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Growing graphs describe a multitude of developing processes from maturing brains to expanding vocabularies
to burgeoning public transit systems. Each of these growing processes likely adheres to proliferation rules that
establish an effective order of node and connection emergence. When followed, such proliferation rules allow
the system to properly develop along a predetermined trajectory. But rules are rarely followed. Here we ask what
topological changes in the growing graph trajectories might occur after the specific but basic perturbation of
permuting the node emergence order. Specifically, we harness applied topological methods to determine which of
six growing graph models exhibit topology that is robust to randomizing node order, termed global reorderability,
and robust to temporally local node swaps, termed local reorderability. We find that the six graph models fall
upon a spectrum of both local and global reorderability, and furthermore we provide theoretical connections
between robustness to node pair ordering and robustness to arbitrary node orderings. Finally, we discuss real-
world applications of reorderability analyses and suggest possibilities for designing reorderable networks.
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I. INTRODUCTION

Growing networks can embody myriad developing systems
spanning from maturing organisms in ecology and biology to
expanding connections in economics and sociology. For each
of these systems, the representative growing network captures
the normal growth process by noting when new actors, or
nodes, join the mass and where relations between actors,
or edges, form. Such a representation could, for example,
allow us to understand spreading synchronization of coupled
dynamical systems [1] and crystallization processes in mate-
rials science [2,3]. Outside of normal growth processes, we
can also use growing networks to understand abnormality
in maturation, enlargement, or spreading processes such as
the propagation of a seizure through a brain network [4] or
the dissipation of β-amyloid in Alzheimer’s disease [5,6].
Many of these examples include mechanisms or models that
describe the specific growing process and as such inherently
suggest a proper order of nodes necessary to achieve the
desired final network architecture.

But what if, instead, the growth process was perturbed?
Can normal development recover if, for example, those ob-
jects that are usually last to emerge were to instead to appear
first in the growth order? Or how might the growth process
react to a larger perturbation such as an entirely random re-
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ordering of the nodal emergence order? Intuition suggests that
a networked system’s robustness to such perturbations may
depend upon some intrinsic property of the system, and that
different systems will exhibit differing levels of robustness.
In some systems, we may expect robustness to these types of
perturbations; for example, a monodisperse physical system
undergoing crystallization will achieve its final ordered form
regardless of growth process minutiae, due to underlying
thermodynamics [7]. Thus, any small reordering of particles
joining the crystal will not change the outcome. In other
systems, we expect sensitivity to these types of perturbation;
for example, the rate of disease spread across a network can
largely depend on the network organization surrounding those
nodes that were infected earliest [8], and therefore the global
system outcome would indeed be susceptible to the order in
which nodes were infected.

Here we aim to understand a piece of the above phe-
nomenon by formalizing and investigating the stability of
a growing graph’s developing architecture in response to
perturbation of node addition order. We will refer to this
notion of stability as the reorderability of a growing graph.
Thinking generally, a reordered growing graph with a de-
veloping architecture that is similar to that produced by the
original node ordering may share many properties with the
original growing graph. Still, perhaps the simplest property
that the two would share is a similar evolving global topol-
ogy. Quantitatively tracking and characterizing that evolving
global topology is made tractable by emerging tools from
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applied topology [9–11], specifically, persistent homology
which records the pattern of topological cavity emergence
throughout network growth. Such tools allow us to quan-
titatively compare the evolving topology of two or more
growing graphs [12], facilitating inferences regarding their
reorderability.

In this work, we examine the reorderability of six growing
graph models chosen to span a range of topologies relevant for
social systems, material systems, spatially embedded systems,
and dynamical systems. We first ask if each of these grow-
ing graph models exhibits stable persistent homology after
randomly reordering the node addition order, and we refer
to the degree of such stability as the global reorderability
of a growing graph model. We next ask which growing
graph models show stable persistent homology in the face
of temporally localized swaps in the node ordering, and we
refer to the degree of stability as the local reorderability of
a growing graph. Finally, the third direction of this study
investigates how the local reorderability of a growing graph
may (or may not) constrain its global reorderability. We
observe that a spectrum of both global and local reorder-
ability exists within the graph models tested. Furthermore,
we find that our notions of local and global reorderabil-
ity are surprisingly distinct, which provides an opportunity
to design growing processes with specific reorderability
characteristics.

II. METHODS

A. Building intuitions

Consider, for example, the birth of neurons in the develop-
ing brain, which is a strictly ordered process [13,14]. Recent
studies revealed that small amounts of stochasticity actually
are advantageous for early developing populations of neurons
[15–17]. These results suggest that if only a few temporally
close neurons swap birth times, healthy development will
proceed as expected. Still, since overall neuronal development
is extremely stereotyped [14,18] and since cell function so
linked to birth time [19,20], we might reasonably speculate
that drastic birth order swaps, such as spawning progenitor
cells last, would impede proper maturation. Ultimately, the
response of a growth process to a reordering of node birth
times depends on both the network connections (the topology)
and the original order of the nodes (our baseline to which
we compare). Our goal in this work is to understand how the
connections and node order influence the stability of growth
processes.

To make our goal more concrete, we consider the growing
graph in the top row of Fig. 1. Each node a, b, c, d, e, and
f is added in turn, with new edges added only between the
new node and nodes already present according to some graph
rule or predefined structure. After adding the first three nodes
a, b, and c, our graph has only exhibited a tree structure. As
we move forward in time, node d creates a cycle (loop), node
e forms a second cycle, and then finally node f tessellates
the top cycle. Next we ask how the network grows after
a perturbation to node order. Specifically, how would the
maturing graph architecture change if we swapped nodes b

and d in the ordering so that we build the same final graph,
but the nodes are now reordered (row 2 of Fig. 1)? In building
the same final graph, we mean that if an edge exists between
nodes v and u in the originally grown graph, this edge will
exist in our reordered growing graph as soon as both u and v

are added. We observe that this perturbation does not seem
to have changed the growing graph much—after the first
three nodes, we have only seen tree structures; then we see
a four-node loop after the fourth node, a second loop after
the fifth node, and a tessellated cycle after the sixth node. At
each slice (node addition), the original and perturbed growing
graphs are quite similar (in fact, isomorphic in this example),
so we can say that our growing graph is stable with respect
to this particular node swap. But perhaps we did not change
the evolving graph much because nodes b and d were only
two steps apart in the original ordering. Let us instead swap
d and f (also two steps apart in the original ordering) and
observe the effects. Again, the node swap does not affect the
identity of the edges that we assign, only the order of their
inclusion; we will always have the same edges at the end
of the growing process. We see in the third row of Fig. 1
that this d � f switch drastically changes the growing graph.
We see triangles much earlier than in the original ordering,
differing numbers of edges, and by the time node d is added
forming the loop with a, b, and c, that loop has already been
tessellated.

The example just described suggests that the reorderability
problem is at least more complicated than simply understand-
ing how far nodes move between the reordered growing graph
and the original. Furthermore, not all growing graphs exhibit
change after node reordering. As discussed in Example 2 in
the Appendix, growing trees, cross polytopes, and cliques
all exhibit total reorderability (in at least one dimension; see
Example 2 for more details). So indeed some growing graphs
can always have their growth reordered without a change to
their growing topology, while others (as in Fig. 1) cannot.
We note also that if we have a reorderable graph such as
an octahedron, we can often find node orderings that do not
preserve the average degree or clustering coefficient at each
step in the growth process. Thus, preserving the topology of a
growing graph fundamentally differs from preserving network
statistics.

Importantly, we note that studying how growing graphs
may or may not change after reordering node birth times is
not a new concept. Indeed, from a statistical perspective on
networks, notable work has been performed in understanding
vertex- and edge-exchangeable graphs, which are sequences
of graphs whose distributions are invariant with respect to the
order of node or edge addition, respectively [21–26]. Results
in this area include (but are not limited to) understanding how
graphons and point processes relate to exchangeable graphs
[27,28] and how one can construct exchangeable graphs
[29,30]. Our work differs from the above literature in that
we have a specific topological focus which offers us a unique
set of mathematical tools with which to understand growing
graphs. Still, we suspect interesting links exist between these
ideas of exchangeability and reorderability, and we leave the
unraveling of such relations for future endeavors.
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FIG. 1. A growing graph may or may not exhibit differing topology depending on the order of nodes in the growth sequence. Given a
growing graph (top row), we ask how the evolving topology changes after we swap nodes b and d (middle row) or after we swap nodes d and f
(bottom row) in the node birth order. Curiously, the b � d swap does not affect the growing graph architecture, while the d � f swap results
in a notable effect.

B. Adding rigor to our intuitions

In order to explicitly study questions of reorderability, we
need to first formalize a few of the above concepts. If we
assume that we add nodes one at a time (for the sake of
simplicity), and that we can only add edges—between the
new node and any node already present—at the time of node
addition, then we can define a growing graph with only a
binary graph B and node order s. Explicitly, we define a
growing graph as a pair (B, s) where B = (V, E ) is a binary
graph with vertex set V and edge set E ⊆ V × V , and s is
the map s : V → N that defines the order in which we add
nodes [Fig. 2(a)]. Note that we could also define s as a map
s : V → R, and then keep only the ordering of the nodes, as
has been done in previous work [31]. In the exposition to
follow, we will describe the process by which we will extract
the topology of a growing graph via persistent homology. For
additional intuition on the relevant methods, we direct the
interested reader to several excellent sources for further details
[9,11,32–34].

1. From graph to simplicial complex

Although we could test the reorderability of any number
of graph statistics, in this primary study we aim to under-
stand how the global, holistic graph architecture changes
in response to reorderings. Holes or voids in networks are
incompressible features that can serve to isolate processes
[35] or affect dynamics [36]. To examine the topology of
a growing graph, in our case a sequence of binary graphs,
with respect to topological cavities or voids, we first must
understand how to find topological cavities within one binary
graph. To first capture the cavities of all dimensions within
a single graph, we must translate the graph into a higher
relational structure by (abstractly) filling in all cliques with
a (higher dimensional) volume of matching dimension, called
a simplex. Specifically, an (n + 1)-clique is a set of (n + 1)
nodes that are all-to-all connected by edges in a graph, and an
n-simplex is the convex hull of n + 1 affinely positioned nodes
[see Fig. 2(b) for examples]. Within a biological system, we
often interpret an n-simplex as a set of n + 1 nodes that
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(a)

(b)

(d)

(c)

FIG. 2. Illustration of the steps taken to convert a growing graph to a node-filtered order complex. (a) A growing graph is defined as the pair
(B, s) where B is a binary graph and s is an ordering of the nodes. (b) Examples of simplices defined using one to four nodes. (c) Filling in all
cliques of a binary graph (left) with simplices yields a simplicial complex (right). (d) An example growing graph (left) and the corresponding
filtered simplicial complex (right), which we refer to as the node-filtered order complex.

all collectively act together; for example, the set of nodes
could act as a collection of brain regions serving the same
function [35,37], neurons cofiring [38], or social groups [39].
A collection of simplices nicely glued together is called
a simplicial complex, which—more rigorously—is a set of
vertices V and a set of simplices K such that if σ ∈ K and
τ ⊆ σ then τ ∈ K . Intuitively, this rule prevents a 2-simplex
(a filled triangle) from existing without one of its constituent
1-simplices (edges). We create a simplicial complex from a
binary graph by assigning an n-simplex to each (n + 1)-clique
in the graph as shown in Fig. 2(c). To reiterate, we fill all
cliques of a graph with simplices so that we can create a
simplicial complex from a binary graph, which then allows
us to detect topological cavities of all dimensions.

2. From growing graph to node-filtered order complex

Note that we can perform the conversion from graph to
simplicial complex for every binary graph in our growing
process. That is, after each node addition to the growing
graph, we can construct a simplicial complex by filling in
cliques with simplices. Furthermore, since we only add ele-
ments to our graph as it grows, the maps from the growing
graph [Fig. 2(d), left] induce maps between simplicial com-
plexes, now giving us a growing simplicial complex, which
we formally refer to as a filtered simplicial complex [Fig. 2(d),
right]. Previous studies focusing on filtered simplicial com-
plexes arising from adding edges one at a time and translating
all cliques to simplices referred to the construction of these
edge-filtered simplicial complexes as the order complex of a
weighted graph [40]. The rationale for this name is that the

filtered simplicial complex retains the ordering information
given by the edge weights (notably this construction is also
called the weight rank clique filtration [34,37,41,42] as it
preserves the ranks of edge weights). Since in our growing
graph case we have an ordering of the nodes (as opposed
to an ordering of the edges), we call our above described
filtered simplicial complex the node-filtered order complex of
the growing graph (B, s) [Fig. 2(d)], and we note that this
complex can be constructed from either a node-ordered or
node-weighted network in which node weights induce the
node order [31]. For the sake of brevity, here we shorten
this name to the n-order complex of (B, s), which we denote
as nord(B, s). We suggest that the node-filtered language de-
scribed here is potentially a natural description of real network
growth.

3. Homology of a simplicial complex

We aim to understand the topology of the n-order complex
as defined by cavities or voids within the structure, as detected
by homology. To begin the homology computation, for each
dimension n, we create the vector space Cn(K ) (over F2, the
binary field) in which each basis vector of Cn(K ) corresponds
directly to a particular n simplex in the simplicial complex K .
For example, the simplicial complex in Fig. 2(c) contains 10
edges, and therefore C1(K ) would be F10

2 . An example ele-
ment of C1(K ) is a collection of 1-simplices, called a 1-chain.
Naturally we call C1(K ) the first chain group. For simplicity,
we conflate the basis vector and the associated n-simplex,
and often we will write simply Cn when the simplicial com-
plex under study is obvious. Note that since the physical
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FIG. 3. Concepts in persistent homology. (a) The boundary of a 2-simplex is three 1-simplices, whose boundary in turn is empty. (b) The
green and pink 1-cycles both have a zero boundary, but the green cycle is the boundary of a collection of 2-simplices. (c) Loops �1 and �2 are
equivalent as they both surround the same cavity (pink). Cycles �3 and �4 are equivalent as they both surround no cavities. (d) The example
filtered simplicial complex contains two persistent cavities of dimension 1 (green and pink stars), which are recorded in the barcode shown on
the right.

boundary of an n-simplex is a shell of (n − 1)-simplices (so
a 1-simplex has two nodes as its boundary, a 2-simplex has
three 1-simplices as its boundary, and so on), we immediately
acquire a relation between simplices of dimension n and n − 1
corresponding to simplices and their boundaries. This relation
allows us to map from Cn → Cn−1 via the boundary operator
∂n, which is explicitly a linear map that sends an n-simplex
{v0, v1, . . . , vn} to its boundary (n − 1)-simplices in Cn−1

[Fig. 3(a)], mathematically defined as ∂n({v0, v1, . . . , vn}) =∑n
0{v0, . . . , vi−1, v̂i, vi+1, . . . , vn}, where v̂i indicates that

node vi is not included in the (n − 1)-simplex. The collection
of chain groups C∗ and boundary maps ∂∗ forms a chain
complex

. . .Cn+2
∂n+2−−→ Cn+1

∂n+1−−→ Cn
∂n−→ Cn−1

∂n−1−−→ · · · ,

which contains all of the assembly information for the simpli-
cial complex.

Homology, generally, counts the voids of a particular
dimension within a simplicial complex. Naturally, a void
within the complex must be both encapsulated by the
complex (being surrounded by a loop of simplices) and have
at least some empty space within it (not being filled with
higher dimensional simplices). Loops or cycles within a
simplicial complex are paths of simplices that have an empty
boundary, like higher dimensional analogs of loops within
graphs. For example, a 1-cycle (formed by 1-simplices) is a
closed path of edges, a 2-cycle is a capsule of 2-simplices, and
so on (see Example 1 in the Appendix). All of the topological
information about the simplicial complex is housed in the
chain complex: The space of cycles of dimension n is
ker ∂n =: Zn and the space of boundary cycles—that is, shells

of simplices that are boundaries of higher dimensional
simplices—is im∂n+1 =: Bn. Note that by definition
Bn ⊆ Zn ⊆ Cn since the boundary of a boundary is null
[Fig. 3(b)]. Two cycles surround the same cavity if they differ
by a boundary cycle, which induces an equivalence relation on
cycles. That is, for �1, �2 ∈ Zn, �1 ∼ �2 ⇐⇒ �1 − �2 ∈ Bn,
so that all cycles of n-simplices that surround the same cavity
(or cavities) are equivalent. As an example, in Fig. 3(c) we see
�1 ∼ �2 and that they surround the same cavity, while �3 ∼ �4

as they both are boundaries of 2-simplices. Intuitively, since
any boundary loop (element of Bn) surrounds no cavities, we
can add a boundary cycle to any other cycle � and not change
the cavities that the cycle � surrounds. We can collect all loops
that are equivalent to a particular loop �0, which together
comprise an equivalence class [�0] = {� ∈ Zn|� ∼ �0}.
Intuitively, each equivalence class corresponds to a particular
set of cavities within the simplicial complex since an
equivalence class contains all cycles that surround those
particular cavities. Then to pass from the space of cycles Zn to
the space of equivalence classes in which each basis element
corresponds to an independent void in the complex, we take
the vector space quotient and finally define Hn(K ) := Zn/Bn,
which is the nth homology group of the simplicial complex K .

4. Persistent homology of a filtered simplicial complex

Moving beyond one simplicial complex, we now consider
the computation of persistent homology of a filtered simpli-
cial complex K1 ↪→ · · · ↪→ Km ↪→ · · · ↪→ KM , where for our
purposes the simplicial complex Km contains m vertices and
M is the total number of nodes. The map Km ↪→ Km+1 defines
a map between chain complexes C∗(Km) ↪→ C∗(Km+1) in
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which basis elements map to basis elements, in a manner
consistent with how simplicies map to simplices. Now, the
map between chain complexes induces a map between homol-
ogy groups H∗(Km) → H∗(Km+1), since cycles map to cycles
and boundaries map to boundaries in C∗(Km) ↪→ C∗(Km+1).
Having maps between homology groups allows us to track
persistent cavities (equivalently called persistent cycles) along
the filtration [Fig. 3(d) green and pink stars]. A persistent
cycle will be born at some point in the filtration, called the
birth, will live for some time [i.e., mapped via H∗(Km) →
H∗(Km+1) to a nontrivial equivalence class], and then may
finally die [when it maps to the trivial equivalence class, as
does the green cavity in Fig. 3(d)] via tessellation by higher
dimensional simplices. Those persistent cycles that do not die
are formally given a death time of ∞. Then the persistent
homology can be summarized as a (multi)set of pairs (b, d ),
b � d , marking the birth and death time of each persistent
cycle. We can visually display these pairs as intervals along
the filtration axis, drawing a bar from b to d for each persistent
cavity. The resulting plot is called a barcode and illustrated
pictorially in Fig. 3(d). Finally, to more easily summarize the
persistent homology, we might only record the number of
persistent cavities of dimension n alive at each filtration value
m with a function called the Betti curve βn(m). We denote the
area under βn(m) by βn = ∑

di − bi with i indexing over per-
sistent cavities of dimension n; the quantity intuitively reflects
the total amount of persistent homology seen throughout the
growth process. To summarize, we can now take a growing
graph model, compute the evolving topology via persistent
homology, and record the output as a barcode or Betti curve.

We now have the necessary background to extract the
evolving topology from a growing graph (B, s) using persis-
tent homology. With this background, we can re-examine the
example in Fig. 1 and see that the persistent homology of
the growing graphs in the top and middle rows will be the
same, while the persistent homology of the growing graph
in the last row will be quite different. Explicitly, the top two
rows show two persistent cavities: one born after node 4 and
killed with the addition of node 6, and a second born with
the addition of node 5 that persists to ∞. Conversely, the
bottom row shows only one persistent cavity born with the
addition of node 5 that persists to ∞. Note also that this
observation suggests that nodes b and d contribute similarly to
the persistent homology—both b and d participate in the top
persistent cycle, while nodes d and f serve distinct functions
as the former usually births a persistent cavity, while the
latter usually kills the cavity. The quantification of differences
between the persistent homology of two growing graphs will
then allow us to make our notions of reorderability more rigor-
ous, and therefore we next focus on the practical consideration
of measuring formal distances between topological summary
statistics.

C. Distances between barcodes and between Betti curves

Since we wish to compare the persistent homology of
growing graphs, we need to define a distance between Betti
curves and a distance between barcodes. First, considering the
former, we note that Betti curves record the homology of the
growing graph slice by slice, and we are therefore motivated

to compare Betti curves in a slice-wise fashion. Specifically,
we define the distance between two Betti curves of dimension
n, βn, β ′

n to be

dn
β (βn, β

′
n) = max

m
(|βn(m) − β ′

n(m)|), (1)

with m indexing the number of nodes added. Intuitively, this
distance records the maximal vertical distance between the
Betti curves at any point in the filtration. Second, considering
persistence diagrams, we use the bottleneck distance [12]
for its simplicity and interpretability, although we recognize
that alternatives exist [32,43,44]. Generally, the bottleneck
distance measures the maximal left or right difference be-
tween matched bars in two barcodes after optimally match-
ing the bars. More specifically, for two barcodes P1, P2 of
dimension n,

dn
BN (P1, P2) = min

γ

(
max
p∈P1

(|pbirth − γ (p)birth|,

|pdeath − γ (p)death|)
)
, (2)

where p = (pbirth, pdeath ) is a bar in P1 and γ is a matching of
bars so that γ (p) is a bar of P2. Note that bars are allowed to
match to any point (r, r) for r ∈ R+ as well. Importantly, as
shown in Ref. [12], the persistent homology with respect to
the bottleneck distance is as stable as we could hope for under
perturbation. That is, if w1,w2 are weight functions on nodes
that determine node order, then

dn
BN (P1, P2) � ||w1 − w2||∞, (3)

with ‖ · ‖∞ being the L∞-norm. Said another way, if we take
the ith and jth nodes in the ordering and swap them, the
bottleneck distance between the original and swapped persis-
tent homology is bounded above by | j − i|. In the Appendix,
Sec. 7.1, we provide more detail regarding and intuition for
this upper bound.

Specifically in the context of our study, we wish to compare
the persistent homology of a growing graph under its original
ordering (B, s0) and under a new ordering (B, si, j ) in which
we have swapped only the ith and jth nodes, vi and v j .
Then the bottleneck distance between the persistent homology
of these growing graphs, P0 and Pi, j , respectively, describes
the effective perturbation of the persistent homology caused
by the vi, v j swap. Furthermore, dn

BN (P0, Pi, j ) then gives a
measure of how similarly vi and v j contribute to the persistent
homology in dimension n. If dn

BN (P0, Pi, j ) = 0, then the vi, v j

swap does not change the persistent homology. If instead
dn

BN (P0, Pi, j ) = | j − i|, then the vi, v j node swap causes the
maximal effective perturbation to the persistent homology.
Combining the bottleneck distance with the theoretical upper
bound, we can create a measure of similarity between two
nodes in terms of their roles in the persistent homology. We
define the topological similarity in dimension n as

Tn(vi, v j ) = 1 − dn
BN (P0, Pi, j )

| j − i| , (4)

so that vi and v j have a topological similarity of 1 if their swap
in the node ordering does not change the persistent homology,
and a topological similarity value of 0 if the persistent homol-
ogy changes maximally as a result of the node swap. We can
more generally discuss the (weighted) topological similarity
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of vi and v j by averaging over dimensions, that is,

T (vi, v j ) = 1

D

D∑

n=1

Tn(vi, v j ). (5)

D. Graph summaries and statistics

In this work, we will ask how topological similarity might
form motifs described by commonly used graph summaries.
First recall that the degree of node vi is the number of edges
incident to node vi and that it is commonly denoted ki. If
we also have edge weight information, we can calculate the
strength of node vi as

kw
i =

N∑

i=0,i �= j

wi, j, (6)

where wi, j is the weight of edge (vi, v j ). Additionally, we will
ask how the topological similarity between nodes relates to
the topological overlap of the nodes in the original graph. We
acknowledge that different definitions of topological overlap
exist [45,46], but for our purposes we will adapt the definition
from Ref. [45] slightly and define topological overlap between
nodes vi and v j as

O(vi, v j ) = li, j + Bi, j

max(ki, k j )
(7)

with Bi, j = 1 if vi, v j are connected by an edge in binary graph
B and 0 otherwise, and where li, j is the number of nodes
vk with k �= j, k �= i that are neighbors of both nodes vi and
v j . Intuitively, the numerator counts the number of shared
neighbors between nodes vi and v j , and the denominator
normalizes by the larger of the two node degrees. Then two
nodes who share exactly the same set of neighbors (and no
more) will have a topological overlap of 1 and nodes that are
not connected and share no neighbors will have a topological
overlap of 0. Finally, we ask about the community structure
of the topological similarity graph, by applying the Louvain
method for modularity maximization [47] as implemented in
iGraph [48].

E. Growing graph models

Thus far, we have developed our intuitions on a single
growing graph. Yet, in order to understand reorderability at
a larger scale, we must work with models that can gen-
erate ensembles of growing graphs. Here we will test the
reorderability of six growing graph models that span a range
of topologies including both embedded and nonembedded
models. For each model, we will generate a growing graph
(and later an n-order complex) by adding nodes v1, v2, . . . , vN

one at a time for a final count of N = 70 nodes. For clarity,
we refer to the order v1, v2, . . . , vN as s0, where the subscript
reflects the fact that this order is the original ordering for the
growing graph. Note that the current study differs in kind
from those that focus on edge-weighted networks, in which
both the number of nodes and number of edges are easily held
constant. Here in the growing graph case, we seek to compare
growing processes across the number of nodes added, and
thus we do not restrict our study to graph topologies with

a fixed edge density. We chose 70 nodes in order to keep
the computational costs of node swapping manageable; note
that in the results, we run persistent homology after swapping
every pair of nodes in each replicate. We expect our high-level
reorderability classification results to hold if we increase the
node number.

The six growing graph models that we study are described
in greater detail below.

(1) Constant probability. We begin with a random model
from Refs. [49,50] that aims to capture random topology with
few constraints. At the addition of node vi, edges are added
between node vi and all previously added nodes v∗ with a
constant probability p(vi, v∗) = c ∈ [0, 1]. We report results
for c = 0.4 in the main text, and note that the Betti curves and
barcodes alone for c = 0.3 can be found in Ref. [31].

(2) Proportional probability. Next we include a random
model in which connection probabilities increase throughout
growth, instead of being held constant. As in Ref. [31], when
adding node vi we add each edge between vi and previously
added nodes v∗ with a probability proportional to the node
number added, p(vi, v∗) = i/N .

(3) Oscillating probability. Here we examine the effects
of a nonmonotonic function determining connection probabil-
ities on the growing topology. In the oscillating probability
model, we determine the edge probability using an oscillatory
function; that is, we add edges between the new node vi and
previous nodes with probability p(vi, v∗) = | sin(aπ i

N )|. Here
we chose a = 2 in order to ensure that we can clearly observe
the matching between oscillations in the Betti curves and the
resulting high-density edge bands in the adjacency matrix that
arise from the periodicity in the growth rule. The η parameter
controls the frequency of connection probability oscillations
and, as such, larger values of η would be appropriate for larger
growing graphs (i.e., those composed of more nodes) so that
the effects of each peak can be more easily determined.

(4) Preferential attachment. The preferential attachment
model famously constructs a graph with a heavy-tailed de-
gree distribution via its “rich-get-richer” growth algorithm.
Following Refs. [51,52], we begin with a connected random
graph on m0 nodes. We then add nodes one at a time and at the
addition of node vi, we connect vi with m previously added
nodes with a probability proportional to the degree of each
node already present. These rules produce a growing graph
in which high-degree nodes are likely to continue receiving
more connections as nodes are added, in comparison with
low-degree nodes. We show results for m = m0 = 4 in the
main text.

(5) Random geometric. Next, we move to embedded
graphs and begin with a common random graph designed to
capture topology arising only from constraints imposed by the
embedding. Directly inspired by Refs. [53–55], we sample
N points uniformly at random from [0, 1]D. We choose a
threshold ε and create a binary random geometric graph with
edges existing if d (vi, v j ) < ε. To mimic an observer moving
through the embedded graph, we order nodes by the value of
the first coordinate. For this study, we chose D = 3 and ε =
0.15, in order to ensure that at least some persistent homology
would be present by the end of the filtration [53,56].

(6) Spatial growth. Alternatively, an embedded graph may
randomly grow out from a particular point, spawning new
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nodes that attach most often to nearby nodes. Following
Ref. [57], we begin with one node at (0.5,0.5) in [0, 1]2.
We add nodes v2, . . . , vN one at a time, first choosing a
location in the unit square uniformly at random and then
connecting the new node vi to previously added nodes v∗
with probability p(vi, v∗) = βe−αd (vi,v∗ ). Here d (vi, v∗) is the
Euclidean distance between node positions, β is the density
parameter, and α controls the spatial range. We show results
for β = 1 and α = 4 in the main text, which was shown to
produce graphs in the small-world regime [57].

For each growing graph model, we first generate 1000
growing graphs (Bη, s0), η = 1, . . . , 1000 and then we con-
struct the n-order complex as described above by filling in
cliques with simplices. Since we can uniquely associate the
pair (B, s) with nord(B, s), we will use the growing graph
language for simplicity in the Results section when it does
not cause confusion. We compute the persistent homology
using Eirene [58] and we use the TDA package in R [59]
for bottleneck distances. For the sake of the calculations, any
persistent cavity that persists through the end of the filtration
(or formally has a death time of ∞) is assigned a death time of
N + 1. Code for all analyses and growing graph models can
be found at Ref. [60].

III. RESULTS

A. Meet the team

Before tackling how the topology of a growing network
model might (or might not) be susceptible to node reordering,
we first ask how the evolving topology differs between six
growing network models chosen to span growth mechanisms
relevant for social systems, material systems, spatially em-
bedded systems, and dynamical systems. Because we are
interested in the growing global topology of these networks,
we use persistent homology, which describes how topological
cavities emerge, evolve, and collapse throughout the growth
of a network (see the Methods section and Refs. [9,11,33,34]
for more details). Persistent homology returns the birth and
death times for each persistent cavity of a particular dimension
in the form of a barcode, with each bar corresponding to a
persistent cavity. Additionally we can summarize the barcode
by only recording the number of persistent cavities of a given
dimension present after each node addition, and we refer to
the data recorded in this way as the Betti curve of dimension
n or βn. Specifically for our growing graph models, we follow
the rules of a given generative model to construct a growing
graph (B, s0) with binary graph B and node ordering s0 =
v1, v2, . . . , vN (Fig. 4, step 1). From this growing graph, we
construct the node-filtered order complex (n-order complex)
and compute its persistent homology across the entire growth
process, displayed as a barcode (Fig. 4, steps 2 and 3). We
repeat this process for 1000 instantiations of the generative
model, and then we calculate the average Betti curves across
instantiations (Fig. 4, step 4). We show the results of this
analysis for all growing graph models in Figs. 5 and 6, and
in the Appendix we also include expanded figures showing
how the average edge density, average degree distributions,
and average number of persistent cavities born or killed evolve
as the graph matures (Figs. 23 and 24).

1. Constant probability

We first begin with the constant probability model as it
is one of the most basic random growing graph models. For
this model at each node addition, we add edges with constant
probability c ∈ [0, 1] (here c = 0.4). Then if we slice the
filtration at node vi, we will have a random graph on i nodes
in which each edge was added with probability c [50]. In
the average Betti curve [Fig. 5(a)], we see first a wide peak
of persistent cavities of dimension 1 followed by a sudden
growth of persistent cavities of dimension 2. Later, as the
dimension 1 persistent homology dies, dimension 3 begins to
sharply increase. Interestingly, the barcode shows that once
persistent cavities in dimensions 2 and 3 are born, they are
extremely unlikely to be killed by a later node addition.

2. Proportional probability

We next consider the proportional probability model,
which adds edges between the new node vi and previous nodes
with probability i/N . Note that this rule requires that the last
node connect to all other nodes in the graph. Consequently,
we see no homology can live through the end of the filtration.
Still, as shown by the example barcode, there tends to be a
wide distribution of lifetimes, particularly in dimension 1. The
Betti curves show an increasing pattern of peaks, each taller
and narrower than the last. Additionally, the pattern observed
in these lower dimensions suggests that the support of each βn

overlaps approximately half of βn−1 and βn+1, so that as the
βn−1 tends to 0, βn+1 begins to increase.

3. Oscillating probability

While the previous two functions describing the probabil-
ity of adding edges emanating from the new node at each
node addition have been constant or strictly increasing as
the graph grows, we next ask what type of topology we can
achieve using a nonmonotonic function. Specifically here we
choose an oscillating function, with edges added between a
new node vi and a previously added node with probability
|sin(2π i

N )|. This choice leads to the evolution of two groups
of nodes with high degrees: Generally nodes added between
nodes 20 and 30 will have a large degree, and those added
between nodes 50 and 60 will have an even larger degree,
reflecting the periodicity of the edge probability function
[shown in Fig. 23(c)]. Although we generally do not see many
persistent cycles, on average we see the Betti curves reflect the
oscillations in edge density [Fig. 5(c)]. That is, we generally
observe a burst of persistent cycle activity (birth and death)
while the edge density curve has a positive second derivative.

4. Preferential attachment model

One of the most studied graph models in network
science—the preferential attachment model [51,52]—adds a
fixed number of edges with each node addition, but con-
nects these edges preferentially to high-degree nodes in the
network. For our chosen parameters (m = m0 = 4), we see
that the first few nodes end with the highest degrees and that
most other nodes have low degrees, as expected [Fig. 24(a)].
We also observe a large abundance of persistent cavities in
dimension 1 with very little cavity death [Fig. 6(a)]. The low
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FIG. 4. Outline of the computation of persistent homology for growing graph models. (1) Following the model growth rules, we first
construct a growing graph, illustrated by the adjacency matrix and fingerprint graph (right). In the fingerprint graph, we order node positions
via ordering s0 and display edges between nodes in B as gray arcs, so that at the addition of v4, for example, we see two arcs reaching leftward
to connect to nodes v1 and v3. We then (2) translate the growing graph to an n-order complex and (3) compute the persistent homology to
recover the barcode (right). (4) We repeat this process over 1000 growing graphs constructed from the same generative model, and we present
the average Betti curves (solid line) and one standard deviation (shaded).

frequency of persistent cavity death is unsurprising, since to
kill a persistent cavity an added node must connect to all
nodes of a generating cycle, and a cycle likely involves both
high-degree and low-degree nodes.

5. Random geometric model

All models that we have considered thus far are not embed-
ded into any particular Euclidean (or non-Euclidean) space.
Yet, many real-world systems including the brain, transporta-
tion networks, and granular materials exist within and are
often constrained by some embedded space such as R3. Our
next model—the random geometric model—incorporates in-
formation about how the growing graph lives in the embedded
space. To construct this growing graph, we randomly choose
locations in [0, 1]3, connect all nodes with distance less than
0.15, and then filter by moving along the x direction through
the embedded graph. We imagine this process as walking
through a point cloud in which nearby nodes are connected.
We find only a small number of persistent cavities emerge

[Fig. 6(b)], and often we only observe persistent homology
in dimension 1 (as expected for these parameters [53]). Cu-
riously, this growing graph model produces the only (near)
linear average Betti curves for these parameters out of all
the models tested. Importantly, we do not include periodic
boundary conditions, which is reflected in the heat map of
node degree evolution [Fig. 24(b)].

6. Spatial growth model

Finally, we investigate a spatial growth model that simu-
lates a growing process in [0, 1]2. In this model, we spawn
nodes randomly in the unit square, and we add edges with a
probability based on the Euclidean distance between nodes,
so that nodes placed near each other will connect with higher
probability. In contrast to the random geometric model, we see
large amounts of persistent homology in dimensions 1 and 2,
and more S-shaped Betti curves that are qualitatively more
similar to the nonembedded constant probability model than
to the random geometric model. Additionally, the increase of
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(a) (d) (c)

FIG. 5. Growing graph models display a wide range of evolving topologies. Persistent homology of the (a) constant probability,
(b) proportional probability, and (c) oscillating probability models. Each panel shows one example adjacency matrix and fingerprint graph
(top), the corresponding barcode (middle), and averaged Betti curves across replicates (bottom) with standard deviation (shaded).

persistent homology in dimension 2 aligns with the beginning
of the slow decrease of persistent homology in dimension 1,
which suggests a predictable transition from a lower dimen-
sional to a higher dimensional persistent homology regime
similar to that seen in the proportional probability or constant
probability model.

To summarize, the six growing graph models that we
consider here display a wide range of persistent homology
signatures arising from the differences in growth processes.

B. Random permutations and global reorderability

While the above section considered the evolving topology
of the originally ordered growing graphs, here we ask how
resilient the topology is to any random ordering of node
addition. In real systems, such random ordering would be
observed if a group of neurons randomly fired instead of
properly propagating a signal [61], or if diseases were to
randomly spawn instead of diffuse predictably along a net-
work [62–65]. In each of these cases, we do not generate a
new set of connections based on the reordering, but instead
keep the connections of the system constant and only alter the
node addition order, which in turn impacts the edge addition
order. If indeed a growing process was to produce the same
final binary graph but with a random node addition order, as
discussed in the Methods section, then there are two bounding

possibilities: Either the persistent homology of the growing
graph could be independent of the order in which nodes are
added or it could be highly dependent on that order. We call
the resiliency of the growing graph’s persistent homology to
random node addition order the global reorderability of the
growing graph, and in the following experiments, we examine
the extent to which each of the above growing graph models
is globally reorderable.

In order to examine the global reorderability of each
growing graph model, we first generate 100 growing graphs
(Bη, s0) for each η = 1, . . . , 100 following the model rules
(Fig. 7, green shaded). Next, for each generated growing
graph Bη, we create reordered growing graphs in which we
add nodes uniformly at random but use the same edges as
in Bη (Fig. 7, pink shaded). More specifically, we construct
(Bη, s0) for η = 1, . . . , 100, and then for each η we randomly
permute s0 to give a new node order srm for m = 1, . . . , 100.
We then see the reordered growing graph (Bη, srm ) as the
sequence of induced subgraphs of Bη including nodes in the
order of srm . All random permutations of s0 are generated
anew for each η. We then compute the persistent homology of
each generated and reordered growing graph, and we show the
average Betti curves of the originally generated and reordered
growing graphs [Fig. 7(c), solid and dashed lines].

Now before directly comparing the persistent homology of
the reordered growing graphs to that of the originally gen-
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(a) (b) (c)

FIG. 6. Growing graph models display a wide range of evolving topologies. Persistent homology of the (a) preferential attachment,
(b) random geometric, and (c) spatial growth models. Each panel shows one example adjacency matrix and fingerprint graph (top), the
corresponding barcode (middle), and averaged Betti curves across replicates (bottom) with standard deviation (shaded).

erated growing graphs, we must first understand the intrinsic
variability of the persistent homology with respect to the range
of growing topologies created by the generative model. For
example, if we later find that the reordered graphs show a
very different persistent homology than that of the originally
ordered graphs, could this be simply due to the fact that
the underlying graph model produces such a wide range of
topologies? In order to answer this question, we sample ten
thousand pairs of generated growing graphs with node order
s0 and compute distances between their persistent homology
summaries [Fig. 7(d), dark box]. Then, when we calculate
the distance between the persistent homology summaries (bar-
codes or Betti curves) of the originally ordered graph and each
of its reorderings for all generated growing graphs [Fig. 7(d),
light box, orange lines], we can determine if these distances
are smaller (or larger) than expected given the variability of
the growing graph model topology. If the distances between
the persistent homology of growing graphs and that of their
reorderings is smaller than the distances between the persis-
tent homology of randomly sampled generated graphs, then
we say that the growing graph model is globally reorderable,
since the distance after reordering is smaller than the distance
between generated graph topologies.

Next, for illustrative purposes, let us imagine that the per-
sistent homology output of the original and random ordered
growing graphs are points in some high dimensional space.
It may be that the original ordering s0 results in an evolving

topology that sits within the masses of persistent homology
generated by random orders; on the other extreme, it may be
that the persistent homology from s0 is extremely different
from that generated from any random ordering. If the former
is true, then we might conclude that the s0 ordering offers no
distinct difference in terms of the evolving topology than any
random ordering. But if the latter is true, then we can conclude
that the particular s0 ordering does hold a special significance
in terms of the persistent homology for the growing graph
model, as the originally ordered persistent homology is far
different than that from careless orderings. To assess this
behavior, for each set of growing graphs with the same binary
graph (of which there are 101), we randomly sample 100 pairs
of these growing graphs and compute distances between their
topological summaries [Fig. 7(d), blue lines, striped box].
If the distribution of random orderings within a topology
(striped box) is larger than or equal to the distribution of
distances between the original and reordered growing graphs
(light box), s0 would not appear to generate a persistent
homology signature distinct from any random node order
permutation. Conversely, if we see that distances between
persistent homology outputs within a topology (patterned
box) are generally smaller than distances between persistent
homology from s0 and that from a random reordering (light
box), then the evolving topology from s0 must be quite
distinct from the evolving topology generated by any random
ordering.
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(a)

(b)

(d)

(c)

FIG. 7. Global reordering process and comparisons. (a) Following a growing graph model, we generate 100 growing graphs and
(b) calculate their persistent homology and average Betti curves (solid line). (c) For each growing graph in panel (a) we randomly permute the
node order and then compute the persistent homology and average Betti curve [dashed line in panel (b)] to compare with that of the original
growing graphs. (d) To determine reorderability, we plot distributions of the distances between persistent homology outputs of randomly
sampled generated graphs (green arrow, dark box), distances between persistent homology outputs of the generated graph and that of their
reordered growing graphs (orange lines, light box), and distances between any pair of node orderings on the same binary graph (blue lines,
patterned box). For this example, since the lighter box generally sits higher than the dark box, we would say that this growing graph model is
not globally reorderable. Additionally, since distances between the persistent homology of randomly sampled orderings on the same topology
(striped, columns of growing graphs) are smaller than the distances between the persistent homology of (B, s0) and the persistent homology of
the same graph grown with randomized orderings (B, sr∗ ), we can conclude that the s0 ordering has a special significance.

1. Differences in Betti curves after reordering

We aim to determine if the Betti curve changes as a result
of reordering the nodes in our growing graphs. As a first look,
we show the average Betti curves for the original growing
graph models (B∗, s0) and for all reorderings (B∗, sr∗ ) in
the left column of Figs. 8 and 9 (solid and dashed lines,
respectively). We find little difference in the average Betti
curves before and after node reordering for the constant prob-
ability, preferential attachment, and spatial growth models.
Conversely, the Betti curves of the random geometric and
oscillating probability models show marked differences in
shape between the original and globally reordered growing
graphs. More drastic still, on average we observe that all
of the persistent homology seen in the original proportional
probability model is killed when we randomly reorder the
node addition sequence.

In order to quantify these results, we can compute a
distance between Betti curves in each dimension from any
pair of growing graphs. For simplicity, we define the distance
between two Betti curves as the maximum vertical difference
between the curves at any point [see Eq. (1)]. With this Betti
curve distance definition, we now show the distribution of
Betti curve distances between randomly sampled pairs of
generated graphs (Figs. 8 and 9, middle column, solid boxes),
between different orderings while holding the binary graph
constant (Figs. 8 and 9, middle column, striped boxes), and
between the original growing graph and each of its reorderings
(Figs. 8 and 9, middle column, light boxes) as discussed
above (see Fig. 7). If the distances between the original and
reordered graphs are significantly smaller than that of any
sampled pair of generated graphs (comparing solid and light
boxes), we call the model globally reorderable with respect
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(a)

(b)

(c)

FIG. 8. Global reorderability varies across growing graph models. Results of the random reordering analyses for the (a) constant
probability, (b) proportional probability, and (c) oscillating probability models. Within each panel, we show the average Betti curves (left)
produced by the originally ordered (solid line, standard deviation shaded) and randomly reordered (dashed line) growing graphs, as well as
box plots for Betti curves (middle) and barcodes (right) showing the within-model distribution of distances (solid), distances between the
topological summary of the original and randomly reordered growing graphs (lighter shade), and the distribution of differences between
randomly sampled pairs of growing graphs ending in the same binary network (striped).

to the Betti curves. We see that the constant probability,
preferential attachment, and spatial growth models are clearly
globally reorderable with respect to the Betti curves in all
three dimensions tested. Additionally, most models show
a smaller or near-equal distance between the original and
reordered models in comparison to any sampled order of a
particular graph B (comparing light to patterned boxes), sug-
gesting that a perturbation from the original growth order will
result in a smaller or similar change to the evolving topology
than a perturbation to any random order. The proportional
probability (and to a lesser extent the oscillating probability)
model, however, exhibits notably different behavior, as the
Betti curves from any pair of random orderings on a binary
graph are likely very similar but the distance between the Betti
curves of the original ordering and any reordered growing
graph can be an order of magnitude larger.

2. Effect of global reordering on barcodes

The Betti curves still do not capture all of the details
of a growing graph’s persistent homology. Indeed, multiple
barcodes could produce the same Betti curve, and additionally
there is no guarantee that the distance (as defined here)
between Betti curves will be small as a result of a small
perturbation. So we next ask how the barcodes change as
a result of global reordering (Figs. 8 and 9, third column).
Recall that the bottleneck distance between two barcodes
P1, P2 is colloquially given by the maximum distance that
either end of a bar in P1 has to move in order to align with
its match in P2 [see Eq. (2)]. As with the Betti curves, we
first compute the distributions of barcode distances between
the persistent homology of randomly sampled pairs of grow-
ing graphs generated by the same model (Figs. 8 and 9,
right column, solid boxes). Interestingly, although the random
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FIG. 9. Global reorderability varies across growing graph models. Results of the random reordering analyses for the (a) preferential
attachment, (b) random geometric, and (c) spatial growth models. Within each panel, we show the average Betti curves (left) produced by
the originally ordered (solid line, standard deviation shaded) and randomly reordered (dashed line) growing graphs, as well as box plots
for Betti curves (middle) and barcodes (right) showing the within-model distribution of distances (solid), distances between the topological
summary of the original and randomly reordered growing graphs (lighter shade), and the distribution of differences between randomly sampled
pairs of growing graphs ending in the same binary network (striped).

geometric model shows only small differences in within-
model Betti curve distances, the barcode distances are some of
the highest of all six models, suggesting a large change to only
a few highly persistent cavities. In contrast, the oscillating
probability model shows low variability in both the Betti
curves and barcodes by our measures.

Using the same intuition as for the Betti curves, we can
extract the global reorderability of the growing graph models
with respect to barcode distances by comparing the barcode
distances from random samples of original graphs to the
barcode distances from reorderings of the original binary
graph (Fig. 7). We see that the preferential attachment model
does not exhibit reorderability in dimension 1 and that the
random geometric model appears more reorderable in both
dimensions 1 and 2 than when we considered Betti curves
as the persistent homology summary. Still, we find that the
proportional probability model shows extreme sensitivity to
reordering and to a lesser extent so does the oscillating

probability model. We observe that the constant probability
model, the random geometric, and the spatial growth models
display global reorderability with respect to the barcode dis-
tance. Finally, we note that for both distances the proportional
probability model shows a marked preference for the original
s0 ordering. Then, for this model, if we had let s0 be any
random ordering and performed the same analysis, based on
the box plots in Fig. 8(b) we might expect the growing graph
to be reorderable.

But why is it that we see such shifts in Betti curves and
barcodes after reordering? For example, we may see smaller
Betti curves if we increase persistent cycle birth times on
average. Or perhaps we might see the same shift in Betti
curves but decreased average persistent cycle death times. In
Fig. 25, we show distributions of differences between average
persistent cycle birth times, average death times, and βn values
between the original and randomly reordered growing graphs.
In particular, for the proportional probability model, we see
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FIG. 10. Illustration of the space of global reorderability. We imagine this two-dimensional space as being parameterized by the distances
between Betti curves βn and barcodes between the reordered and original growing graphs. That is, a model in which the bottleneck distances
between the reordered and original growing graphs were higher than expected by random sampling of original graphs would be on the top half
of the plane, suggesting that the model is not globally reorderable with respect to this measure. Similarly, a growing graph model in which
the Betti curve distances between reorderings and original growing graphs were less than expected by random sampling of original growing
graphs would lie on the left half of the plane, suggesting that the model is reorderable with respect to Betti curves. Based on our definitions,
we describe global reorderability with respect to both of the distances that we tested as the lower left quadrant. Shapes and locations were
chosen based on the distances between persistent homology outputs of the original and reordered growing graphs; we use a fuzzy boarder to
indicate that the occupied regions of space may change based on alternative model parameters. Abbreviations: CP, constant probability; PP,
proportional probability; OP, oscillating probability; PA, preferential attachment; RG, random geometric; and SG, spatial growth.

that the large barcode distances between global reorderings
and the original ordering is likely due to both a decrease in
average birth time and a larger decrease in average death time
(Fig. 25) so that any persistent cavity that forms does so early
in the filtration and lives for only a short time. Additionally,
after reordering the proportional probability model, we see
that βn is generally lower, indicating that we simply see
less homology in total, and that when we do see persistent
homology it is shorter lived, likely due to the larger probability
of early edge addition. From the differences in βn, we also
expect that shifts in the reordered random geometric persistent
homology are likely caused by changes in the overall amount
of homology and that on average the persistent cavities in the
reordered growing graphs die earlier.

When we compare the barcode distances between gener-
ated growing graph pairs and their reordered networks, we
gain a different perspective on which growing graph models
are globally reorderable. Those models that exhibit reorder-
ability with respect to Betti curves but not barcodes are, in a
way, similar only at a per-slice level. That is, if we consider
any of the models at a given node number i, then the topology
in terms of the numbers of cavities in each dimension will be
similar between the original and reordered growing graphs.
However, if we look across time and take the fruits of the
growing process as a collective, the evolving topology has
changed drastically. These models illustrate the difference
between slicing the growing graph at each node addition

and comparing topology at time points, versus comparing the
collective, evolving topology that emerges over the course
of graph growth. Conversely, a model that is reorderable by
the barcode description but not by Betti curves (though less
likely) will show a similar evolving topology throughout the
entire growth process but may not show the same homology
when comparing slices. In Fig. 10, we show a schematic il-
lustrating where our six studied models with our chosen set of
parameters fall on the reorderability axes based on our results.
We note that all four quadrants of this graph are accessible and
that creating models that optimize one reorderability scheme
versus another is an interesting direction for future research.

C. Pairwise swaps and local reorderability

While above we considered randomly swapping all nodes
in the ordering, at the other end of the spectrum we can also
investigate the effect on the evolving topology of swapping
only one pair of nodes in the growing graph. Instead of
a growth process progressing randomly, this process would
instead be akin to a pair of neurons swapping firing order in
a neuronal population [66] or a student switching the order
in which they learn a pair of vocabulary words [31]. Here,
performing node swaps in our models will offer a measure
of the resiliency of a growing graph to a small perturbation
of only two nodes as opposed to a complete reordering. As
we will see, we gain not only an understanding of each
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FIG. 11. Analysis flow for node swap studies. (a) Filtration of two growing graphs (B, s0) and (B, s1,5), the latter of which being constructed
by swapping nodes v1 and v5 in the ordering. (b) The barcode calculated from (B, s0) and (B, s1,5). (c) Calculating the bottleneck distance
between the persistent homology of (B, s0) and (B, svi,v j ) for all i, j gives a bottleneck distance matrix (left) and, after dividing by the swap
magnitude | j − i| and subtracting from 1, the topological similarity matrix (right). (d) We can investigate the relation between swap magnitude
and bottleneck distance by (e) creating box plots of average bottleneck distance against swap magnitude and (f) determining the slope of a line
of best fit to points with small swap magnitude and the resulting distribution of such slopes over replicates.

growing graph model’s local reorderability but also a deeper
appreciation for node participation in the persistent homology.

In order to test how swapping a pair of nodes in the node
addition order will alter the persistent homology, we first
generate a growing graph (B, s0) and a node-swapped version
(B, si, j ) in which the binary graph B is kept unchanged but we
swap the ith and jth node in the ordering [Fig. 11(a)]. Recall
that since our original ordering is s0 = v1, v2, . . . , vN then the
ith node in this sequence is vi. As shown in Fig. 11(b), we then
compute the persistent homology and recover the barcodes
from each growing graph (B, s0) and (B, si, j ), and next we
calculate the bottleneck distance between these barcodes.
Repeating this process for every node pair, we can construct a
matrix of distances in which the (i, j) entry is the bottleneck
distance in dimension n between barcodes arising from (B, s0)
and (B, si, j ) [Fig. 11(c), left for dimension 1]. Now, impor-
tantly, recall that the bottleneck distance between barcodes
recovered from (B, s0) and (B, si, j ) is bounded above by the
largest distance any node has moved between the orderings. In
our case, this upper bound then is the magnitude of the node
swap, or | j − i|. Then, finally to calculate topological similar-
ity between nodes, we normalize the bottleneck distance by
this swap magnitude and subtract from 1. Explicitly, we define
the topological similarity in dimension n of a node pair vi,
v j as Tn(vi, v j ) = 1 − dn

BN (P0,Pi, j )
| j−i| and the average topological

similarity over dimensions as T (vi, v j ) = 1
D

∑D
n=1 Tn(vi, v j )

where here our maximum dimension D = 3. If a pair of nodes
(vi, v j ) has topological similarity close to 1, then the bot-
tleneck distance between barcodes from (B, s0) and (B, si, j )
must be small compared to the swap magnitude. Said another
way, the swap could have caused a large change in persistent
homology but did not. Again we can record the topological
similarity of each node pair in a matrix as shown in the right
of Fig. 11(c). Note that for both sides of the split matrix, a

lighter color indicates node pairs that when swapped will alter
the persistent homology more drastically while darker colors
indicate node pairs that when swapped have little effect on the
persistent homology. Though computed and described here,
we will make the impact of the topological similarity matrix
apparent even further in the last portion of the Results section.
In Fig. 11, we show our process for one growing graph, but
for growing graph models we generate 20 replicates and then
average bottleneck distances and topological similarity values
across replicates and dimensions unless otherwise specified.

Once we have calculated bottleneck distances and topo-
logical similarity for each node pair, we next ask how the
bottleneck distance varies with the swap magnitude. We can
plot the bottleneck distance calculated from each node pair,
averaged over dimensions, in one growing graph against the
swap magnitude as in Fig. 11(d). Then, we average across
dimensions and collate across 20 replicates from a growing
graph model and show the results as a sequence of box plots
as in Fig. 11(e). Note that neither the box plots in Fig. 11(d)
nor the box plots in Fig. 11(e) can surpass the y = x line due to
the upper bound on bottleneck distance; thus, for reference we
plot the y = x line in gray. Finally, recall that the goal of this
section is to determine the robustness of each growing graph
model to small perturbations. In order to quantify this robust-
ness, we use the bottleneck distances from all swaps with a
magnitude in the smallest 20% of possible swap magnitudes
(magnitudes �14) for each of the 20 replicates to calculate a
linear best fit and record the distribution of slopes in a box
plot for each dimension [illustrated in Fig. 11(f)]. Smaller
slope values indicate that temporally local perturbations to the
node addition order have only a small effect on the persistent
homology, while slope values close to 1 suggest that nodes
temporally close in spawning order contribute very differently
to the persistent homology of the growing graph. We include
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(a)

(b)

(c)

FIG. 12. Node swaps generate a range of effects on persistent homology: Part I. Results of node swap analyses for the (a) constant
probability, (b) proportional probability, and (c) oscillating probability models. (Left) The average bottleneck distances across dimensions
1–3 and across replicates (gray color map), and the average topological similarity across dimensions 1–3 and across replicates (green color
map). (Middle) Box plots showing distributions of averaged bottleneck distances across dimensions in relation to swap magnitude for all
replicates, and distributions of slope values calculated from bottleneck distance and swap magnitude (�14) pairs from each replicate and for
each dimension.

results for slope calculations using swap magnitude cutoffs of
10 and 18 nodes in the Appendix.

1. Node swap analyses on growing graph models

When we use the above analyses to study our six growing
graph models, we find again a diverse range of profiles from
the models but we also observe that node properties can vary
widely. For the constant probability model we see in Fig. 12(a)
that the bottleneck distance increases sharply with swap dis-
tance for small swaps (magnitude ≈< 7) but levels out at the
largest swap magnitudes (≈> 45). Interestingly, when broken
down by dimension, the distributions of slopes calculated
from small swap magnitude (�14) versus bottleneck distance
vary between an average of 0.379 (dimension 2) and an
average of 0.122 (dimension 3) across dimensions. In contrast,

the proportional probability model shown in Fig. 12(b) shows
a strong linear increase of bottleneck distance with swap
magnitudes as expected from the definition of the model. The
latest points added will connect to nearly every node; thus, if
shifted earlier, this behavior will prevent nontrivial homology
from forming. Slope distributions for each dimension have
relatively similar averages, reflecting the fact that the increase
in bottleneck distance associated with the interval of swaps
is similar for each dimension. In Fig. 12(c), we observe that
the oscillating probability model has two large regions of
zero bottleneck distance between swaps and that these zeroed
regions align with periods of no homology in the originally
ordered network [Fig. 5(c)]. This phenomenon contrasts with
the globally reordered oscillating probability model in which
we observed homology through nearly the entire growth pro-
cess [Fig. 8(c)]. We only observe bottleneck distances <10 in
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(a)

(b)

(c)

FIG. 13. Node swaps generate a range of effects on persistent homology: Part II. Results of node swap analyses for the (a) preferential
attachment, (b) random geometric, and (c) spatial growth models. See Fig. 12 for complete caption.

the locally reordered oscillating probability model, and as a
result we see slopes of the lines fit to these data are small.

The other three models show generally less uniform re-
sults across nodes. Figure 13(a) shows that the preferential
attachment model exhibits a large shift in bottleneck distances
between small and large node swaps. As evident in the heat
maps in the left of Fig. 13(a), we find that the earliest nodes
cause a large shift in bottleneck distances when swapped.
Since these early nodes become the few high-degree nodes
in the system, we observe by eye (at least for this model) that
swapping high-degree nodes will often cause a large change in
the persistent homology in comparison to the remaining, low-
degree nodes. In Fig. 13(b), we see that the random geometric
model shows a striped pattern in the averaged topological sim-
ilarity and averaged bottleneck distance matrices, suggesting
marked inhomogeneity in the graph architecture. We mainly
see homology in dimension 1 for this model, resulting in
generally low average bottleneck distances. Still, when we
restrict ourselves to dimension 1, we see that the average
slope of the line fitting the relationship between small swaps

and their associated bottleneck distances is 0.116, which is
larger than that of the oscillating probability model. Finally,
the spatial growth model displays a surprisingly homogeneous
topological similarity matrix [Fig. 13(c)]. However, the box
plots of average bottleneck distance display a sharp rise in
bottleneck distance for small swaps, a slow rise for mid-range
swaps, and finally a quick upturn again for the largest swaps.
Indeed, in dimension 1 the slopes of the line fit to these data
have an average >0.5, which is the highest average slope seen
across all graph models.

We can also use these results from the local reordering
analyses to uncover finer details of growing graph architec-
ture. First, if a growing graph model experiences a period of
no homology and if or when we swap the nodes that are added
within this period we still see no homology, then the earlier
node could not cone a cavity that forms before the later node.
If the earlier node did cone such a cavity, then moving this
node to a later position would allow the cavity to be born,
thus making the homology of the resulting growing graph
after swapping nonzero. We observe this phenomenon most
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strikingly in the oscillating probability model and to a lesser
extent in the beginning and end of the proportional probability
model. Second, we note that the proportional probability and
preferential attachment models are loosely inverses of each
other; that is, in the proportional probability model we add the
highest degree nodes last, but in the preferential attachment
model we add the highest degree nodes first. Indeed, we
observe that the bottleneck distance and topological similarity
matrices match when flipped vertically by eye. Third and last,
we only examine the behavior of lines fit to results from the
smallest swaps. The extent to which the bottleneck distance
of large swaps plateaus suggests a degree of homogeneity
in neighborhood structure between nodes that are temporally
distant. For example, the constant probability model plateaus
near an average bottleneck distance of 5, which is unsurprising
given the random nature of this model; in contrast, the propor-
tional probability model shows steady increases in bottleneck
distance across all swap magnitudes.

Additionally, we note that in the global reordering experi-
ments we discover that the spatial growth and constant prob-
ability models exhibited similar behavior. When considering
the averaged bottleneck distance and averaged topological
similarity matrices, this again looks to be the case—at least
initially—as the matrices are nearly indistinguishable. How-
ever, we find a drastic difference in the values of calculated
slopes after fitting the swap distance versus bottleneck dis-
tance points. The spatial growth model has the steepest slope
in dimension 1 but then is shallower in dimension 2, while
the constant probability model shows the opposite effect. Still,
these two models are the only growing graph models exam-
ined here that display average slopes above 0.3, suggesting
that nodes added closely in time contribute very differently to
the persistent homology. This property contrasts most with the
small slopes observed in the preferential attachment, random
geometric, and oscillating probability models, suggesting that
nodes added within small time spans form and kill similar
cavities.

We have discussed that node swaps with high topological
similarity suggest node-neighborhood similarities, but it is
interesting to ask whether the topological similarity between
nodes could be driven mostly by simply the neighborhood
overlap. Certainly if two nodes have exactly the same neigh-
borhoods in B, then swapping these nodes in the ordering
could not change the persistent homology. But more gener-
ally, could topological similarity be explained by topological
overlap? Similarly, we intuitively expect that nodes of high
degree should produce a larger effect on the growing topology
when swapped than nodes with small degrees (as we generally
saw by eye in the preferential attachment model), but is this
quantitatively true? To answer the first question, we examine
the relationship between the average topological similarity be-
tween nodes and the average topological overlap between the
same nodes in the original binary graphs Bη, for η = 1, . . . 20
(Fig. 26). We see that for all but the proportional probability
model, most growing graphs show a weak relation between
these two variables, suggesting that the topological overlap
alone does not predict the topological similarity between
nodes. To answer the latter question, we examine the relation
between summed node topological similarity and average
degree in the original binary graphs (Fig. 27). Again, we find

that for most models (preferential attachment excluded), the
average degree poorly predicts the topological similarity of a
node to all others. These results imply that topological simi-
larity can capture information about nodal roles in the larger
architecture that is distinct from the graph metric properties
tested here.

Together, these node swap experiments suggest a spec-
trum of local reorderability for growing graph models. Of
the models that we examine, we observe that the random
geometric and oscillating probability are most resilient to
small reorderings in all dimensions tested, followed by the
proportional probability and preferential attachment models,
and finally the spatial growth and constant probability models,
which exhibit the largest topological changes after temporally
local reorderings. Furthermore, we find that in most cases
the topological similarity cannot be well described by either
topological overlap or node degree.

D. Influence of local reorderability and pairwise swaps
on global reorderability

After investigating topological resilience to large pertur-
bations (global random reordering) and small perturbations
(swapping one node pair), we naturally wonder: Are these
two properties related? On even just one growing graph, if
every node pair was topologically similar (swapping does not
change the persistent homology), then could we infer that any
possible ordering of nodes would result in the same growing
topology? To answer this question and similar questions, we
need to dive a little deeper into the results of the node swap
analysis. Let us first restrict ourselves to a binary form of
topological similarity and say that two nodes are topolog-
ically similar if their swap has no effect on the persistent
homology, and two nodes are topologically dissimilar other-
wise. Then as shown in the Appendix, Sec. 7.2, topological
similarity between nodes is a dependency relation: symmetric
and reflexive but not transitive (see Counterexample 1 in
the Appendix). Thus, we can define the (binary) topological
similarity graph of dimension n, denoted Tn, as the graph
with the same nodes as our original graph B but with edges
between vi, v j if vi, v j are topologically similar in dimension
n. The topological similarity graph allows us to condense the
information generated from the ( N

2 ) node swaps and further
unravel the growing graph structure at the mesoscale level. We
next can ask questions about the derived topological similarity
graph that may offer insights into the growing process. For
example, do communities suggesting groups of similar nodes
exist in the topological similarity graph? Do we find that
all nodes possess a similar capability of swapping without
changing persistent homology, or will variation emerge? We
will show that from small motifs in Tn we can glean a deeper
understanding of the global reorderability of a growing graph,
but that these two concepts remain individually manipulable.

1. Intuition on one growing graph

To begin, let us consider one growing graph (B, s0) on N
nodes with topological similarity graph Tn of dimension n
and reduce our above questions accordingly. Are the edges
in Tn the totality of the information contained in Tn, or does
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the structure imply more about the reorderability of (B, s0)?
First, we know that if our graph is totally reorderable (see the
Appendix, Sec. 7.2, for examples), then Tn will be a complete
graph by definition. So if we can identify that the binary
graph has this reorderable property, then we know information
about Tn.

Can we also go the other direction and infer information
about large node order permutations from the Tn structure?
In possibly the simplest case, does finding an m-clique in
Tn indicate that all swaps on those nodes admit the same
persistent homology? Let us examine what happens when
nodes vi, v j, and vk with i < j < k all connect in Tn. By
definition, the barcodes (and consequently the Betti curves)
produced from the s0, si, j , si,k , and s j,k orderings on B are
all equal in dimension n. If we write out the graph filtration
arising from each of these orderings with the same binary
graph B, we have

Gv1 → · · · → Gvi−1 → Gvi → Gvi+1 → · · · → Gv j−1

→ Gv j → Gv j+1 → · · · Gvk−1 → Gvk → Gvk+1

→ · · · → GN ,

Gv1 → · · · → Gvi−1 → Gv j → Gvi+1 → · · · → Gv j−1

→ Gvi → Gv j+1 → · · · Gvk−1 → Gvk → Gvk+1

→ · · · → GN ,

Gv1 → · · · → Gvi−1 → Gvk → Gvi+1 → · · · → Gv j−1

→ Gv j → Gv j+1 → · · · → Gvk−1 → Gvi → Gvk+1

→ · · · → GN ,

Gv1 → · · · → Gvi−1 → Gvi → Gvi+1 → · · · → Gv j−1

→ Gvk → Gv j+1 → · · · → Gvk−1 → Gv j → Gvk+1

→ · · · → GN ,

in which each Gv∗ is the binary graph after the addition of
node v∗. More specifically, Gv∗ is the induced subgraph of B
on all nodes added up to and including v∗. This observation is
useful, but if we dive deeper we find that we in fact gain more
information. Let us examine the graph filtration constructed
by swapping nodes vi, v j, vk all together to form the ordering
si,k, j such that now our graph filtration reads as follows:

Gv1 → · · · → Gvi−1 → Gv j → Gvi+1 → · · · → Gv j−1

→ Gvk → Gv j+1 → · · · → Gvk−1 → Gvi → Gvk+1

→ · · · → GN .

Notice that here we add the first j − 1 nodes in exactly the
same order as row 2 above (the si, j row). After we have added
node vk (the jth node in this si,k, j sequence), we have added
the same subset of nodes as in row 3 above (the si,k row) at
the jth node addition. Then, not only does Gvk from the si,k, j

row equal Gv j in the si,k row, but we also see that the entire
rest of the filtrations are equal to each other. Thus, our new
triswap graph filtration is constructed from parts of two pair-
swap graph filtrations cut and pasted together [67]. Since the
graphs are equal at each point (node addition), the homology
is also equal at each point, and thus βn of the triswap must be
equal to βn of the original ordering.

For the above argument, we only used two pairwise swaps
to show that the triswap had to produce the same Betti curve.
Indeed, there are only two triswaps on three letters and the
other swap (adding vk , vi, then v j) can similarly be shown
to have the same Betti curve as the original ordering, using
only the topological similarity of node pairs vk , vi, and vk ,
v j . Then having a 3-clique of nodes vi, v j , and vk in Tn

guarantees that any triswap of vi, v j , and vk will also share
the same βn. Does the intuition gained regarding 3-cliques
in Tn generalize to higher cliques? In Counterexample 2 in
the Appendix, we construct a growing graph in which four
nodes are all topologically similar but we observe different
Betti curves when we swap all four nodes together. Thus, an
arbitrary clique of size 4 or more in Tn does not imply that
all swaps of the participating nodes will yield the same Betti
curves. Still, we can use the above cut-and-paste method with
the pairwise-swapped filtrations to construct rules for which
permutations of nodes involved in a clique in Tn will produce
the same Betti curves. We briefly discuss and explore these
rules in Example 3 of the Appendix. Finally, we ask whether
the intuitions gained here for Betti curves translate to the
bottleneck distance between barcodes. In Counterexample 3
in the Appendix, we construct a growing graph in which vi,
v j , and vk are each pairwise topologically similar, but neither
triswap produces the same barcode. This finding is perhaps
unsurprising, as the barcodes record much more detailed
information about the evolving topology of the growing graph
than do the Betti curves.

To summarize, we find that the local and global reorder-
ability, though related, are distinct properties of a growing
system. A growing graph may be both globally and locally
reorderable, locally but not globally reorderable, or not re-
orderable in either sense. Additionally, our results describing
information gained from cliques in Tn re-emphasize the differ-
ence in perceived reorderability based on slices (Betti curves)
versus longevity (barcodes).

2. For growing graph models

Now we return to our six growing graph models and ask
our questions surrounding what the structure of the averaged
topological similarity graph tells us about the original growing
system. We begin by averaging the topological similarity of
node pairs across replicates and across dimensions [Fig. 14(a);
see also Figs. 12 and 13]. Intuitively, if a node pair has a result-
ing high average topological similarity, then generally when
constructing a growing graph from the particular model, those
two nodes will contribute similarly to the persistent homology.
We then ask if there indeed exist strongly connected sub-
groups of the average topological similarity graph using com-
munity detection by modularity maximization [Fig. 14(b); see
the Methods section for details]. If a group of nodes forms
a community in this averaged topological similarity graph,
then often (but not necessarily, as shown above) we expect
their pairwise swaps to result in small changes in persistent
homology compared to swap magnitude. We represent each
of the communities in the detected partition using a different
color on the fingerprint graph of an exemplary binary graph B
[see Figs. 14(b) and 14(c)] for each of the six studied growing
graph models in Fig. 15. We observe that the proportional
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(a) (b) (c)

FIG. 14. Analyzing average topological similarity weighted graphs formed from pairwise node order swaps. (a) The topological similarity
matrix forms a weighted graph. (b) On the weighted network, node strength corresponds to the summed topological similarity, and community
assignments describe sets of nodes that can be pairwise swapped with small consequences on the persistent homology. (c) The summed
topological similarity (top) and the community assignments (bottom) shown as vectors paired with the fingerprint graphs from (B, s0).

probability, oscillating probability, and preferential attach-
ment networks show at least one relatively large, temporally
clustered community in their average topological similarity
networks. A temporally clustered community found in the
averaged topological similarity graph suggests that as the
graph develops, the evolving topology will likely change little
in response to permutation in node order within the interval in
which that community spawns.

Naturally, we next ask when those most or least swappable
nodes emerge in the growing graph model. That is, do nodes
with the highest summed topological similarity (averaged
across dimensions) occur at the beginning of the growth
process or at the end? For example, based on the connection
patterns of the growing C. elegans cellular nervous system,
we might expect that neurons born prior to hatching will often
have lower summed topological similarity values than neurons

FIG. 15. Community detection and summed topological similarity overlaid on original binary networks. We show the value of the summed
topological similarity for each node with the blue color map (top) and calculated community assignment (bottom) overlaid on a representative
fingerprint graph for the (a) constant probability, (b) proportional probability, (c) oscillating probability, (d) preferential attachment, (e) random
geometric, and (f) spatial growth models.
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born after hatching [68]. We calculate the strength (weighted
degree of T , or summed topological similarity) of each node
within the average topological similarity graphs [Figs. 14(b)
and 14(c)] and we depict the summed topological similarity
using node color within the fingerprint graphs shown in
Fig. 15. We see that for most growing graph models, the
earliest added nodes show a relatively high topological simi-
larity, with the exception of the preferential attachment model.
Interestingly, the proportional probability, oscillating proba-
bility, and to a small extent the spatial growth model show
a U-shaped curve of summed topological similarity values.
That is, the earliest and latest nodes can be swapped with most
other nodes without changing the persistent homology much,
but those nodes added in the middle of the growth process are
less topologically similar to all other nodes. Then for these
growing graph models, the nodes added in the middle are most
sensitive to perturbation, suggesting that they exhibit distinct
roles in the persistent homology of the growing network.

To summarize, our results suggest that the notion of local
reorderability as well as our general analysis approach to
studying growing graph processes via node swaps can provide
insight into sections of the graph maturation course that
may be more topologically robust to node perturbations than
other sections. Additionally, these analyses can also expose
nodes that are relatively essential for the proper topological
evolution of the graph by revealing which nodes on average
often create relatively large changes in the evolving topology
when swapped.

IV. DISCUSSION

In this paper, we have explicitly defined a convenient
framework for studying the evolving topology of growing
graphs and the robustness of that topology in six growing
graph models. We perturbed each growing process by ex-
changing the node addition order and tested the ability of
each growing graph to retain the same evolving topology
after perturbation. We found that the examined graph models
display a wide range of resiliency in their topology, here
termed reorderability, as a result of local and global pertur-
bations. Finally, we found that reorderability at the pairwise
level exerts limited restrictions on the global reorderability
of a growing network and suggest analyses to understand
this influence in the graph model case. In the remainder of
this discussion section, we consider the implications of our
work first in terms of theoretical matters and then in terms of
applications to real-world systems, and we will finally leave
the reader with a series of unanswered questions.

A. Persistent homology of growing graph models
and their connections to edge filtered complexes

Most commonly in network science, persistent homology
has been applied to study edge-weighted networks [41,56].
The edge-weighted network models that have been most
well studied from the persistent homology perspective are
the independent and identically distributed (i.i.d) uniform
random edge weight model [69] and the (edge-filtered) ran-
dom geometric model [53]. Here we intentionally use similar
ideas to construct the constant probability model and the

(node-filtered) random geometric model. Indeed, at the end
of these growing processes, we have constructed a binary
graph B that could be instead grown from adding edges to
a set of N vertices. Specifically, the homology at the end of
the filtrations generated by the constant probability model or
random geometric model, must match, on average, the homol-
ogy of their edge-weighted counterparts at that same edge
density and number of nodes. Importantly, the connection
between these two models is complicated by the variability of
edge densities after each node addition in our growing graph
models. Still, we strongly suspect that a formal connection
between node-filtered and edge-filtered models does exist. If
true, a particularly interesting direction for future work is to
address the question of whether one could solve the intricacies
of an edge-filtered model and apply that solution directly to
the node-filtered case, or vice versa.

Additionally, as noted in Ref. [31], while our definition
of the constant probability model matches the nature of the
random i.i.d. edge-filtered complex, the Betti curves of the
proportional probability model instead qualitatively match
those of the random i.i.d. edge-filtered case [70]. We leave
the exploration of the connection between these models for
future work, but we speculate that it may be related to the
similar progression of randomly attaching higher dimensional
simplices. In the i.i.d. edge-filtered model, each new edge
added randomly completes larger (higher dimensional) sim-
plices on average, while in the dual of the proportional prob-
ability model we randomly add higher dimensional simplices
at each step on average. Additionally, both models end with
the coning off of all persistent homology, tying at least the
homology of the filtration end points to one another.

B. Extending to models of growing simplicial complexes

In this work, we restricted our attention to node-filtered
simplicial complexes constructed from clique complexes of
graphs. Importantly, many other growing simplicial complex
models exist, including those that add new 2-simplices at each
filtration step [71], growing simplicial complexes that display
hyperbolic geometry [72], weighted growing simplicial com-
plexes [73], point processes [54,55], and more [74]. Some
growing simplicial complexes may fit directly into our node-
filtered perspective, but others may add exclusively larger sim-
plices at each step. Regardless of simplex size (or distribution
of sizes) added at each step, one can ask similar reorderability
questions to those asked in this work. For example, how might
the persistent homology change if we reordered the growth
process to add the smallest simplices first, or instead the
largest simplices first? Which generative simplicial complex
models exhibit local or global reorderability? Can we deter-
mine more reorderable motifs to allow us to simplify or reduce
the computation of local reorderability? Given two different
growing simplicial complexes, does there exist a reordering
of nodes that produces matching persistent homology? Or
perhaps can we induce constraints on a developing network
that select for reorderability, as with flow networks [75]?
These questions on growing simplicial complexes and others
raised in the present work additionally build upon previous
investigations of the effect of removing vertices or shifting
simplex weights on the persistent homology [76].
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C. Applications of node-filtered systems

While the reorderability of node-filtered order complexes
raises many interesting theoretical questions, we also empha-
size the prevalence of node-ordered systems in applications.
Certainly many biological systems grow and spread including
vasculature networks [77], fungal networks [78,79], and the
developing connectome [80,81], but we also see growing
processes in nonbiological systems such as evolving mass
transportation networks in cities [82] and the evolution of
ideas in research journals [83,84]. Moving further still, we
can encode signal transduction with the n-order complex
formalism, such as occurs in the propagation of a focal seizure
along the connectome [85] and phosphorylation cascades in
response to an extracellular signal [86]. Finally, in graph
learning, one traverses a network of topics or ideas and
relations between them, making studies involving the learn-
ability of graphs [87] and semantic memory [88] interesting
applications for reorderability investigations. Finally and per-
haps most interestingly, in certain applications one may be
able to experimentally test and manipulate reorderability of
complex systems. For example, one might activate genes in
different sequences or introduce topics in diverse orders to
test the impact on learnability of the material. Or instead if
the growing topology of a seizure spread suggests severity,
one could use the presented analyses in order to determine
which nodes when stimulated would most drastically disrupt
the unfavorable topology. In general, we speculate that the
reorderability of a complex system will reveal inherently new
information about how the system responds to change.

D. Reorderablity derived from Betti curves
versus barcodes in applications

As discussed in the previous sections, reorderability from
the Betti curve perspective captures a different level of infor-
mation about the system than reorderability from the barcode
perspective. If a graph displays reorderability based on the
Betti curves, then slice-by-slice the global reorderings must
be similar in their topology. In contrast, if a graph displays
reorderability based on the barcodes, then the entire topo-
logical evolution of each reordered filtration must be similar.
Differences in perceived reorderability based on Betti curves
versus barcodes mimic differences seen in cross-sectional
versus longitudinal studies [89,90]. While we might tend
toward desiring the latter, ofttimes in experiments we might
find ourselves constrained to the former [91]. For example, if
studying brain development we may perform a cross-sectional
study instead of a longitudinal study due to the availability
of participants or technology. With cross-sectional slices, one
would generally be confined to studying reorderability from
Betti curves. However, if we instead performed a longitudinal
study, the presence of natural maps from one time point into
the next would readily support a comparison of topology
based on the barcode. Overall, our work underscores the
importance of longitudinal investigations in unearthing infor-
mation about a growing system.

E. Reorderability and dynamics

Loops in networks can play many roles including that of
a pacemaker, limit cycle, and noise buffer, depending on the

specific system dynamics. Then if the underlying structural
connectivity graph of the system displays reorderability, we
would expect the dynamics to evolve in a relatively stable
manner despite perturbation. As discussed in detail elsewhere
[92], one type of meaningful noise in biology arises from ran-
dom fluctuations in time delays between nodes. Interestingly,
the authors of Ref. [92] found that the feed-forward cycle
motif itself offers a particular robustness to this type of noise
that would result in small perturbations to node activity order.
The authors of Ref. [93] similarly found that feed-forward
motifs can decrease randomness, while Ref. [94] showed that
loops can act as dynamic buffers against noise. Furthermore,
Ref. [36] discusses the role of cycles as pacemakers in dy-
namics and particularly shows how long cycles contribute
to sustained activity. If we restrict our system to a simple
case which includes only one pacemaker loop, for example,
then a reorderable graph would activate the pacemaker at the
same time regardless of noise in the system, whereas a very
nonreorderable graph could begin the pacemaker very early
on, or very late, in response to noise that affects the node
activation order. Although many previous studies involving
dynamics on networks have investigated, in our topological
terms, loops in dimension 1, we would expect the local re-
orderability of a graph to correlate strongly with the reliability
of the network dynamics in response to small node order
perturbations, such as those analyzed in Ref. [92]. From the
perspective of synchronizability, previous studies have linked
network homogeneity with synchronizability [95,96], but it
remains to be shown how topological regularity based on the
stability of a graph’s persistent homology may also contribute
to optimal synchronizability. In truth, the full relationship
between graph reorderability and network dynamics remains
to be understood and we propose the idea as an interesting
avenue for future research.

F. Why might we design a reorderable system?

The results from the local-to-global studies showed that the
local reorderability and global reorderability are surprisingly
distinct properties of a growing system. This result raises the
question of in what contexts we might wish to design a system
that exhibits, for example, local but not global reorderability.
One such context might be cell proliferation. Here, marked
stochasticity exists at the gene transcription level, but only
a large fluctuation in particular gene sets will alter a phe-
notype [97,98]. It is intuitively plausible that cell regulatory
networks exhibit local reorderability to account for the small
variations in gene expression but do not demonstrate global
reorderability if the cell is differentiated, making cells difficult
to reprogram [99]. Indeed, testing the reorderability of such
systems is a potentially fruitful avenue for future research. On
the engineering side, if we seek to design a growing system
that performs a particular function from scratch and that also
needs to display robustness to perturbation, the reorderabil-
ity framework presented here may offer a plausible test of
proper network function. Additionally further investigations
into reorderability and specifically motifs that support or
prevent reorderability may lead to better predictions of system
responses to perturbation.
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G. Open questions not addressed in this paper

Often research projects hatch more questions than they
answer. We take this last opportunity to highlight a few
additional open questions not addressed in the current work.
First, the constant probability model, as discussed, grows
into a random i.i.d. network that has a particular Betti curve
signature [69]. In Fig. 5, we see the constant probability model
Betti curves may follow a similar yet stretched pattern that is
truncated by the number of nodes. One might ask whether
one would continue to see increasing peaks of increasing
dimensions as the number of nodes grows (see Ref. [70]),
and generally if the persistent homology signatures seen here
scale with graph size. Second, our examples and intuition
suggest that many biological networks may be locally but not
globally reorderable. We leave open the question of which,
if any, biological or developmental networks indeed exhibit
such properties. Third, in the current work we only consider
the topological similarity graph, although we in fact recover
a topological similarity simplicial complex in which k nodes
form a simplex if any permutation of those k nodes does
not alter the persistent homology. What more can one learn
about the growing graph architecture from more thoroughly
studying the simplicial complex formed by the topological
similarity relation? Is it even true that permutations of nodes
within a clique of Tn alter the persistent homology to a smaller
degree than permutations, including nodes within and outside
of the clique? Finally, we note that while we studied reorder-
ability of growing graphs with respect to one node ordering,
removing the base ordering and investigating the variability of
the persistent homology generated from one binary graph and
any random node order would reveal the topological regularity
of a binary graph. That is, given a binary graph the persistent
homology may vary greatly or insignificantly across random
growth orders, suggesting a sameness in the topology across
the binary graph as observed previously in a semantic feature
network [31].

V. CONCLUSION

In this work, we explore the evolving topology of growing
graph models and test the robustness of this evolving topology
with respect to perturbations of node order. We find that both
spatially embedded and nonembedded models can exhibit
reorderability at a global level and that globally reorderable
growing graphs may not be the most locally reorderable.
We determine that reorderability at the pairwise level does
not necessarily imply global reorderability but still can be
used to determine more information about the growing graph
architecture. Finally, we proffer suggestions for deepening
the theory behind node-filtered networks and speculate that
real-world systems will be found to display a range of reorder-
ability properties based on system function.
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APPENDIX

We organize this Appendix into two main sections. First we
provide additional useful examples and supporting arguments
for statements made in the main text. Second, we report the
results from any additional experiments run on the growing
graph models.

1. Intuition for the stability of barcodes in the node-filtered case

The original stability theorem for persistence diagrams
(equivalently barcodes) [12] was expertly crafted in more
general terms of weight functions on filtrations. In this work,
we restrict ourselves to a very specific type of filtered sim-
plicial complex, which is one generated by filling in cliques
as simplices within a growing graph. This special case that
we consider here lends itself to a simple interpretation of the
stability theorem for node-filtered order complexes, which we
include below. We wish to emphasize that the following sec-
tion contains no novel results and only interprets the stability
theorem from Ref. [12] from the perspective of node-filtered
order complexes.

In the main text, we state that the stability theorem gives
us an upper bound for the bottleneck distance between P0

and Pi, j of | j − i|. How do we see this upper bound in our
growing graph models? If we grow the same binary network
B, then recall that we only need to know the ordering s to
specify the growing graph. In Fig. 16, we assume the same
binary graph B and show only the original ordering of nodes,
s0 (top). Then when we swap nodes vi and v j , i < j, we
obtain the si, j ordering shown in the bottom row of Fig. 16.
Notice that from the addition of the first node through node
vi−1, we do not change the nodes added or the order in which
nodes are added, so the filtration from node v1 through vi−1

must be equal between (B, s0) and (B, si, j ). Additionally, note
that if we have added a subset of nodes ν ⊆ V , the order in
which nodes of ν were added cannot change the subgraph of B
induced by ν. Therefore, the binary graph after the addition of
vi in si, j must be equal to the binary graph after the addition of
v j in s0 since at this point we have added all nodes v1, . . . , v j ,
and furthermore the filtrations must match from the addition
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FIG. 16. A node swap defines the maximum extent to which the resulting persistent homology can change. When swapping the original
order (top) of nodes v3 and v7 (bottom), the filtration from nodes v1 to v2 and the filtration from the addition of the seventh node to the end
do not change. Thus, outside the swap bubble the persistent homology cannot be affected. It is only inside the swap bubble that the persistent
homology could change in response to the node swap shown.

of the jth node on. We illustrate these regions of the filtration
in which no changes to the filtration—and consequently to
the persistent homology—could have occurred as gray-shaded
regions of the orderings in Fig. 16.

Now, we can imagine a situation in which the addition of
node vi begins a cavity and that all nodes vi+1, . . . , v j do not
participate in the cavity formation. So when we swap nodes
vi and v j , then we move a persistent cavity birth time from
i to j, and if no other persistent cavities emerge, then j − i
will be the bottleneck distance between barcodes generated
by s0 and si, j . Thus, we could swap nodes vi and v j and
produce a barcode distance of j − i, but no more. To see
these points directly from the definition given in Ref. [12],
here our weight function on simplices is defined by the node
order so that the weight of a node is the number of that node
in the sequence, and the norm of the weight function on the
simplicial complex is the same as the norm of the function

on the vertices. From this definition, the interpretation above
follows.

2. Examples and counterexamples

Example 1: Cycles. While cycles composed of edges are
often familiar, cycles, boundaries, and cavities of other di-
mensions are often less common. To expand upon our de-
scription of homology in the main text, here we present an
example of one cavity-enclosing and one boundary n-cycle for
n = 0, 1, 2, 3. Shown in Fig. 17, we see first an example of a
0-cycle that is not a boundary (two disconnected nodes) and a
0-cycle that is also a 0-boundary (two connected nodes). Next,
we see the familiar cavity-enclosing and boundary 1-cycles
in which the 1-simplices either surround a two-dimensional
void or form a boundary of two 2-simplices. The octahedron
is an example cavity-enclosing 2-cycle, but filling the inte-
rior with 3-simplices then offers an example of a boundary

FIG. 17. Examples of n-cycles. Simplices (top row), example of a cavity-enclosing n-cycle (middle row), and an example of a boundary
n-cycle (bottom row) for small values of n.
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FIG. 18. Examples of completely reorderable graphs. If we assume that we will form a filtered simplicial complex via the n-order complex
construction, then the tree graph (left) is completely reorderable in dimensions �1, a minimal n-cycle (middle) is completely reorderable in
dimensions �n, and cliques (right) are totally reorderable in all dimensions.

2-cycle. Finally, we illustrate a projection of a cavity-
enclosing 3-cycle which surrounds a four-dimensional void
with a shell of 3-simplices, and a 3-cycle that is also a bound-
ary in which the shell of 3-simplices surrounds a collection of
4-simplices (peach).

Example 2: Totally reorderable graphs. In Fig. 1, we see
the transposition of nodes d and f change the persistent
homology of the growing graph, and in the main text we
see that the reorderability of a growing graph depends on the
topology of the binary graph B. In fact, some special binary
graphs exist that will yield the same persistent homology in a
particular dimension for any ordering of nodes. First, if B is a
tree (Fig. 18, left) equipped with some node ordering s : V →
N then there will be no homology in dimension n for n � 1
along the entire filtration. Indeed, any node addition order
will yield the same persistent homology (here this means no
persistent cavities emerge) in dimension n for n � 1. Second,
any minimal n-cycle (specifically an (n + 1)-cross polytope;
see Ref. [40]) such as the minimal 1-cycle or minimal 2-cycle
shown in Fig. 18 (we assume that we always create the clique
complex in this case) in which all nodes and n-simplices are
required for the cycle will produce the same persistent homol-
ogy regardless of node order for dimensions �n. Finally, an
n-clique in B as shown on the right of Fig. 18 (again assuming
that we take the clique complex) will produce the same per-
sistent homology in all dimensions regardless of node order.
These examples help us to understand the sort of topological
homogeneity necessary for a binary network B to exhibit
complete reorderability.

The above totally reorderable graphs also offer examples of
how network statistics may or may not be preserved across the
growing process in totally reorderable graphs. For example, if
we grow the tree graph with a node order assigned left to right,
and then we calculated the average degree after each node
addition (creating an average degree curve), we could find an
alternative node ordering in which the average degree curve
would differ. Similarly, we can grow the octahedron in Fig. 18
in node orders which would change the clustering coefficient
curve. These examples demonstrate the differences between
preserving the topology of growing processes and preserving
network statistic curves.

Example 3: Rules of permuting nodes within a k-clique in
Tn. In the main text, we stated that while finding a 3-clique
in Tn implies that any permutation of the nodes involved in
the clique would produce the same Betti curves in dimen-
sion n as the original ordering, and additionally that this
fact does not hold for all permutations of nodes within a
4-clique of Tn. Here we illustrate a rule for permutations on

m nodes of an m-clique in Tn that will guarantee conservation
of βn.

Let {vi1 , . . . , vim} be the nodes of an m-clique found in Tn

with i j < i j+1. Note that in the original ordering s0, vi j+1 may
not follow directly after vi j , but for the following proof we
can ignore any nodes added between each vi j , vi j+1 as they do
not affect the outcome. We only require that i j+1 > i j so that
in the original ordering s0, vi j+1 comes after vi j . We can also
ignore any nodes added before vi1 or after vim in s0 as they
will not cause a change in the Betti curves (see Fig. 16). For
the sake of clarity, we can rewrite our nodes of the m-clique
as v1, v2, . . . , vm and only focus on the following portion
of the graph filtration · · · → Gv1 → · · · → Gvm → · · · since
each step is an induced subset of the ending binary graph
B on all nodes added up to and including that step. We
call a permutation σ of nodes v1, . . . , vm admissible if the
permutation sσ of these nodes with respect to the original
ordering s0 results in a growing graph (B, sσ ) with the equal
βn to that of (B, s0). Based on our cut-and-paste strategy
illustrated in the main text, we propose the following rule for
permutations σ that if met, will show that the permutation σ

of nodes in an m-clique in Tn is admissible.
Rule 1. Let v1, . . . , vm form an m-clique in Tn and νk

denote the first k nodes in a reordering of v1, . . . , vm. Then
a reordering of v1, . . . , vm is admissible if for at least (k − 1)
nodes vi ∈ νk , i � k, for all k = 2, . . . , m.

Informally, this rule states that if we take the first two nodes
in the reordering, check that at least v1 or v2 is present, then
move to the first three nodes and check that at least two of v1,
v2, and v3 are present, and so on, then the permutation will be
admissible.

In order to prove that an ordering following Rule 1 is
indeed admissible, we fix the number of nodes m and induct
on k, so that for each k we prove the modified rule:

Rulek. Let v1, . . . , vm form an m-clique in Tn and νr denote
the first r nodes in the reordering. The reordering is admissible
up to the kth node if for at least (r − 1) nodes we have vi ∈ νr ,
i � r, for all r = 2, . . . , k.

First, we show that the rule holds for k = 2. Let 2 < q�m.
Then if ν2 = (v1, v2), our filtration through the addition of
v2 is equal to that from s0. If ν2 = (v1, vq ) or ν2 = (vq, v2),
then since v1, v2, vq are connected in Tn, βn must remain
unchanged. Finally, if ν2 = (vq, v1) or ν2 = (v2, vq), then
using the cut-and-paste method we can show up through the
second node added that the reordering will not change βn. We
show the ν2 = (vq, v1) case below in Fig. 19(a) to illustrate
that by using the topological similarity of the v1, vq pair and
the v2, vq pair, we can piecewise construct the relevant parts of
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FIG. 19. Examining node swaps that conserve Betti curves. (a) Illustration of using the cut-and-paste process to show up through the first
two nodes of the reordering that βn will be unchanged. (b) Illustration detailing checking that βn is conserved through the first k + 1 nodes as
described in Case 2(a).

the new graph filtration. In particular, the filtration up through
adding vq is the same as from (B, s1,q) (peach) and adding
v1 in the new ordering will create the same binary graph as
in (B, s2,q ) (blue) and thus must have conserved the Betti
curve for at least the first two nodes added. We leave the
ν2 = (v2, vq ) for the reader.

Generally we see that for an admissible ordering, we will
need to use no swaps, one swap, or two swaps with the cut-
and-paste process.

Now we need to show that given a reordering in which
the first k nodes of the reordering satisfy Rulek ; if Rulek+1 is
satisfied then the reordering up through the first (k + 1) nodes

will be admissible. Assume the first k nodes in the reordering
follow Rulek so that for vi ∈ νr , we have i � r for at least
(r − 1) of the nodes in νr , for all r = 2, . . . , k. We need to
consider the possible nodes that might come next, at the k + 1
spot. We break this portion into two cases. As for the k = 2
case, we will need to use the topological similarity of at most
two node pairs.

Case 1. For all k nodes vi ∈ νk , i � k. Then at the addition
of the kth node in the reordering, we have the graph induced
by the subset of nodes in νk , which is equal to the graph
after the kth node is added in the original ordering s0. Let
the next node added be vL, and then L � k + 1. Since vL is

FIG. 20. Topological similarity is not a transitive relation. The v3 node is topologically similar to nodes v4 and v5, but v4 and v5 are not
topologically similar as illustrated by the barcodes on the right.
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FIG. 21. Swapping nodes from a 4-clique in Tn does not necessarily conserve Betti curves. Nodes v4, v5, v6, and v7 are all pairwise
topologically similar and all swaps of no more than three of these four nodes will not alter the Betti curves (right). However, the final ordering
in which nodes v7 and v6 precede nodes v4 and v5 produces a different β1 than the original ordering.

topologically similar to vk+1 by the assumption, the ordering
sL,k+1 yields the same βn, and we are done.

Case 2. Exactly one of the vi ∈ νk has i � k + 1; call this
node vL. Then exactly one node vi with i � k will be added
later (after the kth node); call this node vh.

Case 2(a). Let L � k + 2. Then Rulek+1 requires the k + 1
node to be vh. As illustrated in Fig. 19(b), we use the
topological similarity of the vL, vh pair and the vk+1, vL

pair to construct the binary graphs in the reordered filtration.
Therefore, our reordered growing graph has the same βn as
the original up through the first (k + 1) nodes.

Case 2(b). Let L = k + 1. Then the k + 1 node could be
any node, as we will still have that for k of the vi ∈ νk+1,
i � k + 1. Denote the k + 1 node by vM . If M = h, then we
are done as we only need to map into the original filtration.
If M �= h, then the reordered filtration will have equal βn up

through the (k + 1) node to that emerging from the original
ordering due to the topological similarity of the vh, vL pair
and the vh, vM pair.

This completes the induction step and therefore we can
conclude that if the reordering of the m nodes of an m-clique
in Tn adheres to Rule 1, then βn will remain unchanged.

Counterexample 1: Nontransitivity of the topological simi-
larity relation. Here we provide details proving that the binary
topological similarity relation between node pairs is a depen-
dency relation as opposed to an equivalence relation. Recall
that we defined two nodes vi and v j in a single growing graph
(B, s0) as topologically similar if dn

BN (P0, Pi, j ) = 0, and for
this section we write vi ≡r v j if this is so. First, this definition
of topological similarity is trivially reflexive and symmetric.
To show that topological similarity is not transitive, consider
the growing graph in Fig. 20 in which v3 ≡r v4 and v3 ≡r v5.

FIG. 22. Not all permutations of nodes within a 3-clique of Tn conserve the persistent homology. Nodes v9, v10, and v11 are all pairwise
topologically similar as shown by the persistent homology description (right). However, the permutations of these three nodes (shown in the
bottom barcodes) produces different barcodes than those produced from the original ordering.
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FIG. 23. Extended descriptions of the growing graph models: Part I. Here we provide extended descriptions for the (a) constant probability,
(b) proportional probability, and (c) oscillating probability growing graph models. From top to bottom: fingerprint graph and binary adjacency
matrix, barcode plot of one example growing graph, average Betti curves, edge density of the growing graph with respect to the final node
count, plot showing the number of cavities born or killed at each node addition, and heat map of evolving average degree for each node across
the filtration. Results for dimension 1 shown in purple, dimension 2 shown in blue, and dimension 3 shown in green.

Indeed, we see that the v4 � v5 swap does not yield the same
persistent homology as the original ordering, and so v4 �≡r v5.
Thus, topological similarity is not transitive, and therefore is
also not an equivalence relation.

Counterexample 2: Not all swaps between four topologi-
cally similar nodes yield the same Betti curves. In the main
text, we consider how permutations of the k nodes found in a
k-clique in Tn would affect the persistent homology. Here we
provide a growing graph in which four nodes are all pairwise
topologically similar, but a permutation of all four nodes does
not result in the same persistent homology. Specifically, in the
graph above (Fig. 21), one can show that nodes v4, v5, v6, and
v7 form a 4-clique in T1. As a consequence, all pairwise swaps
of these nodes yield the same barcode as the original binary
graph (Fig. 21, right), which shows no persistent cavities.
However, we see that if we perform a reordering such that

we add these four nodes in order v7, v6, v4, and then v5, β1

has changed as now we see a peak at the addition of the fifth
node (v6).

Counterexample 3: Not all swaps between three topo-
logically similar nodes yield the same persistent homology.
Continuing our investigation into how a clique in Tn may
determine the persistent homology after permutation of nodes
within the clique, we now turn to observing the effect of such
a permutation on the barcode generated by a growing graph.
We see in the above 11-node graph (Fig. 22, left) that v9, v10,
and v11 are pairwise topologically similar, as swapping any
pair results in the same barcode (Fig. 22, right). However, if
these three nodes emerge in the network either in order v10,
v11, v9 or in order v11, v9, v10, then we observe two bars of
dimension 1 in the corresponding barcode (Fig. 22, bottom).
Thus, we find that permutations of nodes’ participation in the
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FIG. 24. Extended descriptions of the growing graph models: Part II. Here we provide extended descriptions for the (a) preferential
attachment, (b) random geometric, and (c) spatial growth growing graph models. From top to bottom: fingerprint graph and binary adjacency
matrix, barcode plot of one example growing graph, average Betti curves, edge density of the growing graph with respect to the final node
count, plot showing the number of cavities born or killed at each node addition, and heat map of evolving average degree for each node across
the filtration. Results for dimension 1 shown in purple, dimension 2 shown in blue, and dimension 3 shown in green.

same clique of three nodes or more in Tn does not necessarily
preserve the persistent homology.

3. Meet the team, extended

In this section, we include additional information about
each of the six growing graph models defined and studied in
the main text. We show results for the constant probability,
proportional probability, and oscillating probability models in
Fig. 23 and for the preferential attachment, random geometric,
and spatial growth models in Fig. 24. We include the finger-
print graphs, adjacency matrix images, barcodes, and Betti
curves from Fig. 5, and we also add three more panels for each
model. The first added panel records the average edge density
of the growing graph after each node addition. Importantly,
we compute the edge density at each step relative to the size
of the final graph. That is, the edge density after the addition of

vi is ρ(i) = edges added up through vi/
(N

2

)
with N = 70. The

second additional panel shows the number of persistent cavi-
ties born (solid lines) or killed (dashed lines) after each node
addition averaged across replicates. The final panel (last row
in Figs. 23 and 24) shows a heat map of the evolving average
degree of each node as the graph grows. More specifically,
for each node vi we calculate the mean of the degree of vi

after the addition of node v j across replicates. Repeating for
all i, j = 1, . . . , 70, we recover the presented heat map. For
all plots, the horizontal axis follows graph growth.

4. Additional experiments for investigating global
and local reorderability

After determining the reorderability of growing graph
models, we naturally ask what types of changes to the bar-
codes or Betti curves lead to the distribution of distances
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FIG. 25. Differences among Betti bar values, average birth, and average death times between the reordered and original growing graph
persistent homology. (Left) Distributions of βn

′ − βn values, (middle) distributions of b̂′
n − b̂n values, and (right) distributions of d̂ ′

n − d̂n values
for each of the six growing graph models.

shown in Figs. 8 and 9. Recall that βn is the sum of all
persistent cavity lifetimes. We first ask how βn differs between
the originally generated growing graphs and their associated
reordered growing graphs. We show these distributions in the

left column of Fig. 25. Specifically if βn
′
is the Betti bar value

for a reordered growing graph and βn is for the original, we
plot the distribution of βn

′ − βn values. These plots help us to
understand that the change in Betti curves of, for example, the
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FIG. 26. Scatterplots and distributions of the averaged topological similarity and averaged topological overlap between node pairs. Plots
of topological similarity averaged over dimension between node pairs vs their computed topological overlap, calculated for each node pair in
each growing graph model replicate. Line of best fit overlaid and Pearson correlation coefficient (r) and associated p-value p displayed.
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FIG. 27. Scatterplots and distributions of degree and summed node averaged topological similarity. Plots of node degree vs summed
topological similarity with line of best fit overlayed and marginal distributions for each of the six growing graph models. Additionally, the
Pearson correlation coefficient r and associated p value are included.

globally reordered proportional probability graphs occurs in a
manner that also decreases the value of βn on average.

Additionally, we can perform the same calculation but
for the average birth and death times of persistent cavities.
Specifically, we calculate the average birth (death) time of all

persistent cavities of dimension n for the originally ordered
growing graph b̂n (d̂n), and we subtract this value from the
average birth (death) time calculated from a random reorder-
ing of that growing graph b̂′

n (d̂ ′
n). We repeat for all replicates

and all reorderings and show the distributions as violin plots
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FIG. 28. Effect of changing the threshold in local reorderability calculations. Each box plot shows the distribution of calculated slopes
as described in Fig. 11, colored by dimension. For each graph model, the left column shows results for swap magnitudes �10 nodes, the
middle column shows results for swap magnitudes �14 nodes (repeated from Figs. 12 and 13), and the right column shows results for swap
magnitudes �18 nodes.

in the middle and right columns of Fig. 25. As an example,
for the preferential attachment model in dimension 1, these
plots reveal that after reordering on average we decrease the
average death time of persistent cavities and often increase
average birth times.

When investigating how the persistent homology of grow-
ing graph models changes in response to node swaps, we
intuitively expect node pairs with similar connection pat-
terns to be the most topologically similar. In order to test
this intuition, we compute the average topological overlap
O(vi, v j ) of each node pair across binary networks generated
from the growing graph model, and we plot this value against
topological similarity averaged across dimensions in Fig. 26.
For each growing graph model, we also show the calculated
Pearson correlation r and associated p value along with the
line of best fit; on the top and right axes we plot the marginal
distributions of each variable. We see in the topological
overlap versus topological similarity scatterplots (Fig. 26) that
for most growing graph models, topological overlap is not a
strong predictor of topological similarity.

We note that for both the preferential attachment and
proportional probability models, in Fig. 15 we observe by
eye that the degree of a node in B looks to affect the overall

topological similarity of that node. In order to investigate this
potential relation further, we calculate the degree of each vi in
each Bη and plot this value against the summed topological
similarity (averaged over dimensions) of node vi for that
replicate (Fig. 27). Note that this statistic is equivalent to
the strength or weighted degree of node vi in the averaged
topological similarity graph constructed for each of the 20
replicates. For each growing graph model, we also include the
calculated Pearson correlation r and p value along with the
line of best fit; on the top and right axes, we plot the marginal
distributions of each variable. We find that for most graph
models, the average degree of a node poorly predicts the abil-
ity of that node to swap with all other nodes while preserving
the persistent homology. Interestingly, the proportional prob-
ability model shows a clear U-shaped distribution of points
suggesting that the lowest degree nodes and highest degree
nodes can often swap with other nodes without changing the
persistent homology much (relative to all nodes), while it is
the midrange degree nodes that are the least swappable.

Finally, we examine the robustness of our local reorder-
ability slope calculations to our choice of 20% as a threshold
(Fig. 28). Recall that for Figs. 12 and 13, we calculated the
bottleneck distance between the barcodes generated from the
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original and node i, j-swapped orderings. For each replicate,
we calculate a line of best fit for points involving swaps with
magnitude �14 and show the distribution of the resulting
slopes in box plots in the right column of Figs. 12 and 13.
We chose a swap magnitude ceiling of 14 (in other words
a 20% threshold) by examining the data and observing that
most models exhibit a near-linear increase between the two

variables for swap magnitudes between 0 and 14. Still, it
remains important to determine how our calculated slopes
might change if we alter the upper limit to 18 or lower it
to 10. Below we see that the calculated slopes change little,
suggesting that the specific choice of threshold for calculating
the line of best fit has little effect on the local reorderability
conclusions presented in the main text.
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