X ;Y )/H (X ).

U (X |Y ) = 0 if and only if PX and PY are independent (i.e.,
none of the information encoded by X is given by Y ). Con-
versely, U (X |Y ) = 1 if and only if Y (v1) = Y (v2) implies that
X (v1) = X (v2) for all v1, v2 ∈ V (i.e., all of the information
encoded by X is given by Y ). Observe that this definition
is inherently asymmetric. Table IV gives the uncertainty
coefficients between the H1 barcode (B6), primitive ring
profile (P6), and coordination profile (V6) at radius r = 6,

and graph isomorphism at radius r = 5, for the data set of
105 local atomic environments in silica glasses cooled at
5 × 1011 K/s. The uncertainty coefficients U (B6|V6) = 0.83
and U (V6|B6) = 0.83 are quite high and substantially higher
than U (B6|P6) = 0.52 and U (V6|P6) = 0.50. This can be
explained by observing that the H1 barcode and coordination
profile consider all atoms in the local atomic environment of
radius 6 rather than just those in the local cluster. What is
perhaps surprising is that U (P6|B6) = 0.65 is not higher. This
indicates that the number and length of primitive rings at the
root encodes different information than the number and length
of algebraically independent rings in the local atomic envi-
ronment. That the values in the fourth column are all around
0.6 indicates that a large amount of information is gained by
considering atoms in the 6th neighbor shell. If the H1 barcode
and primitive ring profile were instead constructed for r = 5,
then they would be fully explained by graph isomorphism at
that radius, resulting in uncertainty coefficients of 1.00.

TABLE V. The same data as in Table IV but for the subsample of
perfectly coordinated environments.

H1 (6) P. rings (6) Coord. (6) Graph iso. (5)

H1 (6) 1.00 0.53 0.82 0.58
P. rings (6) 0.63 1.00 0.59 0.60
Coordination (6) 1.00 0.60 1.00 0.60
Graph iso. (5) 0.68 0.59 0.57 1.00

Table V shows the uncertainty coefficient computations for
the subsample of 75 849 perfectly coordinated local atomic
environments in glasses cooled at 5 × 1011 K/s. The most
dramatic change is that U (V6|B6) = 1.00, indicating that the
shell count provides a strictly coarser classification (or strictly
less information) than the H1 barcode for perfectly coordi-
nated environments. In fact, the shell count provides the same
information as the endpoints of the H1 barcode intervals in
this case, as shown in Appendix B.

D. Different cooling rates

The initial analysis of silica glasses prepared at different
cooling rates involves comparing the shapes of the empiri-
cal probability distributions for three different descriptors in
Fig. 6. The rank of an equivalence class in the glass produced
with the slowest quench rate is given on the x axis and the
frequency for each of the three cooling rates on the y axis.
The blue curve corresponding to the slowest quench rate 5 ×
1011 K/s is monotonically decreasing, but the green and red
curves corresponding to quench rates of 5 × 1012 K/s and 5 ×
1013 K/s are jagged; this is because the ranking of the most
common equivalence classes is different in the three cases.
While the rank may change, common equivalence classes for
one cooling rate tend to be common in the others as well (in
the print version, the blue curve is shown in dark gray, the red
curve in medium gray, and the green curve in light gray).

In all three figures, the blue curve is highest followed by
the green and then the red. That is, the empirical probability
distributions for glasses cooled at faster rates are broader, the
most common classes are relatively less common, and more
probability mass is in the tail of the distribution. In other
words, glasses cooled at faster rates exhibit more disorder
in their local structure. The corresponding plots for the per-
fectly coordinated subsamples (not shown) are similar for the
H1 barcode and primitive ring profile, with slightly higher
frequencies and slightly less separation between the cooling
rates. The coordination profile provides substantially less
separation for the subsample; this change is quantified below.

1. KL divergence

The ability of the descriptors to differentiate glasses pro-
duced at different quench rates is quantified by the sym-
metrized Kullback-Leibler (KL) divergence [17] between the
corresponding empirical probability distributions. The KL
divergence DKL(PX ‖QX ) effectively measures the relative en-
tropy of the probability distribution PX with respect to QX and
is perhaps the most natural extension of the Shannon entropy
to this context. While the KL divergence is asymmetric, the
symmetrized version conforms more to our intuitive notions
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FIG. 6. Empirical probability distributions of equivalence classes in silica glasses produced at different cooling rates. The equivalence
classes are ranked by frequency for the glass with the slowest cooling rate, with the frequency of the class on the y axis. The descriptors
corresponding to the first 10 equivalence classes in each figure are given in Appendix D (the first column of each of the three tables). The
dashed lines indicate the standard error of the frequency estimates.

of a distance (it is a semimetric on probability densities but a
pseudosemimetric on bond networks).

Given a descriptor X , two bond networks V1 and V2 give
the two empirical probability distributions PX and QX over
a single set of equivalence classes x. The KL divergence
between PX and QX is defined as

DKL(PX ‖QX ) =
∑

x

PX (x) log

[
PX (x)

QX (x)

]
.

This is symmetrized by adding the relative entropy of PX with
respect to QX to that of QX with respect to PX , or

DKL(PX , QX ) = DKL(PX ‖QX ) + DKL(QX ‖PX ).

Practical calculation of DKL(PX , QX ) requires the substitu-
tion q log(q/p) = 0 if either q or p is zero and is justified
under two reasonable assumptions: (1) the frequency of an
equivalence class in the underlying probability distributions
is nonzero in one preparation if and only if it is nonzero in
the other, and (2) if an equivalence class is so rare in one
preparation so as to not appear in the sample, it is also rare
in the other.

Table VI shows the symmetrized KL divergences between
the empirical probability densities, effectively measuring the
separation between the curves in Fig. 6. Lower values indicate
that larger sample sizes are required to reliably differentiate
glasses produced at different cooling rates. The coordination
profile provides the best differentiation between different
cooling rates, followed by the H1 barcode and finally the
primitive ring profile. The coordination profile’s advantage is,
however, attributed to its sensitivity to coordination defects;
consider Table VII, which shows the corresponding data for

TABLE VI. The symmetrized Kullback-Leibler divergence for
three different descriptors with r = 6 between empirical probability
distributions at different cooling rates.

Comparison H1 barcode P. rings Coord.

5 × 1011, 5 × 1012 0.065 0.026 0.162
5 × 1011, 5 × 1013 0.288 0.146 0.655
5 × 1012, 5 × 1013 0.149 0.066 0.279

the subsamples of perfectly coordinated environments. In this
case, the H1 barcode provides the best discrimination between
quench rates, followed by the coordination profile, and finally
the primitive ring profile.

Symmetrized KL divergences were also computed between
the empirical probability densities for the full sample of 105

local atomic environments in glasses cooled at 5 × 1013 K/s
and the subsample of 3.6 × 104 perfectly coordinated envi-
ronments. The divergence for the coordination profile is very
large (0.657), and much larger than those given by the H1

barcode (0.086) or the primitive ring profile (0.050). That
is, the coordination profile is quite sensitive to coordination
defects, but the other two descriptors are not. Divergences
for glasses cooled at slower rates were smaller since perfectly
coordinated environments made up a larger proportion of the
total sample.

2. Ranked examples

We consider examples of the most common equivalence
classes and the ones that are relatively over-represented in
glasses produced with a faster cooling rate. At radius 5,
Figure 7 shows the six most common graph isomorphism
classes in glasses produced at a cooling rate of 5 × 1011 K/s,
with the corresponding barcode, primitive ring profile, and
shell count (there were no coordination errors in these exam-
ples). f1 and r1 are the frequency and rank of the isomorphism
class at a cooling rate of 5 × 1011 K/s, and f2 and r2 are the
corresponding quantities for a cooling rate of 5 × 1013 K/s.
The ranking is very similar for both conditions, reinforcing
that the set of most frequent classes is relatively insensitive
to cooling rate. As expected, environments with 10-rings

TABLE VII. The same data as in Table VII but for the subsam-
ples of perfectly coordinated environments (for which the coordina-
tion profile gives equivalent information to the shell count).

Comparison H1 barcode P. rings Coord.

5 × 1011, 5 × 1012 0.044 0.019 0.021
5 × 1011, 5 × 1013 0.198 0.121 0.140
5 × 1012, 5 × 1013 0.112 0.062 0.069

052312-8



STATISTICAL TOPOLOGY OF BOND NETWORKS … PHYSICAL REVIEW E 101, 052312 (2020)

FIG. 7. The six most frequent graph isomorphism classes at radius 5 in glasses cooled at a rate of 5 × 1011 K/s. Graph embeddings where
generated using a force-directed layout [28]. Silicon atoms are shown in blue (dark gray), and oxygen atoms are shown in red (light gray).

are well represented, but Figs. 7(c) and 7(d) have 8-rings.
More interestingly, several of the most common environments
include adjacent rings, i.e., an Si-O-Si bond which is shared
by two or three 10-rings as in Figs. 7(b) and 7(d) or by a 10-
and an 8-ring as in Fig. 7(c). The adjacency of these rings
cannot be detected by ring statistics alone.

Figure 8 shows the six graph isomorphism types that
maximize f2 − f1, i.e., the types most over-represented in
glasses produced with the fastest cooling rate. The data reveal
that glasses produced with a faster cooling rate have relatively
more short rings with six or eight atoms, and configurations
with adjacent short rings are especially favored. This is con-
sistent with the fact that, at lower quench rates, the number of
12 rings (with 6 Si atoms) increases while that of other rings
decreases [14].

Tables VIII–X in Appendix D show similar data for the
H1 barcode, primitive ring profile, and coordination profile at

radius r = 6. For each descriptor, the top 10 classes ranked
by f1, f1 − f2, and f2 − f1 are listed, using the same notation
as in the previous paragraph. The descriptors that maximize
f2 − f1 correspond to the peaks in Fig. 6 where the red
(medium gray) curve is above the blue (dark gray) one.
Examining Table VIII or IX reveals that local environments
in glasses produced at 5 × 1011 K/s have more rings with
10 or 12 atoms (five or six Si atoms), while a cooling rate
of 5 × 1013 K/s yields more 6- and 8-rings (three or four Si
atoms). For example, the early peak in Fig. 6(b) corresponds
to a primitive ring profile with one primitive 8-ring, two prim-
itive 10-rings, and two primitive 12-rings. Moreover, glasses
produced by faster cooling rates exhibit more coordination
errors. In Table X, all of the top 10 coordination profiles
ranked by f2 − f1 include a silicon in neighbor shell 6 that
is adjacent to five oxygen atoms, and one contains an oxygen
adjacent to three silicon atoms.

FIG. 8. The six graph isomorphism classes at radius 5 that maximize f2 − f1. Silicon atoms are shown in blue (dark gray), and oxygen
atoms are shown in red (light gray).
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IV. CONCLUSION

The connectivity of the bonds in a network solid is be-
lieved to be involved in a variety of physical quantities,
e.g., the viscosity and configurational entropy of covalent
glass forming materials. The authors suggest that part of the
reason that the dependence of the configurational entropy on
composition cannot yet be reliably predicted is the lack of
a standard approach to quantify the change to the network
connectivity with a change in atomic valence. Defining a
probability distribution of local atomic environments that is
(by hypothesis) characteristic of identically prepared bond
networks establishes a base that can be used to address this
issue and has the further advantage of unifying the treatment
of crystalline and amorphous materials.

A closely related question, and one that is the main subject
of this article, is precisely which type of information should be
used to classify local atomic environments. Strictly ascribing
to the principle that more information is always preferable
leads to the situation that all geometric and topological in-
formation about the local atomic environments is retained,
rendering the approximation of the underlying probability
distribution by any finite sampling untenable. Retaining only
a subset of the information is therefore a practical necessity,
and depending on precisely what information is retained could
actually serve to clarify the relationship of the material’s
structure and properties. For example, the vibrational entropy
of a network solid is certainly more closely related to the
number of covalent bonds and the constraints they impose
than to the precise geometric arrangement of the atoms.

Given this background, four descriptors of local atomic
environments were described and applied to silica networks.
An appropriately informative descriptor should not only be
able to distinguish the different crystalline forms of silica but
should also be able to differentiate silica glasses produced at
different cooling rates on the basis of variations in the bond
network connectivity. Of the descriptors considered here, the
coordination profile and H1 barcode at radius 6 performed
best at these tasks and were also faster to compute than the
primitive ring profile at the same radius. The efficacy of the
coordination profile could be attributed to its sensitivity to
coordination defects though; when the subset of local atomic
environments without these defects was considered, the H1

barcode outperformed all the other descriptors. Moreover, the
H1 barcode and the primitive ring profile could be more read-
ily interpreted than the coordination profile in terms of ring
statistics. Overall, the H1 barcode appears to be an efficient,
informative, and interpretable descriptor for local atomic envi-
ronments in silica and could be invaluable to further advances
in our understanding of the structure of amorphous materials.
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APPENDIX A: COMPUTATION OF THE H1 BARCODE

The H1 barcode is computed using Möbius inversion [29],
which is a generalized version of the inclusion-exclusion
principal for partially ordered sets (Ref. [30] gives an intro-
duction).

Let S be the set of all subintervals (a, b) of (0, r), and let
(a, b) � (c, d ) if (a, b) ⊆ (c, d ). The Möbius function of S is
defined recursively for all (a, b) � (c, d ) by

μ[(a, b), (a, b)] = 1

μ[(a, b), (c, d )] = −
∑

(a,b)�(e, f )�(c,d )

μ[(a, b), (e, f )].

It is a mathematical theorem [29] that if F is a function of the
form

F [(c, d )] =
∑

(a,b)�(c,d )

G[(a, b)],

then G can be recovered by the formula

G[(c, d )] =
∑

(a,b)�(c,d )

F [(a, b)]μ[(a, b), (c, d )].

In particular, if F [(a, b)] is given as in Eq. (2), then G[(a, b)]
is the number of intervals of the form (a, b) in the H1 barcode.
Practically, F [(a, b)] is computed using the Euler character-
istic as in Eq. (1) before applying the previous formula to
compute the number of intervals.

APPENDIX B: THE H1 BARCODE OF PERFECTLY
COORDINATED ENVIRONMENTS

We show that the information in the shell count is equiv-
alent to that of the endpoints of the H1 barcode intervals
for perfectly coordinated environments, where a perfectly
coordinated environment is a bipartite rooted graph so vertices
in even shells have degree d0 and vertices in odd shells have
degree d1. For the perfectly coordinated silica environments
considered in the text, d0 = 4 and d1 = 2.

Proposition 1. Let G be a perfectly coordinated local
atomic environment of radius r. The endpoints of the H1

barcode intervals of G can be computed in terms of the shell
count and vice versa.

Proof. First, note that the number of H1 barcode intervals
whose endpoints are � r0 equals (by definition) F (0, r0),
the rank of the first homology group of the local atomic
environment of radius r0. As such, knowledge of the endpoints
is equivalent to knowledge of F (0, r0) for all r0 � r. Assume
that we know F (0, r0) for all r0 � r and suppose by induction
that we have computed the shell count at radius r0 [A(r0)] as
well as the number of bonds between the atoms in shells r0

and r0 − 1 [B(r0, r0 − 1)] for all r0 < r. The environment is
bipartite, so atoms in shell r − 1 can share bonds with atoms
in shells r or r − 2 but not atoms in shell r − 1. It follows that

B(r, r − 1) = d A(r − 1) − B(r − 1, r − 2),
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where d = d0 if r − 1 is even and d = d1 otherwise. The
number of bonds of G equals

B(G) =
∑
r0�r

B(r0, r0 − 1),

and we can use Eq. (1) to find the number of atoms of G:

A(G) = 1 + B(G) − F (0, r0) .

The shell count at radius r is then

A(r) = A(G) −
∑
r0<r

A(r0) .

A similar argument shows that we can compute F (0, r0) for
all r0 � r given knowledge of the shell counts. �

APPENDIX C: MOLECULAR DYNAMICS
METHODOLOGY

Molecular dynamics simulations of silica glasses were per-
formed using the classical two-body potential developed by

van Beest, Kramer, and van Santen [31], modified by Carreé
et al. [32] to replace the long-range Coulombic interaction by
a Wolf truncation. The parameters of the potential are given in
Ref. [33]. The glasses considered here contained 3000 atoms
(1000 Si and 2000 O atoms) in cubic simulation cells with
periodic boundary conditions and a density of 2.2 g/cm3.
They were produced from melts equilibrated at 5200 K and
quenched at constant volume to 10 K at rates between 5 ×
1011 K/s and 5 × 1013 K/s. The simulations used a time step
of 1 fs and an Andersen thermostat [34] which reassigned
atomic velocities with a probability of 0.001 per time step.
The quenches were followed by energy minimizations to
obtain inherent structures before further analyses.

APPENDIX D: RANKED EXAMPLES

Tables VIII–X show the H1 barcode, primitive ring profile,
and coordination profile classes that maximize f1, f1- f2, and
f2- f1, where f1 is the frequency of the class in glasses cooled
at a rate of 5 × 1011 K/s, and f2 is the corresponding quantity
for glasses cooled at a rate of 5 × 1013 K/s. See Sec. III D 2
for details and analysis.

TABLE VIII. The H1 barcodes at radius 6 that maximize f1, f1 − f2, and f2 − f1. f1 and r1 are the frequency and rank of the isomorphism
class at a cooling rate of 5 × 1011 K/s, and f2 and r2 are the corresponding quantities for a cooling rate of 5 × 1013 K/s. See Sec. III D 2 for
details and analysis.

Sorted by f1 f1 − f2 f2 − f1

1 2 × (0, 5), (0, 6), 4 × (2, 6) 2 × (0, 5), (0, 6), 4 × (2, 6) (0, 4), (0, 5), (0, 6), (2, 5), 4 × (2, 6)
f1 = 0.033, f2 = 0.017 f1 = 0.033, f2 = 0.017 f1 = 0.004, f2 = 0.006

r1 = 1, r2 = 2 r1 = 1, r2 = 2 r1 = 58, r2 = 31
2 2 × (0, 5), (0, 6), 3 × (2, 6) 2 × (0, 5), (0, 6), 3 × (2, 6) 2 × (0, 4), (0, 5), (2, 5), 2 × (2, 6)

f1 = 0.031, f2 = 0.015 f1 = 0.031, f2 = 0.015 f1 = 0.003, f2 = 0.005
r1 = 2, r2 = 3 r1 = 2, r2 = 3 r1 = 66, r2 = 43

3 (0, 4), (0, 5), (0, 6), 3 × (2, 6) (0, 5), 2 × (0, 6), 4 × (2, 6) 2 × (0, 4), (0, 5), (2, 5), 3 × (2, 6)
f1 = 0.027, f2 = 0.018 f1 = 0.021, f2 = 0.010 f1 = 0.002, f2 = 0.003

r1 = 3, r2 = 1 r1 = 5, r2 = 15 r1 = 103, r2 = 61
4 2 × (0, 5), (0, 6), 5 × (2, 6) (0, 5), 2 × (0, 6), 3 × (2, 6) (0, 4), (0, 5), (0, 6), 4 × (2, 6), (4, 6)

f1 = 0.022, f2 = 0.012 f1 = 0.019, f2 = 0.009 f1 = 0.003, f2 = 0.004
r1 = 4, r2 = 7 r1 = 8, r2 = 17 r1 = 78, r2 = 50

5 (0, 5), 2 × (0, 6), 4 × (2, 6) 2 × (0, 5), (0, 6), 5 × (2, 6) (0, 4), 2 × (0, 5), 2 × (2, 5), 3 × (2, 6)
f1 = 0.021, f2 = 0.010 f1 = 0.022, f2 = 0.012 f1 = 0.002, f2 = 0.003

r1 = 5, r2 = 15 r1 = 4, r2 = 7 r1 = 118, r2 = 76
6 (0, 4), (0, 5), (0, 6), 2 × (2, 6) 2 × (0, 5), (0, 6), 2 × (2, 6) (0, 4), 2 × (0, 5), (2, 5), 3 × (2, 6), (4, 6)

f1 = 0.020, f2 = 0.012 f1 = 0.017, f2 = 0.008 f1 = 0.001, f2 = 0.002
r1 = 6, r2 = 6 r1 = 11, r2 = 22 r1 = 151, r2 = 93

7 (0, 4), (0, 5), (0, 6), 4 × (2, 6) (0, 4), (0, 5), (0, 6), 3 × (2, 6) (0, 4), 2 × (0, 5), (2, 5), 4 × (2, 6), (4, 6)
f1 = 0.020, f2 = 0.014 f1 = 0.027, f2 = 0.018 f1 = 0.001, f2 = 0.002

r1 = 7, r2 = 4 r1 = 3, r2 = 1 r1 = 224, r2 = 117
8 (0, 5), 2 × (0, 6), 3 × (2, 6) 3 × (0, 5), 4 × (2, 6) (0, 4), 2 × (0, 5), (2, 5), 2 × (2, 6), (4, 6)

f1 = 0.019, f2 = 0.009 f1 = 0.019, f2 = 0.010 f1 = 0.001, f2 = 0.002
r1 = 8, r2 = 17 r1 = 9, r2 = 12 r1 = 145, r2 = 94

9 3 × (0, 5), 4 × (2, 6) 3 × (0, 5), 3 × (2, 6) (0, 3), (0, 5), (0, 6), 3 × (2, 6)
f1 = 0.019, f2 = 0.010 f1 = 0.017, f2 = 0.008 f1 = 0.002, f2 = 0.004

r1 = 9, r2 = 12 r1 = 12, r2 = 21 r1 = 83, r2 = 56
10 (0, 4), 2 × (0, 5), 3 × (2, 6) (0, 4), (0, 5), (0, 6), 2 × (2, 6) 2 × (0, 4), (0, 5), 2 × (2, 5), 2 × (2, 6)

f1 = 0.018, f2 = 0.013 f1 = 0.020, f2 = 0.012 f1 = 0.001, f2 = 0.002
r1 = 10, r2 = 5 r1 = 6, r2 = 6 r1 = 237, r2 = 143

052312-11



B. SCHWEINHART, D. RODNEY, AND J. K. MASON PHYSICAL REVIEW E 101, 052312 (2020)

TABLE IX. The primitive ring profiles at radius 6 that maximize f1, f1 − f2, and f2 − f1.

Sorted by f1 f1 − f2 f2 − f1

1 Two 10-rings, three 12-rings Two 10-rings, three 12-rings One 6-ring, one 10-ring, two 12-rings
f1 = 0.049, f2 = 0.035 f1 = 0.049, f2 = 0.035 f1 = 0.004, f2 = 0.008

r1 = 1, r2 = 1 r1 = 1, r2 = 1 r1 = 61, r2 = 33
2 Two 10-rings, four 12-rings Two 10-rings, four 12-rings Two 8-rings, one 10-ring, one 12-ring

f1 = 0.042, f2 = 0.029 f1 = 0.042, f2 = 0.029 f1 = 0.005, f2 = 0.008
r1 = 2, r2 = 3 r1 = 2, r2 = 3 r1 = 46, r2 = 38

3 Three 10-rings, two 12-rings Three 10-rings, three 12-rings One 6-ring,one 10-ring, one 12-ring
f1 = 0.039, f2 = 0.030 f1 = 0.037, f2 = 0.027 f1 = 0.003, f2 = 0.006

r1 = 3, r2 = 2 r1 = 4, r2 = 5 r1 = 67, r2 = 48
4 Three 10-rings, three 12-rings Two 10-rings, five 12-rings One 6-ring, one 10-ring, three 12-rings

f1 = 0.037, f2 = 0.027 f1 = 0.028, f2 = 0.018 f1 = 0.003, f2 = 0.005
r1 = 4, r2 = 5 r1 = 8, r2 = 14 r1 = 68, r2 = 53

5 Two 10-rings, two 12-rings One 10-ring, five 12-rings Two 8-rings, one 10-ring, two 12-rings
f1 = 0.033, f2 = 0.027 f1 = 0.026, f2 = 0.017 f1 = 0.006, f2 = 0.008

r1 = 5, r2 = 6 r1 = 10, r2 = 16 r1 = 44, r2 = 35
6 One 8-ring, one 10-ring, three 12-rings Three 10-rings, two 12-rings One 6-ring, two 10-rings, two 12-rings

f1 = 0.028, f2 = 0.027 f1 = 0.039, f2 = 0.030 f1 = 0.002, f2 = 0.005
r1 = 6, r2 = 7 r1 = 3, r2 = 2 r1 = 75, r2 = 59

7 One 8-ring,two 10-rings,two 12-rings One 10-ring,six 12-rings One 6-ring, two 10-rings, one 12-ring
f1 = 0.028, f2 = 0.028 f1 = 0.018, f2 = 0.011 f1 = 0.003, f2 = 0.005

r1 = 7, r2 = 4 r1 = 19, r2 = 26 r1 = 69, r2 = 55
8 Two 10-rings, five 12-rings One 10-ring, four 12-rings Two 8-rings, two 10-rings, two 12-rings

f1 = 0.028, f2 = 0.018 f1 = 0.027, f2 = 0.020 f1 = 0.003, f2 = 0.005
r1 = 8, r2 = 14 r1 = 9, r2 = 12 r1 = 66, r2 = 54

9 One 10-ring, four 12-rings Two 10-rings, two 12-rings One 6-ring, one 8-ring, one 10-ring, one 12-ring
f1 = 0.027, f2 = 0.020 f1 = 0.033, f2 = 0.027 f1 = 0.001, f2 = 0.003

r1 = 9, r2 = 12 r1 = 5, r2 = 6 r1 = 97, r2 = 73
10 One 10-ring, five 12-rings Three 10-rings, four 12-rings One 6-ring, one 8-ring, one 10-ring, two 12-rings

f1 = 0.026, f2 = 0.017 f1 = 0.022, f2 = 0.017 f1 = 0.001, f2 = 0.003
r1 = 10, r2 = 16 r1 = 15, r2 = 15 r1 = 117, r2 = 93

TABLE X. The coordination profiles at radius 6 that maximize f1, f1 − f2, and f2 − f1. The shell count is shown, and ∗ indicates the
presence of one atom of valence 5.

Sorted by f1 f1 − f2 f2 − f1

1 (1, 4, 4, 12, 12, 34, 27) (1, 4, 4, 12, 12, 34, 27) (1, 4, 4, 12, 11, 30, 24∗)
f1 = 0.038, f2 = 0.014 f1 = 0.038, f2 = 0.014 f1 = 0.002, f2 = 0.003

r1 = 1, r2 = 1 r1 = 1, r2 = 1 r1 = 91, r2 = 38
2 (1, 4, 4, 12, 12, 34, 28) (1, 4, 4, 12, 12, 34, 28) (1, 4, 4, 12, 11, 30, 25∗)

f1 = 0.034, f2 = 0.012 f1 = 0.034, f2 = 0.012 f1 = 0.002, f2 = 0.004
r1 = 2, r2 = 5 r1 = 2, r2 = 5 r1 = 84, r2 = 34

3 (1, 4, 4, 12, 12, 33, 26) (1, 4, 4, 12, 12, 33, 26) (1, 4, 4, 12, 11, 31, 26∗)
f1 = 0.032, f2 = 0.012 f1 = 0.032, f2 = 0.012 f1 = 0.002, f2 = 0.004

r1 = 3, r2 = 3 r1 = 3, r2 = 3 r1 = 82, r2 = 37
4 (1, 4, 4, 12, 11, 31, 26) (1, 4, 4, 12, 12, 33, 27) (1, 4, 4, 12, 11, 30, 26∗)

f1 = 0.028, f2 = 0.012 f1 = 0.027, f2 = 0.010 f1 = 0.001, f2 = 0.003
r1 = 4, r2 = 4 r1 = 6, r2 = 10 r1 = 101, r2 = 47

5 (1, 4, 4, 12, 12, 34, 26) (1, 4, 4, 12, 12, 34, 26) (1, 4, 4, 12, 12, 33, 25∗)
f1 = 0.027, f2 = 0.010 f1 = 0.027, f2 = 0.010 f1 = 0.001, f2 = 0.003

r1 = 5, r2 = 7 r1 = 5, r2 = 7 r1 = 96, r2 = 45
6 (1, 4, 4, 12, 12, 33, 27) (1, 4, 4, 12, 11, 31, 26) (1, 4, 4, 12, 12, 34, 27∗)

f1 = 0.027, f2 = 0.010 f1 = 0.028, f2 = 0.012 f1 = 0.003, f2 = 0.004
r1 = 6, r2 = 10 r1 = 4, r2 = 4 r1 = 56, r2 = 27

7 (1, 4, 4, 12, 11, 30, 25) (1, 4, 4, 12, 12, 35, 28) (1, 4, 4, 12, 12, 33, 26∗)
f1 = 0.026, f2 = 0.013 f1 = 0.022, f2 = 0.007 f1 = 0.003, f2 = 0.004

r1 = 7, r2 = 2 r1 = 9, r2 = 13 r1 = 66, r2 = 32
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TABLE X. (Continued.)

Sorted by f1 f1 − f2 f2 − f1

8 (1, 4, 4, 12, 12, 33, 25) (1, 4, 4, 12, 12, 35, 29) (1, 4, 4, 12, 11, 29, 24∗)
f1 = 0.024, f2 = 0.010 f1 = 0.020, f2 = 0.006 f1 = 0.001, f2 = 0.002

r1 = 8, r2 = 8 r1 = 13, r2 = 19 r1 = 167, r2 = 73
9 (1, 4, 4, 12, 12, 35, 28) (1, 4, 4, 12, 12, 33, 25) (1, 4, 4, 12, 12, 34, 28∗)

f1 = 0.022, f2 = 0.007 f1 = 0.024, f2 = 0.010 f1 = 0.003, f2 = 0.004
r1 = 9, r2 = 13 r1 = 8, r2 = 8 r1 = 64, r2 = 31

10 (1, 4, 4, 12, 11, 31, 27) (1, 4, 4, 12, 12, 34, 29) (1, 4, 4, 12, 11, 31, 25∗)
f1 = 0.021, f2 = 0.009 f1 = 0.019, f2 = 0.006 f1 = 0.002, f2 = 0.003

r1 = 10, r2 = 11 r1 = 14, r2 = 18 r1 = 92, r2 = 49
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