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Ring vaccination strategy in networks: A mixed percolation approach
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Ring vaccination is a mitigation strategy that consists in seeking and vaccinating the contacts of a sick patient,
in order to provide immunization and halt the spread of disease. We study an extension of the susceptible-
infected-recovered (SIR) epidemic model with ring vaccination in complex and spatial networks. Previously, a
correspondence between this model and a link percolation process has been established, however, this is only
valid in complex networks. Here, we propose that the SIR model with ring vaccination is equivalent to a mixed
percolation process of links and nodes, which offers a more complete description of the process. We verify that
this approach is valid in both complex and spatial networks, the latter being built according to the Waxman
model. This model establishes a distance-dependent cost of connection between individuals arranged in a square
lattice. We determine the epidemic-free regions in a phase diagram based on the wiring cost and the parameters
of the epidemic model (vaccination and infection probabilities and recovery time). In addition, we find that for
long recovery times this model maps into a pure node percolation process, in contrast to the SIR model without
ring vaccination, which maps into link percolation.

DOI: 10.1103/PhysRevE.101.052309

I. INTRODUCTION

The health of the population is one of the major concerns
of governments and international health agencies globally. As
reported by the World Health Organization, 7.5 trillion dollars
was spent on health in 2016, equivalent to approximately 10%
of the global gross domestic product [1]. In addition to the
thousands of new pathogens discovered in the last decades, the
reemergence of infectious diseases such as cholera, plague,
and yellow fever is concerning [2]. Changes in lifestyles,
coupled with environmental and biological changes, cause
epidemics of infectious diseases to be more likely to occur
and to spread farther and faster than ever before [2]. For
this reason, significant efforts must be devoted to the study
and control of infectious diseases, and the design of effective
prevention and mitigation strategies is crucial.

Complex networks [3–6] have proven to be an important
tool in the study of the spread of epidemics since they capture
some features of human societies [7–10]. The nodes of a
complex network represent individuals, while links repre-
sent interactions between them. In an epidemic model, the
nodes adopt different states, such as susceptible or infected,
while the links allow contagion between the nodes. This
approach is useful when physical contact is the main route
of transmission [11,12]. Epidemic models can be tested on
networks with different topologies, which would represent
different social structures, and in these models, the impact
of different mitigation strategies, such as quarantine [13–15],

*lvassallo@mdp.edu.ar

isolation [13,14,16,17], and vaccination [16,18–22], can be
estimated.

In remote times, diseases spread as a diffusive process [23],
while nowadays, due to modern means of transport, they can
cover long distances in short times and be superdiffusive [24].
A model that allows weighting both behaviors is the Waxman
model [25,26], which takes the distance-dependent cost into
account when establishing connections between nodes (see
Sec. IV). This model captures the fact that human interactions
have a cost, such as time travel, which makes short-range
interactions more frequent than long-range interactions. A
wiring cost is also present in several other complex structures
such as neural [27,28], telecommunication [29], Internet [30],
and electricity networks [31]. Recently, the Waxman model
was used to study the effects of the wiring cost on the univer-
sality of critical phenomena [32]. A network built according to
this model coincides with the Erdös-Rényi (ER) network [33]
if the wiring cost tends to 0, which has a Poisson degree
distribution of contacts.

An epidemic model that is commonly used is the
susceptible-infected-recovered (SIR) model [34–37], which
reproduces the spread of nonrecurrent diseases such as in-
fluenza and SARS [38]. In this compartmental model, nodes
can be in three possible states: susceptible (S), infected (I), or
recovered (R). When susceptible nodes are in contact with in-
fected ones, they may become ill with probability β. Infected
individuals recover after a period of time tr , remaining in this
state as they acquire immunity against the disease. In the final
state, there are only individuals in the S or R compartment.
The fraction of recovered individuals R indicates the extent of
the epidemic. The effective probability of transmission of the
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disease between an infected node and one of its susceptible
neighbors, which is called the transmissibility, is defined as
the probability of infection up to a time tr and is given
by T = 1 − (1 − β )tr . The fraction R undergoes a second-
order phase transition at a critical transmissibility value Tc.
If T � Tc, the cluster formed by recovered nodes in the final
state is negligible (epidemic-free phase), but it has a size
of the order of the entire population for T > Tc (epidemic
phase). It has been shown that the SIR model maps into
link percolation if the probability of link occupation, i.e.,
the control parameter, is pL = T . In this way, the fraction
of recovered nodes maps into the fraction P∞ of nodes that
belong to the giant component (GC) of the link percolation
process, i.e., the order parameter. This correspondence was
first observed in lattices in [39] and then extended to complex
networks [35].

Several strategies can be carried out to prevent or mitigate
the impact of a disease. Among these, ring vaccination has
proven effective in the containment of epidemics [40,41]. It
consists in tracing and vaccinating the close contacts of a
sick patient, to surround the disease and prevent its spread.
It was first implemented against smallpox [42,43], which
greatly aided its eradication in 1980, and is currently being
used to treat Ebola outbreaks in the Democratic Republic of
the Congo, with encouraging results [44]. The SIR model
can be extended to study the ring vaccination strategy by
adding a fourth compartment: vaccinated nodes (V). Within
the context of complex networks, the susceptible-infected-
vaccinated-recovered (SIR-V) model was tested in single and
partially overlapping multiplex networks [45,46]. In [45] it
was shown that the sum of the fraction of recovered and
vaccinated nodes, R + V , map into the fraction of nodes that
belongs to the GC in link percolation.

However, the equivalence between the SIR-V model and
link percolation stated in the previous references is not gen-
eral, as it only holds for complex networks. Moreover, in link
percolation, there is no clear distinction between nodes asso-
ciated with recovered and nodes associated with vaccinated
individuals. In this study, we propose a more general perco-
lation process which provides a more complete description
and understanding of the SIR-V model. We show that the
fraction of recovered nodes R maps into the relative size of the
GC of a mixed percolation process [47,48], where both edges
and nodes may be “occupied-unoccupied” with independent
probabilities, i.e., there are two control parameters. We use
the generating function formalism for complex networks to
derive the theoretical equations for R and V , separately, and
numerically verify that the mapping holds in Waxman spatial
networks. Furthermore, we study the effect of the wiring cost
on the epidemic threshold.

II. EPIDEMIC MODEL AND MAPPING
INTO MIXED PERCOLATION

The SIR-V model with ring vaccination is an extension
of the original SIR model. In this model, at each time step,
a susceptible node that is in contact with an infected one is
first immunized with probability ω. Thus, the probability of
infection at each time step is (1 − ω)β. The rules of the model

are the following:

S + I
ω→ V + I, (1a)

S + I
(1−ω)β→ I + I, (1b)

I
tr→ R, (1c)

where tr is the recovery time.
The effective probability of transmission of the disease Tβ

through an active link, i.e., a link between an infected node
and its susceptible neighbor, is now given by

Tβ = (1 − ω)β
tr∑

t=1

[(1 − ω)(1 − β )]t−1

= 1 − (1 − ω)tr (1 − β )tr

(1 − ω)β + ω
(1 − ω)β. (2)

This expression accounts for the probability of a node being
infected at any time by an infected neighbor, given that it was
not infected or vaccinated at prior times. In particular, for ω =
0, Tβ corresponds to the transmissibility T of the SIR model.

Similarly, the effective probability of vaccination Tω is
given by

Tω = ω

tr∑

t=1

[(1 − ω)(1 − β )]t−1

= 1 − (1 − ω)tr (1 − β )tr

(1 − ω)β + ω
ω. (3)

The first two rules of the epidemic model, (1a) and (1b),
are equivalent to the following transition rule:

S + I Δ + I I + I

V + I

(1−ω)β+ω

Cω

Cβ

(4)

where Cβ = Tβ

Tβ+Tω
and Cω = 1 − Cβ = Tω

Tβ+Tω
. The first transi-

tion represents an interaction (either infection or vaccination)
between a susceptible and an infected node, which occurs with
probability (1 − ω)β + ω. The � compartment represents an
undetermined state. Then, in the second transition, the �

node becomes infected with probability Cβ or immunized with
probability Cω. Since the numbers of infected and vaccinated
nodes come from the same � compartment, the transition
probabilities Cω and Cβ determine the ratio between R and
V at steady state:

V

R
= Cω

Cβ

= Tω

Tβ

= ω

(1 − ω)β
. (5)

Note that both transitions in rule (4) occur within the same
time step.

Analogously to the previous definitions of transmissibil-
ity, the first transition in rule (4) occurs with an effective
probability Tt = Tβ + Tω. Using this approach, the SIR-V can
be mapped into mixed percolation, in which links and nodes
are occupied with probability Tt and Cβ , respectively. In our
model, the order parameter, i.e., the fraction of recovered
nodes, maps into the fraction P∞ of nodes that belong to the
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(a) (b)

FIG. 1. Schematic illustration showing the equivalence between
(a) the SIR-V and (b) the mixed percolation process. In (a), R-R links
(red) were used to spread the disease, while R-V links (light blue)
were used to immunize. In (b), the gray area indicates the GC. Node
I belongs to the GC because it is occupied (filled circle) and has an
occupied link (solid line) with the GC. This type of node is equivalent
to a recovered node (R). In contrast, node II is occupied but its link
that leads to the GC is not (dashed line). Thus, it is equivalent to a
susceptible node (S) because there was no interaction through the
link. Node III is not occupied (open circle), but its link with the
GC is, so its equivalence is a vaccinated node (V). Finally, node IV
(unoccupied site and link) is also equivalent to a susceptible node.

GC of the mixed percolation process. In this case, the GC is
formed by occupied nodes connected by occupied links, as
shown in Fig. 1. The control parameters Tt and Cβ have the
following expressions, as a function of β, ω, and tr :

Tt = 1 − (1 − ω)tr (1 − β )tr , (6)

Cβ = (1 − ω)β

(1 − ω)β + ω
. (7)

In the following sections, we deduce analytical expressions
for the fraction of recovered and vaccinated nodes, and subse-
quently we verify this mapping through stochastic simulations
for different topologies.

III. THEORY FOR COMPLEX NETWORKS

Next, we use the generating function framework, which
holds for networks that are locally trees [35]. The probability
f∞ of reaching an occupied node through a randomly chosen
link that belongs to the GC of mixed percolation satisfies the
self-consistent equation

f∞ = Cβ[1 − G1(1 − Tt f∞)], (8)

where G1(x) = ∑kmax
k=kmin

kP(k)xk−1/〈k〉 is the generating func-
tion of the excess degree distribution, for x ∈ [0, 1]. Here, k
is the degree of a node, P(k) is the degree distribution, 〈k〉
is the average degree, and kmin and kmax are the minimum and
maximum degrees, respectively. Note that G1(1 − Tt f∞) is the
probability that a branch does not expand to infinity and Cβ the
probability of occupying a node.

Equation (8) has a nontrivial solution depending on
the control parameters. In the threshold value, only
the null solution exists and the curves y = f∞ and
y =Cβ[1 − G1(1 − Tt f∞)] are tangent. Thus, this threshold
can be found by differentiating both sides of Eq. (8) and

evaluating at f∞ = 0,

1 = Tβ

Tt

d[1 − G1(1 − Tt f∞)]

df∞

∣∣∣∣
f∞=0

,

where we replace Cβ = Tβ/Tt . Then

1 = Tβc G′
1(1) ⇒ Tβc = 〈k〉

〈k2〉 − 〈k〉 .

Note that for an ER network, the variance equals 〈k〉, thus,

Tβc = 1

〈k〉 .

If Tβ > Tβc , Eq. (8) has a nontrivial solution and an epidemic
phase can exist.

On the other hand, the fraction of recovered nodes R is
equal to the probability that a randomly chosen node belongs
to the GC in mixed percolation,

R = Cβ[1 − G0(1 − Tt f∞)], (9)

where G0(x) = ∑kmax
k=kmin

P(k)xk , for x ∈ [0, 1], is the generat-
ing function of the degree distribution. Note that [1 − G0(1 −
Tt f∞)] is the probability that at least one of its links is
connected to the GC. On the other hand, for the fraction of
vaccinated nodes V the expression is very similar, but the node
must be unoccupied, which occurs with probability Cω. Thus,

V = Cω[1 − G0(1 − Tt f∞)]. (10)

The vaccinated nodes are part of the perimeter of the
cluster of recovered nodes. If ω = 0, the well-known mapping
between the SIR process and link percolation is recovered. In
addition, note that limtr→∞ Tt = 1, so the only process that
takes place in this limit is node percolation with parameter
Cβ = Tβ .

Note that even though the fractions of recovered nodes R
and vaccinated nodes V depend on the recovery time tr [see
Eqs. (6), (9), and (10)], their ratio does not, according to
Eq. (5).

To check the validity of the previous equations, we choose
some well-known network topologies (with a local treelike
structure) and proceed to simulate the SIR-V process in them.
As can be seen in Fig. 2, the simulation results agree well with
the analytical results.

From our definition of the GC, we say that a node belongs
to its perimeter if it does not belong to the GC but one of
its neighbors does. There are three types of nodes that fulfill
this condition in mixed percolation, which are represented in
the schematic diagram in Fig. 3. Type I nodes (equivalent
to vaccinated nodes) correspond to unoccupied nodes that
have, at least, one occupied link connected to the GC. The
probability of this event is given by Eq. (10). As for Types II
and III nodes (equivalent to susceptible nodes), all their links
that lead to the GC are unoccupied, i.e., they did not inter-
act with its infected neighbors. This occurs with probability
G0(1 − Tt f∞) − G0(1 − f∞). A detailed derivation of these
formulas is explained in the Appendix. By adding the fraction
of nodes of Types I, II, and III, we obtain the expression for
the fraction F of nodes in the perimeter of the GC:

F = 1 − Cβ[1 − G0(1 − Tt f∞)] − G0(1 − f∞). (11)
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FIG. 2. Comparison between the simulation of the SIR-V pro-
cess and the theoretical solutions for the number of recovered and
vaccinated nodes. The epidemiological parameters used are tr = 1
and ω = 0.1. Note that the Erdös-Rényi (ER) and random regular
(RR) types of networks are homogeneous, while the scale-free
(SF) and log-normal (LN) networks are heterogeneous. For the ER
network we use 〈k〉 = 6, while for the RR network we use k = 5.
For the SF network we choose an exponent of λ = 2 and opt for an
exponential cutoff with parameter c = 25, while for the LN network
the parameters are μ = 1 and σ = 0.7. In all cases, kmin = 2 and
kmax = 250.

For long recovery times lim
tr→∞Tt = 1, therefore, susceptible

nodes do not contribute to F and only the term of vaccinated
nodes remains:

F = Cω[1 − G0(1 − f∞)]. (12)

IV. WAXMAN SPATIAL NETWORK

We now turn our attention to Waxman-type networks,
which cannot be studied with the generating function formal-
ism because they are not locally trees. We consider N = L2

nodes regularly distributed on a square of linear size L, with
spacing a = 1. This choice differs from the model proposed
in [26], where the nodes are uniformly distributed in the plane.
Two nodes, i and j, are connected following the probability

FIG. 3. Types of nodes in the perimeter of the GC of mixed
percolation (equivalent to the cluster of recovered nodes). Filled
and open circles represent occupied and unoccupied nodes, while
solid and dashed lines represent occupied and unoccupied links,
respectively.

FIG. 4. Schematic diagram of a network built according to the
Waxman model, where the length of the links follows an exponential
distribution [Eq. (13)]. Circles represent nodes, which are arranged in
a square lattice, while solid lines represent links of different lengths.

distribution

Pi j = c exp(−ri j/ξ ), (13)

where ri j is the Euclidean distance between the nodes, c is
a normalization factor, and ξ is a characteristic length. We
restrict the domain of the function to r ∈ [1, L/2], which is
consistent with the choice of periodic boundary conditions.
Thus, c−1 = ξ [exp(− 1

ξ
) − exp(− L

2ξ
)]. If L is large enough,

the average connection distance tends to ξ + 1.
To build the network, we first choose a node i at random

and generate two random numbers: one for the radius, accord-
ing to the distribution defined in Eq. (13); and another for the
angle, according to a uniform distribution between 0 and 2π .
These two generated numbers define a radius vector. If we set
its origin at the position of node i, the radius vector will point
to a certain position in space. Then we choose the closest node
to this position, say j, and connect i and j. This operation
is repeated N〈k〉/2 times, disallowing multiple connections,
until the desired average connectivity 〈k〉 is obtained. In Fig. 4,
we show a schematic diagram for ξ = 1; if ξ is set greater, the
links become longer.

Due to the exponential decay, nodes mainly interact with
neighbors in their nearby area. This area may be far from
having a thermodynamic size, which would be the case for
extremely long values of ξ . In Fig. 5(a), we plot the result-
ing degree distribution from the algorithm described in the
previous paragraph. It can be seen that when the parameter
ξ is small, the degree distribution has a binomial-type shape,
which is consistent with the fact that the nearby area includes
a few nodes. On the other hand, it can be seen that the
distribution approaches a Poisson distribution as ξ grows.
Similarly, it is expected that the clustering coefficient C [49],
which accounts for the number of triangles in the network,
may become considerable for small ξ and tend to 0 as ξ

increases. The relationship between C and ξ is shown in
Fig. 5(b).

Given that we are interested in the effect of different
wiring costs on the spread of an epidemic, we focus on these
networks (and ER networks, since they coincide in the limit
of large ξ ) to simulate the evolution of the SIR-V process.

V. RESULTS AND DISCUSSION

We perform stochastic simulations in Waxman networks
of 106 nodes (L = 103), for different values of ω, β, tr , and
ξ . The average connectivity 〈k〉 was set to 4. We show in this
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FIG. 5. Structural properties of the Waxman model. (a) Degree
distribution of the nodes. (b) Network average clustering coefficient.

section that the mapping between the SIR-V model and mixed
percolation holds for these spatial networks. In Sec. V A we
focus on the fraction of recovered and vaccinated nodes at
the final state, while in Sec. V B we present a phase diagram
of the critical values that separate an epidemic phase from
an epidemic-free phase. Finally, in Sec. V C we analyze the
asymptotic case tr → ∞.

A. Extent of the epidemic

Here, we compute the fraction of recovered and vacci-
nated nodes of the SIR-V model from stochastic simulations.
Following [50], we consider that the disease spreading in
one realization results in an epidemic when the number of
recovered nodes in the final state is above a threshold sc.
Below this threshold, only small outbreaks occur. Although
our model is governed by two control parameters (Tt and Cβ),
here we show our results as a function of Tβ because it is
an effective probability of link-node occupation (Tβ = CβTt ,
as mentioned in Sec. II), which summarizes the effect of
link and node occupation probabilities on the order parameter
in a mixed percolation process. Moreover, we see that this
probability is useful to study the limit of node percolation in
the SIR-V model (Sec. V C).

In Figs. 6 and 7, we show the fraction of vaccinated and
recovered nodes for ω = 0.1 and different values of ξ and
tr . As expected, higher transmissibility values Tβ imply a
greater extent of the epidemic, provided it is above a critical
value Tβc. Below this value, ring vaccination halts the disease

FIG. 6. Effect of varying tr on the fraction of (a) recovered and
(b) vaccinated nodes as a function of Tβ , for ξ = 1, ω = 0.1. The
network has N = 106 nodes and the cutoff is sc = 300. Different
curves correspond to different values of tr . Symbols represent the
results of the SIR-V process, while dashed lines correspond to the
results of mixed percolation.

spreadand only small outbreaks occur. For low values of ξ ,
Tβc increases with tr , as shown in Fig. 6(a), in contrast to
ER networks (ξ → ∞), for which Tβc does not depend on tr .
This observation proves that Tβ cannot be a control parameter
by itself, in contrast to [45], but it is not evident in complex
networks. It is also observed that when tr and Tβ are large,
the curve is almost linear, which is the typical form of node
percolation (see Sec. V C). As for the fraction of vaccinated
nodes, we show in Fig. 6(b) that it reaches notably higher
values when the recovery time is longer. This complements
the fact that the fraction of recovered nodes decreases with
the recovery time, as shown in Fig. 6(a). To explain this result,
note that since ω is fixed in Figs. 6(a) and 6(b), if tr increases,
then β must decrease to keep Tβ constant [see Eq. (2)]. Also,
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FIG. 7. Effect of varying ξ on the fraction of (a) recovered and
(b) vaccinated nodes as a function of Tβ , for tr = 1, ω = 0.1. The
network has N = 106 nodes and the cutoff is sc = 300. Different
curves correspond to different values of ξ . Symbols represent the
results of the SIR-V process, while dashed lines correspond to the
results of mixed percolation. The first curve on the right (magenta
×’s) corresponds to a square lattice, for comparison, while the dash-
dotted line on the left corresponds to the analytical solution for an
ER network.

note from Eq. (5) that Tω ∝ Tβ/β, which implies that if β

decreases, then the effective probability of vaccination Tω

increases. Therefore, if Tβ remains constant, a longer recovery
time enhances vaccination coverage. An interpretation of this
observation is that a less virulent disease, even if it has a
prolonged stage of infection, gives an advantage to the ring
vaccination strategy. The existence of a peak in the curves
of the fraction of vaccinated nodes is consistent with what is
reported in [45] for ER and SF networks. This is due to com-
petition between the spread of the disease and vaccination, as
explained qualitatively in [45].

FIG. 8. Relation between the fraction of recovered and the frac-
tion of vaccinated nodes as a function of β. Dashed lines represent
Eq. (5). From left to right, the values used are ω = 0.1, 0.2, 0.3, 0.4,
and 0.5. The different symbols are the numerical results for tr = 1,
4, and 8 and ξ = 0.1, 1, and 10, in all possible combinations. The
dash-dotted line indicates the case V = R.

In Figs. 7(a) and 7(b), it is shown that ξ has a strong
influence on the critical value, which varies between the ex-
pected value for lattices (Tβc = 0.5) and that for ER networks
(Tβc = 0.25). The longer the links, the more vulnerable to
epidemics the network is. However, when the transmissibility
is high (for Tβ � 0.6), networks with different values of ξ

generate a similar fraction of recovered nodes in the final state
and the extent of vaccination is similar.

Although Figs. 6 and 7 show that R and V depend on tr and
ξ , we expect from Eq. (5) that the ratio between them does not,
regardless of the network topology. This is what we observe
in Fig. 8 for Waxman networks with different values of ξ .

B. Phase diagram

The critical values that separate the epidemic phase from
the epidemic-free phase can be considered the most significant
results, since if the health agencies manage to keep diseases
below these values, it means that they are under control. The
values of β and tr are associated with the disease, while ξ

is determined by the social structure. The only parameter
that health agencies can handle is the probability of immu-
nization ω, allocating sufficient financial, logistic, and human
resources to track the possible contacts of a patient and, then,
convince them to get vaccinated. The values that must be
achieved to avoid an epidemic can be found in the phase
diagrams shown in Fig. 9. To summarize all cases of different
recovery times, it is better to use Cβ and Tt as parameters.
Thus, the diagram is independent of the recovery time. Given
Cβ and Tt , we can obtain ω through Eqs. (2) and (3). To
compute the critical value, we use the peak of the second-
largest component.

C. Limit of long recovery times

As explained in Sec. III, when tr is large enough, mixed
percolation is dominated by node percolation. In this limit,
Tt = 1 and Cβ = Tβ . Thus, the order parameter is governed
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FIG. 9. Phase diagram. The different curves represent the critical
values that separate the epidemic phase (above the curves) from the
epidemic-free phase (below the curves) for different values of ξ . If
Cβ = 1 (top axis) the critical values correspond to link percolation,
while if Tt = 1 (right axis) they correspond to node percolation. In
the ER limit (ξ → ∞), the product of Cβ and Tt equals 〈k〉−1.

only by Tβ and the curves of the fraction of recovered or
vaccinated nodes with different values of ω collapse into a
single curve. The fraction of recovered nodes becomes lin-
early dependent with Tβ (if Tβ � 1), which is a characteristic
behavior of node percolation, independently of the network
topology and ω. In the case of complex networks, this linear
behavior can be proved by expanding Eq. (9) in Taylor series
to first order around Tβ = 1:

R ≈ 1 + [1 − G0(1 − f∞)]|Tβ=1(Tβ − 1) = Tβ.

Note that f∞|
Tβ=1

= 1 and G0(0) = 0. This behavior is very

different from the SIR model and also contrasts with the
results shown in Fig. 7(a), where there is no linear relation
with Tβ at any range.

In Fig. 10, the effects of different values of ξ are observed
close to the critical values that separate the epidemic phase
from the epidemic-free phase. As noted earlier, for sufficiently
large transmissibility values, there is no difference in the
extent of the epidemic, regardless of the length of the links.

In this limit, we obtain that the number of vaccinated
nodes in the final state equals the perimeter of the cluster
of recovered nodes (or, equivalently, to the perimeter of the
GC in node percolation). That is, the disease is completely
surrounded by vaccinated nodes. There are no susceptible
nodes in contact with recovered nodes since there are so many
chances of transmitting the disease from one node to another
that the spread can only be stopped through immunization.
Although this is valid in the limit of tr → ∞, as shown in
Sec. III, we observe that for tr ∼ 16 the process is already
strongly dominated by node percolation.

From the results presented, it can be seen that the stochastic
simulations of the SIR-V model coincide very well with those
of mixed percolation, verifying that this approach is valid.

FIG. 10. (a) Recovered and (b) vaccinated nodes as a function of
Tβ in the limit of long recovery times. Symbols represent the results
of the SIR-V process for tr = 16, while dashed lines correspond to
the magnitudes of pure node percolation: (a) fraction of nodes in the
giant component (GC); (b) fraction of nodes in the perimeter of the
GC. Different curves correspond to different values of ω.

VI. CONCLUSIONS

In this work we have studied an extension of the SIR
model with ring vaccination, verifying the effectiveness of the
strategy in spatial networks which were built according to the
Waxman model, that is, in networks with distance-dependent
connection costs. We found that there is an epidemic-free
region that depends on the cost of connection and the recovery
time of the disease. For high connection costs, the results
are close to those expected for square lattices, where the
network is more robust against diseases, while if the costs
are negligible, the results approximate those expected for ER
networks.
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On the other hand, we showed that the fraction of recovered
nodes of the epidemic process in the final state map into the
relative size of the GC of the mixed percolation process. This
process is controlled by two parameters, one corresponding to
node percolation and the other to link percolation, which can
be written as a function of the epidemiological parameters: β,
ω, and tr . Through the generating function formalism, we an-
alytically derived the equations for the fraction of vaccinated
and recovered nodes and computed the perimeter of the cluster
of recovered nodes. In addition, we checked the mapping
in Waxman spatial networks through numerical simulations
and found that the ratio of recovered to vaccinated nodes is
independent of the network topology.

Using the equivalence between the SIR-V model and
mixed percolation, we show that for long recovery times (in
practice, from tr ∼ 16 onwards) the results are dominated by
node percolation. In this limit, the number of vaccinated nodes
coincides with the total number of nodes in the perimeter of
the cluster of recovered nodes, i.e., the disease only stops if it
is surrounded by vaccinated individuals.

We believe that our results are important as they provide
theoretical support for one of the most effective vaccination
strategies, ring vaccination. Also, we show how its efficiency
is related to the social structure, regarding short- and long-
range interactions between people, which usually determines
the extent of a disease.

Finally, regarding the current global pandemic, we would
like to point out that this kind of model could be useful to
study the spread of COVID-19. Even though a vaccine against
the disease has not yet been developed, at least at the time of
writing this paper, note that contact tracing of positive-tested
individuals followed by quarantine works in a similar way
to ring vaccination. Ideally, quarantined individuals cannot
spread the disease as if they were immunized, although they
could be infected. In addition, recent research has suggested
that the spatial spread of coronavirus in China is strongly re-
lated to the spatial network of interurban migration [51]. Thus,
further studies are needed to understand the impact of spatial
networks on strategies to halt the spread of a disease. All in all,
we believe that approaches like our SIR-V model could be a
useful tool to analyze the spread of several infectious diseases
such as COVID-19.
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APPENDIX: DETAILED DEDUCTION OF THE EQUATION
FOR THE PERIMETER OF THE MIXED PERCOLATION

CLUSTER

In a mixed percolation of nodes and links, there are three
types of nodes that can be part of the perimeter of the infinite
cluster. Type I nodes arise from the node percolation process,
Type II nodes correspond to the link percolation process, and
Type III nodes are exclusive of mixed percolation. In the
following subsections, we compute the fraction of these nodes

FIG. 11. Possible connections of Type II or III nodes. The central
circles are half-filled because they represent either occupied or
unoccupied nodes, while solid and dashed lines represent occupied
and unoccupied links, respectively. If the link leads to the GC
(represented by the ∞ symbol) it must be unoccupied. On the other
hand, the

⊗
symbol represents all cases that are not the giant

component.

for complex networks. As we only use percolation theory
arguments, we denote pN and pL the control parameters of
node and link percolation, respectively, and P∞ the order
parameter.

1. Type I nodes

Type I nodes are unoccupied with at least one occupied
link that connects them with the GC. As stated before, in the
context of the SIR-V model an occupied link represents an
interaction between an infected and a susceptible node. Since
Type I nodes are unoccupied, they correspond to vaccinated
nodes. Accordingly, we can write the probability of choosing
a Type I node as

(1 − pN )[1 − G0(1 − pL f∞)]. (A1)

2. Types II and III nodes

Types II and III are nodes with at least one link leading to
the GC, but it is “unoccupied,” while the rest of the links con-
nect to nodes that do not belong to the GC. In Fig. 11 we show
a schematic diagram of the possible configurations of these
two types of nodes, for a random regular network with degree
k = 3.

The probability that a randomly chosen link leads to the
GC is f∞. In this case, the link must be unoccupied, which
occurs with probability (1 − pL ). For example, for a random
regular with k = 3, the probability of choosing a Type II or III
node is proportional to

[(1 − pL ) f∞]3 + 3[(1 − pL ) f∞]2(1 − f∞)

+3[(1 − pL ) f∞](1 − f∞)2,

where the prefactors in each term account for the possible
permutations (see Fig. 11). If all nodes have a k degree, the
last expression can be written as

k∑

j=1

C j
k [(1 − pL ) f∞] j (1 − f∞)k− j

= (1 − pL f∞)k − (1 − f∞)k,

where C j
k is the binomial coefficient.
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In order to consider any degree distribution, we have to take
into account the probability of having a degree k and sum over
all cases, so the last expression takes the more general form

kmax∑

k=kmin

P(k)[(1 − pL f∞)k − (1 − f∞)k]

= G0(1 − pL f∞) − G0(1 − f∞). (A2)

The last expression should be multiplied by the node
percolation parameter pN if we only consider occupied sites
(Type II) or by (1 − pN ) in the case of unoccupied sites (Type
III). But if we add Types II and III contributions, we obtain
Eq. (A2).

3. Total expression for perimeter sites

By adding all the terms deduced in the previous sections,
i.e., Eqs. (A1) and (A2), we obtain the expression for the

fraction of sites in the perimeter of the GC:

F = (1 − pN )[1 − G0(1 − pL f∞)]

+ G0(1 − pL f∞) − G0(1 − f∞).

After some algebra, the last expression can be rewritten in a
more intuitive way:

F = 1 − pN [1 − G0(1 − pL f∞)] − G0(1 − f∞). (A3)

The last term accounts for the fraction of nodes that are not
in the GC or in its perimeter (see Fig. 11; fourth case). Also,
note that the second term corresponds to P∞, i.e., the fraction
of nodes in the GC. Thus,

F = 1 − P∞ − G0(1 − f∞). (A4)
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