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Evolutionary game inspired by Cipolla’s basic laws of human stupidity
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In this work we present an evolutionary game inspired by the work of Carlo Cipolla entitled The Basic Laws
of Human Stupidity. The game expands the classical scheme of two archetypical strategies, collaborators and
defectors, by including two additional strategies. One of these strategies is associated with a stupid player
that, according to Cipolla, is the most dangerous one as it undermines the global wealth of the population.
By considering a spatial evolutionary game and imitation dynamics that go beyond the paradigm of a rational
player we explore the impact of Cipolla’s ideas and analyze the extent of the damage that stupid players inflict
on the population.
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I. INTRODUCTION

When around 1976 Cipolla formulated the fundamental
laws of human stupidity, he was being sarcastic and trying
to build a cartoonish image of human society. However, his
ideas contained some aspects that constituted an adjusted
characterization of the type of behavior displayed in inter-
personal relationships. In his work, published in 1988 [1],
Cipolla describes personal interactions in terms of benefits
and damages derived from any transaction, conceptually go-
ing beyond monetary aspects exclusively. He pointed at the
concept of stupidity as seen within a social context, and to
establish a proper frame for his ideas he classified the behavior
that an individual may display within a social context into four
groups. These groups are the intelligent (I), the bandit (B), the
unsuspecting (U), and the stupid (S). The difference between
them arises from the inclination to produce benefits or harms
for oneself and for others in any interaction.

It should be pointed out that in Cipolla’ s work the concepts
of stupidity and intelligence are lax and do not intend to refer
to any cognitive abilities of the subjects. Group (I) consists
of individuals who, when they interact with others, produce a
mutual benefit. Group (B) is composed of selfish individuals
who seek individual benefits without hesitating to cause harm
to others. Group (U) represents a type of altruistic individual
who seeks the wealth of others even at the expense of self-
inflicted harm. Finally, the (S) group contains the individuals
that not only cause harm to others but also to themselves. To
mathematically represent the behavior associated with each
group, it is possible to choose two parameters: the gains or
losses that an individual causes to him or herself, p, and the
gains or losses that an individual inflicts on others, q. These

four groups are then defined by the range of values adopted
by p and q as follows:

S : ps � 0 and qs < 0,
U : pu � 0 and qu � 0,
I : pi > 0 and qe � 0,
B : pb > 0 and qb < 0.
Figure 1 shows the location of each strategy on the (p, q)

plane. Besides the previous classification of the population
into four groups, the central point in Cipolla’s work is the
enunciation of The Basic Laws of Human Stupidity, listed
below and quoted from Ref. [1]:

(1) Always and inevitably everyone underestimates the
number of stupid individuals in circulation.

(2) The probability that a certain person be stupid is
independent of any other characteristic of that person.

(3) A stupid person is a person who causes losses to another
person or to a group of persons while himself deriving no gain
and even possibly incurring losses.

(4) Non-stupid people always underestimate the damaging
power of stupid individuals. In particular non-stupid people
constantly forget that at all times and places and under any
circumstances to deal and/or associate with stupid people
always turns out to be a costly mistake.

(5) A stupid person is the most dangerous type of person.
Corollary. A stupid person is more dangerous than a

pillager.
The mathematical characterization of the four groups to-

gether with the fundamental laws inspire us to formulate an
evolutionary game that we call Cipolla’s game. Each of the
four groups described above is associated with a possible
strategy and the corresponding payoff matrix is built in terms
of the outcome of the interactions between them. The values
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FIG. 1. Location of each strategy in (p, q) space.

of this matrix are loaded in Table I, which indicates which is
the payoff of the strategy in the row when competing with the
strategy in the column.

Once the strategies and the payoffs are defined, we propose
an evolutionary game whose dynamics can be associated with
that of the replicator. In the following we will consider that
the (B) group is the one that gets the highest self reward p, so
being a bandit has certain incentives. As we show later, the re-
sulting game has a unique strict Nash equilibrium, the strategy
(B). If we consider a mean-field model described by the usual
replicator equations, (B) is the only trivial stable steady state
and thus the population converges to a homogeneous group of
bandits.

To have a richer dynamics we can consider the subgame in
which only the strategies (I) and (B) participate and choose
the values of the payoff matrix in order to get a prisoner’s
dilemma (PD). While this does not add anything to the
previous observation regarding the Nash equilibrium when
formulating mean-field equations, previous works have shown
that, when considering an underlying network defining the
topology of the interaction between players, the results can
change. It has been observed that a departure from the as-
sumption of a well-mixed population promotes the emergence
of cooperation in the classical PD game, at least for certain
network topologies and a range of values for the payoffs of
the competing strategies [2,3]. Based on these results, one of
the objectives of this work is to understand how the topology
affects the dynamics of the game. For that we introduce a
spatially extended game and consider that the topology of
the interactions between players is described by a network.
In such a case each player plays with its neighbors and the
decision to update its strategy is based only on the local
information collected throughout the neighborhood. There is
a plethora of network topologies from which we can choose
the substrate. In this work we focus on a family of networks
that are likely to enhance the effects on the propagation of a
cooperative behavior such as (I) due to the local character of
the dynamics. These networks, described in Refs. [4] and [5],
present a topology that varies according to the value of the

TABLE I. Payoff table.

S U I B

S ps + qs ps + qu ps + qi ps + qb

U pu + qs pu + qu pu + qi pu + qb

I pi + qs pi + qu pi + qi pi + qb

B pb + qs pb + qu pb + qi pb + qb

disorder parameter. In particular, there are two quantities of
interest such as the clustering coefficient and the average path
length, though we focus on the former.

On the other hand, we must define an imitation dynamics
associated with the evolution of the distribution of strategies
among the population. The simplest assumption is to think of a
deterministic imitation. In each round a given player, the focal
one, plays with all its neighbors, while each of its neighbors
does the same with their own. After that round the focal player
analyses its performance or earnings and compares them with
that of its neighbors. Then, it adopts the strategy of the player
with the highest gain. In the case of a tie the choice is
decided at random. This update dynamics is the simplest one,
representing a deterministic imitation and closely linked to
the replicator dynamics [6]. Adding nondeterministic aspects
can lead to more interesting dynamics but will also screen the
topological effects.

Either case, deterministic or not, is not considering the na-
ture of the players. The dynamics originally proposed is based
on the idea of a rational player, who seeks its own benefit
above all. This is directly associated with the characteristics
of a (B) player but not with the rest. For example, if we attain
to the laws of Cipolla, a player (S) will not be interested in
earning a higher profit and could ignore what happens with its
neighborhood; that is, it could stay immutable and not change
the strategy at all or even imitate the strategy of the neighbor
that has caused the higher loss to the rest.

One way to include this in the imitation dynamics is
to consider different inclinations not to behave as dictated
by rationality according to the nature of the groups. In the
following sections we discuss this possibility.

II. MEAN-FIELD RESULTS

In this section we analyze the replicator dynamics, under
the assumption of a well-mixed population. First we introduce
the payoff matrix

A =

⎛
⎜⎝

ps + qs ps + qu ps + qi ps + qb

pu + qs pu + qu pu + qi pu + qb

pi + qs pi + qu pi + qi pi + qb

pb + qs pb + qu pb + qi pb + qb

⎞
⎟⎠.

As stated in the introduction, we choose the values of
the payoff matrix so that the subgame (I, B) is a prisoner’s
dilemma (PD). In this case we need

pb + qi > pi + qi > pb + qb > pi + qb.

Given that qb < 0 and qi > 0 it is enough to choose pb > pi.
In fact, there is a comparison with a particular case of the

PD that is more suitable. In this version called the donation
game [7], the game is played by two players. Each one is
separately asked whether he or she wishes to give a donation
to the other player or not. If the player accepts to be a donor
he or she would have to give an amount p and the other
player, which will receive a total amount amount q + p. Here
we associate donation (DO) with cooperation. If both players
cooperate they both get q each. However, the most profitable
strategy for each of them is to donate nothing (ND). The
payoff matrix in Table II illustrates the situation.
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TABLE II. Donation game.

DO ND

DO q −p
ND p + q 0

The equations for the evolution of the density of each
strategy xk are

ẋk = xk ([A�x]k − A�xA), (1)

where [A�x]k = ∑
j ak jx j and ak j are the elements of A. From

now on we associate the subindices 1, 2, 3, 4 with s, u, i, b,
respectively.

We can simplify the calculations by making use of one
property of the replicator equations that says that the addition

of a constant ck to the kth column of A does not change Eq. (1)
(when restricted to the simplex where the relevant dynamics
occurs) [6]. We can use then

B =

⎛
⎜⎝

ps ps ps ps

pu pu pu pu

pi pi pi pi

pb pb pb pb

⎞
⎟⎠,

and show that the dynamics is solely defined by the pk values.
Equation (1) can now be written in a much simpler form:

ẋk = xk

⎛
⎝pk −

∑
j

x j p j

⎞
⎠. (2)

This system has four relevant steady solutions correspond-
ing to the survival of a single strategy. The Jacobian of the
system is

⎛
⎜⎜⎝

(1 − xs)ps − p̄ −xs pu −xs pi −xs pb

−xd ps (1 − xd )pu − p̄ −xu pi −xu pb

−xi ps −xiπd (1 − xi )pi − p̄ −xi pb

−xb ps −xbπd −xb pi (1 − xb)pb − p̄

⎞
⎟⎟⎠,

with p̄ = ∑
j x j p j . Considering that the steady states corre-

spond to only one of the xk being equal to unity and the rest
equal to zero, the eigenvalues for a state when xk = 1 and
x j = 0 for j �= k are

(1 − δk, j )p j − pk .

It is straightforward to conclude that the only stable steady
state, when B has four negative eigenvalues, is the one corre-
sponding to the survival of the strategy with the highest pk .
Thus, when considering a mean-field model, the population
converges to a homogeneous group of bandits.

III. DYNAMICS ON NETWORKS

During the last decade many authors began studying evo-
lutionary spatial games to overcome the limitations associ-
ated with the assumption that players were always part of a
well-mixed population [8–10]. These works showed that the
evolutionary behavior and survival of the populations of each
strategy might be affected by the underlying topology of links
between players [2,3,5,11–13].

The fact that strategies not associated with the Nash equi-
librium can survive by forming clusters and gain certain
advantage from this has been analyzed in several works
where the classical cooperative (C) and noncooperative (D)
strategies are considered [9,13–23].

We can gain some intuition about what is happening by the
following reasoning: If (C) nodes can exploit the advantages
of mutual cooperation, the effect of clustering would be to
protect the internal (C) nodes from the presence of the (D)
nodes at the border. Since (D) can only get advantage from
its interaction with (C), only those defectors located on the
border of a group of cooperators can have benefits, while the
grouped (C) obtain benefits from the mutual cooperation.

If the (C) nodes at the boundaries of the cluster notice
that the cooperators inside do better than the (D) outside they
will not be tempted to change their strategy and they might
even succeed to expand the cooperative strategy towards the
defective population. However, this phenomenon is strongly
dependent on the relative values of the payoff of (C) and (D)
when playing against (C) and on the structure of the network.
The most relevant feature in this regard is the clustering
coefficient, which measures the mean connectiveness between
the members of a node’s neighborhood. Ultimately, it is the
existence of local transitive relationships, closely related to
clustering [24], that defines the possibility of survival and
expansion of small cooperator groups [3].

In this work we consider regular networks with a tunable
degree of disorder that translates into different values of
clustering and path length. By construction, these networks
are regular because all the nodes have the same number of
neighbors. To build them we use a modified algorithm based
on the one originally proposed in Ref. [4] that maintains the
regularity [5].

The usual algorithm of construction of WS networks is
as follows: Starting from a regular ordered network with
degree k, each link is rewired with a certain fixed probability,
preserving one of its adjacent nodes but connected at the
other extreme to a random one. Double and self links are not
allowed. Although the algorithm conserves the total number
of links, at the end of the process the degree of each node
is statistically characterized by a binomial distribution. As
we are interested in filtering any effect related to changes in
the size of the neighborhoods, we modify the original WS
algorithm to constrain the resulting networks to a subfamily
with a delta-shaped degree distribution. We call this family of
networks the k-small world (k-SW) networks, where k indi-
cates the degree of the nodes. The procedure is schematized
in Fig. 2.
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FIG. 2. Algorithm of construction of the k-SW networks. In this
example, a single change is depicted. All nodes have degree equal to
three. Initially nodes a and b and nodes c and d are connected. After
the exchange, node a is connected to node d, and node c is connected
to node b. The degree of the nodes has not changed.

The construction procedure begins again with a regular
ordered network which structure is broken by a sequential
exchange of the nodes attached to the ends of two randomly
chosen links. Starting, for example, from an ordered ring
network, each link is subject to the possibility of exchanging
one of its adjacent nodes with another randomly chosen link
with probability πd . Thus, to proceed with the reconnection
of the network we choose two couples of linked nodes (or
partners) rather than one. If we accept to switch the partners,
we get two new pairs of coupled nodes. In this way all the
nodes preserve their degree while the process of reconnection
ensures the introduction of a certain degree of disorder.

The results shown in the present work correspond to net-
works with k = 8. The clustering coefficient starts at C =
9/14 for ordered networks to reach C ≈ 10−3 for the highly
disordered networks.

A. Simple deterministic dynamics

We consider first the simplest dynamics. A chosen player
plays with it neighbors, who in turn also play with the
members of their neighborhoods. After that round, the chosen
player imitates the most successful neighbor. But at this point
we introduce a slight variation. While the imitation of the most
successful will always be the rule for (B), (I), and (U), we

TABLE III. Chosen values for the payoff matrix.

xi xb xd xe yi yb yd ye

1 [1.1, 2] [−2, −1] [−2, −1] 1 −1 1 −1

will analyze two different behaviors for (S): one in which it
imitates the best neighbor as the other strategies and one in
which it never changes the strategy. In this case an (S) player
remains always as (S). We will call the first case no-frozen and
the second one frozen.

As shown in Refs. [2,3], we need to take into account that,
in order for the game to have a nontrivial dynamics and allow
the survival of strategies other than the Nash equilibrium such
as (I), the quotient pm

pi
must not exceed a certain threshold

value that depends on the topology of the underlying network,
especially on the clustering of the nodes and the mean degree.
Thus, we fix the values of all the parameters letting pm vary
within a proper range.

The chosen values are given in Table III.
The main goal of this work is to characterize the influence

of the (S) strategy on the dynamics of the strategy profile
of the population. This is the main rationale to compare
the results derived from the frozen and no-frozen dynamics.
Considering the first two laws it would be interesting to
analyze the effect of the proportion of (S) players among the
population. Therefore we also take different initial fractions of
(S) and analyze the effect they may have on the global wealth
of the population.

Here we show results corresponding to networks with 105

nodes and degree eight, although we have tested different
degrees to ensure that this choice does not affect the generality
of the results. The only constraint is that the network should
be diluted, i.e., a relatively low mean degree.

In all the cases we have verified the convergence to a
global steady state, with sometimes negligible local dynamics.
Once this steady state is reached, we measure the fraction
of individuals in each strategy, xk . We show that, despite
the Nash equilibrium of the game is the pure strategy (B),
the spatial effects can make the (I) strategy survive. In most
cases, except when the fraction of (S) is maintained fixed, the
populations of (S) and (U) disappear.

To analyze the effect of the network topology on the final
state we consider several values of πd and to understand the
role of (S); we start with different fractions of its population.

To characterize the steady state we measure the ratio xi/xb

and the total profit that is being generated in the population
due to the interactions, 〈ε〉. When the strategies (U) and (S) are
absent in the steady state both quantities will display exactly
the same behavior but when at least one of these two strategies
survives we will need both to fully recover the information of
what is happening in the system.

Across the numerical calculations we verified that the
system quickly reaches the steady state after 10 000 time
steps, each one consisting in N rounds of a game between
a randomly chosen node and its neighbors. First we point
to analyze the effect of the initial population of (S) players,
ρs(0), and the topology of the network. For this reason we
consider several values of ρs(0) and πd . At the beginning
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(a) (b)

(c) (d)

FIG. 3. These plots display the results for the no-frozen dynam-
ics. In the top plots we show the results as a function of πd and
different values of ρs(0). (a) This plot shows the ratio ρi/ρb in
the steady state. (b) This figure shows the mean gain in the steady
state. The bottom plots display the results as a function of ρs(0) for
different values of πd . (c) This plot shows the ratio ρi/ρb in the steady
state. (d) This figure shows the mean gain in the steady state. In these
plots the full line correspond to ρs(0) = 0. pb = 1.2.

of the dynamics, the fraction of the rest of the strategies
is the same, [1 − ρs(0)]/3. We have scanned the results for
several values of the parameters pk and qk , and found two
distinct situations. If we take 1.1 < pb < 2.0 the (I) strategy
can always survive thanks to the advantage it can get from the
formation of clusters of (I) individuals that collaborate with
each other, giving them advantages over (B). When pb > 2
this advantage disappears and the population of (I) tends
to zero. The (S) strategy, when present, does not have this
advantage and disappears, just like (U), unless we consider
the frozen dynamics.

First, we study the no-frozen dynamics. Figures 3(a) and
3(b) show the values adopted by the ratio ρi/ρb and the mean
gain of the population 〈ε〉 in the steady state, respectively,
as a function of πd . We find that, effectively, the (S) and
(U) fractions fall to zero and the steady state shows a weak
dependence on the initial fraction of (S). The game ends
up being a PD and the results qualitatively agree with those
obtained in other works for this case. The fraction of (I)
decreases as πd increases [3]. However, the initial fraction of
(S) affects the final state in a nontrivial way. Except for the
lowest values of πd , it seems to have an effect contrary to the
one predicted by Cipolla, because the increase of ρs(0) leads
to a steady state with a higher ratio of cooperators and even a
higher main global gain. We propose later an explanation for
this effect. This can be more clearly observed in Figs. 3(c) and
3(d), where we show the values adopted by ρi/ρb and 〈ε〉 as
a function of ρs(0). The crossover observed in Figs. 3(a) and
3(b) is reflected in the change of slope of the curves according
to the values of πd .

In this analysis we also include the case when ρs(0) = 0,
which helps us to evaluate the effect of ρs(0) �= 0. We observe

(a) (b)

(c) (d)

FIG. 4. These plots display the results for the frozen dynamics.
In the top plots we show the results as a function of πd and different
values of ρs(0). (a) This plot shows the ratio ρi/ρb in the steady state.
(b) This figure shows the mean gain in the steady state. The bottom
plots display the results as a function of ρs(0) for different values of
πd . (c) This plot shows the ratio ρi/ρb in the steady state. (d) This
figure shows the mean gain in the steady state. pb = 1.2.

that, for the lowest values of πd and ρs(0), the population is
harmed by the presence of (S). This scenario seems to change
for higher values of πd or when ρs(0) is high enough. As
mentioned before, we provide an explanation after studying
the frozen case.

In the former example, the populations of (S) and (U)
decay to reach extinction.

Next, we may think of an alternative imitation dynamics
that might seem to be the closest interpretation of Cipolla’s
laws. We now consider that the population of (S) does not
change its strategy throughout the evolution of the strategies
of the rest of the population. Note that the unlikely adoption
of the strategy (S) is not forbidden.

The results are shown in Fig. 4, with a correspondence
between the panels of Fig. 3 and this one. We see that, in most
of the cases when the value of πd increases, the final fraction
of (I), ρi, increases too. This is not the case for the lowest
values of ρs(0), when the results are similar to what has been
observed for ρs(0) = 0.

These results give us a hint of what could be happening
that could explain why in the no-frozen case, the highest initial
fraction of (S) favors the survival of (I). When confronted with
an (S) player, the (I) will never change its strategy. The only
temptation for a change comes from a possible higher payoff
only attainable by a (B) player. Thus, the (S) population is
screening or isolating the (I) players, letting them to clusterize
and eventually propagate their strategy. In the no-frozen case,
this transient phenomenon leads an increase in the ratio ρi/ρb.
In the frozen case this effect is limited by the permanent
presence of (S), which partially inhibits the propagation of
both strategies.

But in the presence of an (S) player in the steady state,
the ratio ρi/ρb is not giving us the proper information of the
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state of the population, because (B) players are potentially
being replaced by (S). Thus we analyze the values of 〈ε〉. We
observe that, unlike in the no-frozen case, the greater the initial
fraction of (S), the worse is the performance of the population.
And also, we can see that the mean profit is always lower than
in the no-frozen case. Thus, the survival of the (S) population
results in a clear global damage.

Some of the results shown in Fig. 4 could be explained just
by the fact that we are starting with a higher initial number
of individuals within the frozen (S) population, leaving us
with a trivial effect. Given that the population of (S) is
maintained frozen, it is not surprising that the wealth of the
population decreases with the initial fraction of (S), but the
curves displayed in Fig. 4(d) show a nonlinear dependence,
evincing nontrivial effects.

As stated in previous works [2,3], the possibility of survival
of (I) depends on the ratio between the payoffs received by
strategies (I) and (B) when confronting another (I), that is,
(pb + qi )/(pi + qi ). As this ratio grows, the surviving fraction
of the (I) population decreases. For both cases we verified that,
for pb � 2, only (B) players survive, except for the frozen
population of (S) in the corresponding case.

We note that, in all the cases studied above, the population
of (U) disappears.

B. Specific dynamics

In the previous section we considered a differentiated
imitation dynamics only for the (S) strategy. Here we explore
an expansion of this idea by considering a specific imitation
dynamics for each strategy, always inspired by the principles
that characterize each of them.

Among the four groups defined by Cipolla only (B) be-
haves like a rational player, always looking for the individual
wealth above all and therefore always imitating the neighbor
with the highest profit. On the opposite side, the U group
presents an altruistic nature, seeking the benefit of the other.
In that sense, we may assume that such players will try to
imitate the neighbor who generates the greatest profit for the
rest, irrespective of his own profit associated with that change.

In the previous section we consider two possibilities for
the imitation behavior of (S): it could or could not change
its behavior. In the present case we also consider these two
options but, in case it changes its strategy, it will not act as a
rational player. We assume that the need to generate damage,
regardless of the costs, is rooted in its nature. Following this
premise it will imitate the neighbor that produces the greatest
loss or minor gain in its neighborhood.

Finally, we consider that the (I) group shows some traces of
altruism but not at the cost of self-generating a loss. So it will
seek not to suffer a loss but at the same time to be involved
with the generation of a global profit. So it will imitate the
neighbor who generates the greatest global profit and at the
same time does not involve its own loss.

So, as in the previous section, we have a no-frozen and
a frozen case. As will be shown, the results for both cases
present a new feature, the survival of the (U) population.

Both cases show results qualitatively very similar to what
we obtained for the frozen dynamics in the previous example,
reflecting that the dynamics chosen for the (S) groups ensures
its survival.

(a) (b)

(c) (d)

FIG. 5. These plots display the results for the no-frozen dynamics
and specific imitation behavior. In the top plots we show the results
as a function of πd and different values of ρs(0) when the imitation
dynamics is differentiated. (a) This plot shows the ratio ρi/ρb in
the steady state. (b) This figure shows the mean gain in the steady
state. The bottom plots display the results as a function of ρs(0)
for different values of πd . (c) This plot shows the ratio ρi/ρb in the
steady state. (d) This figure shows the mean gain in the steady state.
pb = 1.2.

Figure 5 shows the results for the no-frozen dynamics.
The new imitation behavior adopted by (S) prevents it from
changing the strategy, indicating that, even at a local scale,
the (S) player is the one causing the greater loss. Despite the
similarities, the mean profit of the population is always higher
for the no-frozen case, mainly due to the fact that the presence
of (I) players is higher, as can be observed in Fig. 6. Also, in
the no-frozen case there is a decrease of the (S) population,
reaching steady fractions verifying ρs ≈ ρs(0)2.

The main difference between the former results and the
new ones resides in the fact that now, a small population of (U)
can persist. This is shown in Fig. 7 where the steady fraction of
(U), ρu, is depicted. The figures show the frozen and no-frozen
cases, for several values of πd and as a function of ρs(0).
We just recall that the clustering coefficient goes down as πd

increases so, for a proper comparison with previous figures,
the x axis should be read from right to left.

C. The clustering effect

Throughout this section we have been pointing at the net-
work structure, specifically, the clustering coefficient, as the
main item responsible for the observed dynamics. To support
this claim we include a figure where the curves are depicted as
a function of the mean clustering of networks built by using
the same value of πd . Figure 8 shows the ratio between the
population of (I) and (B) for the cases studied above.

It is clear that the effect of clustering is not the same in the
case shown in Fig. 8(a) as in the rest. This case corresponds
to the no-frozen dynamics, where the (S) players can be
eventually replaced by (I) or (B) and thereafter the
already-known results about higher clustering promoting the
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(a) (b)

(d)(c)

FIG. 6. These plots display the results for the frozen dynamics
and specific imitation behavior. In the top plots we show the results
as a function of πd and different values of ρs(0) when the imitation
dynamics is differentiated. (a) This plot shows the ratio ρi/ρb in
the steady state. (b) This figure shows the mean gain in the steady
state. The bottom plots display the results as a function of ρs(0)
for different values of πd . (c) This plot shows the ratio ρi/ρb in the
steady state. (d) This figure shows the mean gain in the steady state.
pb = 1.2.

cooperation are recovered [3]. In this case, the higher the
clustering, the higher the density of cooperators, since coop-
eration can only survive the invasion of the noncooperators by
forming clusters and taking advantage of mutual cooperation.
The figure shows how, in the other cases, a higher clustering

(a)

(b)

FIG. 7. Steady fraction of (U), ρu, as a function of ρs(0) for the
(a) frozen and (b) no-frozen cases.

(a) (b)

(d)(c)

FIG. 8. This plot shows the ratio ρi/ρb in the steady state for
different cases as a function of the clustering coefficient C: (a) frozen
and simple dynamics, (b) no-frozen and simple dynamics, (c) frozen
and specific dynamics, (d) no-frozen and specific dynamics.

seems to inhibit cooperation or the density of (I) players.
While the effect is the opposite that described earlier, the
underlying phenomenon is the same. If a small group of
clustered (I) is invaded by a (B) player, the temptation to
defect can propagate. However, in a low clustered network
and in the presence of an (S) player, the (I) player survives not
by being clustered but by being isolated from the temptation
to become a (B) player by the presence of (S) players. In this
case any (I) player has no temptation to change its strategy
because its payoff is always higher than that of an (S) player. A
case that deserves further explanation is the one corresponding
to Fig. 8(c). In this case, we are dealing with a non-frozen
situation. However, the specific dynamics ensures the survival
of a population of (S) players, who play the screening role
mentioned above.

IV. CONCLUSIONS

In this work we present a mathematical interpretation
and analysis of the ideas introduced by Cipolla in Ref. [1].
The adopted formalism is based on the formulation of an
evolutionary game whose payoff matrix is a direct translation
of the definition of the four groups characterizing the nature
of human transactions. We have shown that the resulting
game has a unique Nash equilibrium and thus the evolution
of the strategies under the replicator dynamics leads to a
trivial solution corresponding to a homogeneous population
of bandits. Based on previous results on spatial cooperative
games, we adopted payoff values that let us identify some
features of the present game with a prisoner’ s dilemma. In
addition to this, we explored a spatial version of the game by
considering a selected family of underlying regular networks.
These networks are characterized by a single disorder param-
eter and the degree of the nodes.

The analysis of the spatial version of the game presented
interesting results that let us reveal the mathematical structure
behind the ideas of Cipolla.
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According to Cipolla’s laws, the number of stupids cannot
be estimated. To explore the possibility of a critical fraction
of (S) individuals can affect the population, we have explored
a range of values in the interval [0,1]. We have found that
even the smallest fraction of stupids produces a notable effect.
Letting aside some subtleties to be explained later, the overall
conclusion is that, as the fifth law establishes, a stupid person
is the most dangerous, even more dangerous than a bandit.
This is reflected in the fact that, in most cases, a higher
fraction of (S) lead to a lower global gain, independently of
whether the (S) group can or cannot change its strategy. We
found some exceptions where the (S) group seems to exert
contradictory effects favoring the propagation of (I) players
and leading to a higher mean profit. Before explaining this
effect we want to address other results that deserve a closer
look and are related to the behavior of the ratio between the
(I) and (B) group, and the survival of (U) individuals. We have
found that, when the (S) players survive, their steady fraction
depends only on ρs(0), so the topology of the networks
seems to play no role. While this may sound obvious for the
frozen dynamics, it is not for the no-frozen one. However, the
topology of the network is extremely relevant in defining how
the initial (S) population will affect evolution and organization
of the final state. The (S) initial population together with
the topology of the network is what governs the final ratio
between the (I) and (B) population, and thus the overall gain
of the population. In all the cases, the permanent presence of
the (S) group undermines the wealth of the population and
only a transient survival can lead to an overall gain. This
phenomenon is the result of a screening effect played by
the (S) population, as they isolate the (I) players from the
(B) ones avoiding the tempting change from (I) to (B). At
the same time, during the transient presence of (S), the (I)
group strengthens and may start to propagate towards the (B)
population. At this point, the (S) populations starts to play
the opposite role, as it prevents the (I) group from advancing
over the (B) population. This effect is responsible for the
nonmonotonic shape of the curves observed in Figs. 4(c), 5(c),
and 6(c).

The present four-strategy game can be also analyzed in
the context of potential games [25]. These sorts of games
present deterministic Nash equilibria. At the same time, a
close connection between the dynamics of the strategies of
the players and the thermodynamics of a system of spins on
a lattice can be done [26,27]. The departure from the Nash
equilibrium observed in the present work is solely attributed

to the imitation dynamics and to the disordered structure of
the underlying network.

One of the distinctive features of the present game is the
irruption of a completely disruptive strategy, in the sense
that it violates the spirit of any rational player and of the
evolutionary dynamics itself. The stupid player plays even
against itself. It is worth mentioning some other examples
in the literature where such irrational behavior have been
proposed and tested. In Ref. [28] the authors study a usual
public game with the addition of a new strategy called
joker. This strategy is somehow analogous to (S) in the
sense that it causes a loss to others even when incurring a
self-loss because it cannot share the profits. The remarkable
finding of this work is that the joker strategy affects the
evolution of the game, even promoting the consolidation of
cooperation as a response to the irrational behavior of the
joker.

The influence of the topological structure of the underlying
network has also been shown and discussed in Refs. [29]
and [30]. In Ref. [29] the authors study the evolution of
the strategies of a population playing the PD subject to
a noisy payoff matrix. The relevance of this work in the
context of the present one is that the authors showed that
the presence or absence of loops in the links affected the
survival of the cooperative behavior. On the other hand, in
Ref. [30] the authors consider different network structures
to analyze the probability that a given mutant individual can
propagate the mutation over the entire population. While the
analyzed phenomena could be seen as different from that
studied here, the underlying mechanism of propagation is very
similar.

In this work we have excluded the possibility that pi > pb.
If such were the case, the structure of the game would be
different, leading to a trivial homogeneous population of (I)
individuals, even in an extended game. We wanted to explore
a situation in which there is a social dilemma and there is a
temptation not to adopt a cooperative strategy, such as the PD.

In summary, our work explores the ideas of Cipolla,
showing that their implementation as a game may lead to
interesting and nontrivial conclusions, in agreement with the
proposed laws.

In this work we have only considered deterministic dynam-
ics. The introduction of some stochasticity, not only in the
imitation dynamics but also in the possibility of a spontaneous
change of strategy of some players, will be analyzed in a
future presentation.
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