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Quantum vibrational resonance in a dual-frequency-driven Tietz-Hua quantum well
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We investigate the response of a quantum particle in the Tietz-Hua quantum potential driven by biharmonic
fields: a low-frequency force and a very high frequency force. The response is characterized by the occurrence
of a maximum in the first-order transition probability amplitude |s|2 under the influence of the applied fields. It is
shown that in the absence of the high-frequency component of the applied fields, |s|2 shows a distinct sequence
of resonances, whereas an increase in the amplitude of the high-frequency field induces minima in |s|2. However,
the |s|2 maximum occurs in the low-frequency regime where it may be considered otherwise weak in the presence
of a single harmonic force.
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I. INTRODUCTION

Periodically driven systems have attracted much attention
over the years. They are ubiquitous in many different scientific
and engineering disciplines. Driving functions can either be
due to deterministic forces (i.e., a single or multiple harmonic
function of time) [1] or stochastic forces (i.e., forces in the
form of noise) [2]. Periodic driving can induce a plethora of
dynamical phenomena that yield helpful insights into a wide
range of processes on both the macroscopic and microscopic
scales. They can give rise to more complex dynamics [3], to
the suppression of synchronization when acting as a coupling
function [4] or to enhanced synchronization in the case of
noise driving [5], to dissociation dynamics [6], and to non-
linear resonances [3,7,8], to mention but a few examples.

Vibrational resonance (VR), a nonlinear resonance phe-
nomenon with potential applications to weak signal enhance-
ment and bearing fault detection, has recently received con-
siderable attention. The phenomenon occurs in biharmoni-
cally driven nonlinear systems. It was first identified and
demonstrated numerically by Landa and McClintock [9],
confirmed theoretically by Gitterman [10] and by Blekhman
and Landa [11,12], and detected experimentally in vertical
cavity surface emitting lasers and optical systems [13–17].
In VR, the response of a nonlinear system to the effect of
the low-frequency component of the biharmonic signal can be
amplified by the presence of the high-frequency component
when the difference between the frequencies is sufficiently
large ([7,15,18–28] and references therein). The VR scenario
is analogous to stochastic resonance (SR) but with the high-
frequency input force taking the place of noise [29,30]. Both
SR and VR have been extensively investigated in the classical
domain, and increasing effort is now being directed towards
the study of quantum SR in a variety of systems [31–36].

*Corresponding author: u.vincent@lancaster.ac.uk

Quantum VR has been much less studied [7,18], however,
and this is especially the case for systems with interatomic
potentials describing the molecular dynamics at moderate and
high rotation vibration quantum numbers [37].

Interatomic potentials arise in, e.g., molecular physics,
molecular mechanics, and material science in various forms—
the most commonly used being the Morse [38] and Tietz-
Hua [39] potentials that have largely replaced the more tradi-
tional Lennard-Jones potential. The Tietz-Hua (TH) potential
is a much more realistic model than the Morse potential. It
is known to provide an adequate description of the vibra-
tional and rotational energy spectra, dissociation energies,
and intermolecular interactions of diatomic molecules. It was
introduced by Hua [39] as a four-parameter potential function
for bond-stretching vibrations of diatomic molecules and for
fitting the experimental Rydberg-Klein-Rees (RKR) curve
function. Extensive research has been carried out to obtain
the eigenstates, intersubband optical transitions, and energy
eigenvalues, among others, of the potential for diatomic
molecules, with applications in diverse optical and electronic
systems [37,40–46].

More importantly, the Tietz-Hua quantum well has been
studied under two-frequency applied external fields. These
included an intense laser field (ILF) plus lower-frequency
electric and magnetic fields. In this direction, the density
matrix formalism and the perturbation expansion method were
recently employed to investigate the optical transitions be-
tween any two subbands in the Tietz-Hua quantum well [47].
In related theoretical work, Ungan et al. [48] showed that
changes in the Tietz-Hua potential quantum well refractive
index and optical absorption coefficient are sensitive to the
effects of applied external fields. The results [47,48] demon-
strate clearly that the intensity of the ILF and the strengths of
the electric and magnetic fields may play significant roles in
determining the nonlinear optical response of the Tietz-Hua
quantum system. Motivated by these earlier results, we now
explore VR in a TH quantum well. We characterize the re-
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sponse of the oscillator on the basis of the first-order transition
probability and examine VR for the cases of positive, negative,
and zero potential constants. The rest of the paper is organized
as follows. In Sec. II, we describe the Tietz-Hua quantum
well. In Sec. III, we discuss our numerical results. Section IV
discusses the parameter space of quantum vibrational reso-
nance (QVR) including, in particular, the transition between
resonance and antiresonance. The paper is summarized and
concluded in Sec. V.

II. MODEL

When driven by a dual-frequency external field, namely,
W (t ) = gcos(ωt ) + G cos(�t ), with � � ω, ω and � being
the frequencies of the low and very high frequency forces,
and g and G denoting their amplitudes, respectively, the
Hamiltonian of the Tietz-Hua quantum mechanical oscillator
under consideration is given by

H = H0 + λx[gcos(ωt ) + G cos(�t )], (1)

where H0 = p2
x

2m + VTH is the unperturbed Hamiltonian of the
system and VTH is the confinement potential. In this study, VTH

is the TH potential, given by [39]

VTH = V0

[
1 − e−bh (r−re )

1 − che−bh (r−re )

]2

, bh = β(1 − ch), (2)

where β stands for the Morse constant, V0 is the depth of
the potential, ch is the potential constant representing an
optimization parameter derived from an ab initio or RKR
intramolecular potential, re is the molecular bond length, and
bh represents the confinement parameter. The potential is non-
polynomial, and for positive values of V0, VTH has a minimum
value of zero at r = re. In the interval Re+ : ch ∈] − 1, 1[, VTH

is not a continuous function but has a singularity. In this paper,
for ease of calculation, we define a dimensionless parameter
x = r

re
, so that the TH potential takes the form

VTH(x) = V0

[
1 − e−γ (x−1)

1 − che−γ (x−1)

]2

, (3)

where γ = bhre. Remarkably, the TH potential reduces to the
classical Morse potential [38] when the potential constant
ch = 0 and becomes wider (narrower) for small (large) values
of γ , i.e.,

VM (x) = V0[1 − e−γ (x−1)]2. (4)

The essential features of the TH potential are shown in Fig. 1
for the parameters γ = 1, V0 = 6 and three values of ch.

Our interest lies in calculating the probability of finding the
oscillator in any fth state at time t as the oscillator undergoes
transitions between energy eigenstates when subjected to the
external field. This probability is given by Pfi (T ) = |δ fi +
λa(1)

f (T )|2, and its detailed derivation is presented in the

Appendix. The term s in the expression for a(1)
f (T ) depends

solely on the parameters g, ω, G, and � of the biharmonic
forcing and T . Thus, the quantity of interest is |s|2 and its
variation with the parameters of the biharmonic force. The un-
perturbed Hamiltonian for the Tietz-Hua oscillator is exactly
solvable for the s wave (l = 0) [42]. The energy eigenvalues

FIG. 1. The shape of the Tietz-Hua potential for the parameters
γ = 1, V0 = 6 and different values of ch.

were obtained and are given in closed form as [42]

(2n + 1)

[√
A + BC2 + ch

√
(V0 − En,0)

B

D

]
+ BC

+ 2

√
[A + BC2]

[(
B

V0

)
(V0 − En,0)

]
+ c∗

h = 0 (5)

where c∗
h = ch(n2 + 3n + 0.5) = 0, A = ch

4 , B = 2μ( V0

b2
h h̄2 ),

C = (ch − 1).
The Tietz-Hua quantum oscillator has a finite number of

bound states for diatomic molecules, all of which can be
controlled by the effective well depth parameter V0. For the
purpose of our study we fix V0 = 100 and set the quantities
h̄2 = 2μ = b2

h = 1 for convenience. The values of ch are
chosen to be [−0.2, 0, 0.2]. The closed form equation for
the energy eigenvalue is then numerically evaluated at the set
values to yield five bound states (n = 0, 1, 2, 3, and 4) for the
different cases of the potential constant. All state transitions
are referenced with respect to the ground state. Table I gives
the corresponding energy levels and transition frequencies for
the three values of the potential constant used in this paper.

TABLE I. Energy values and transition frequencies for the Tietz-
Hua potential.

ch = −0.2 ch = 0 ch = 0.2

n En,0 ω fi En,0 ω fi En,0 ω fi

0 −20.6283 0 −20.25 0 −19.6949 0
1 −13.1625 7.465766 −12.25 8 −11.0152 8.679681
2 −7.28898 13.33933 −6.25 14 −4.96873 14.72615
3 −3.08509 17.54322 −2.25 18 −1.36033 18.33454
4 −0.63537 19.99295 −0.25 20 −0.01661 19.67826
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FIG. 2. Resonance peaks in the low-frequency force regime of
the Tietz-Hua quantum oscillator with a positive potential constant,
ch = 0.2: (a) f = 0, (b) f = 1, (c) f = 2, (d) f = 3, and (e) f = 4.

III. RESULTS AND DISCUSSION

A. First-order probability amplitude for low-frequency force

Here, we examine the system in the absence of high-
frequency force. Thus, we present numerical results for the
first-order probability amplitude |s|2 under the action of low-
frequency excitation by assuming a finite time of application
of external harmonic force, i.e., T = 2 π

ω
, and that the system

is initially in the ground state (i = 0). The amplitude of the
low-frequency force is fixed as g = 0.05 throughout the paper.
The low-frequency ω is varied from 0 to 30 to capture essen-
tial features of the resonances with their corresponding peaks.
Results obtained for three cases, namely, positive, negative,
and zero potential constants, are presented in Figs. 2–4. The
maximum transition probability amplitude for each of the
three cases considered occurs when the frequency of the low-

FIG. 3. Resonance peaks in the low-frequency force regime of
the Tietz-Hua quantum oscillator with a negative potential constant,
ch = −0.2: (a) f = 0, (b) f = 1, (c) f = 2, (d) f = 3, and (e) f = 4.

FIG. 4. Resonance peaks in the low-frequency force regime of
the Tietz-Hua quantum oscillator with the zero potential constant,
ch = 0: (a) f = 0, (b) f = 1, (c) f = 2, (d) f = 3, and (e) f = 4.

frequency driving force is equal to the transition frequency
of that state. This follows directly from Eq. (A13): when
ω f i ≈ ω, the denominator in r1− → 0. Thus, the quantity r1+
can be neglected, and the quantity |s|2 attains its maximum
value.

With a positive potential constant, ch = 0.2, we show in
Fig. 2 a sequence of resonance peaks obtained for the station-
ary states f = 0, 1, 2, 3, and 4. The transition frequencies are
given in Table I. At ω = 0, the quantity |s|2 is maximum for
state f = 0, while for states f = 1, 2, 3, and 4 the quantity
|s|2 has the values 0.000407, 0.000152, 2.99 × 10−5, and
2.42 × 10−5, respectively. The maximum peaks are obtained
for each state at ω fi = ω, as can be seen from Fig. 2.

Shown in Fig. 3 is a sequence of resonance peaks ob-
tained for the states f = 0, 1, 2, 3, and 4 using a negative
potential constant, ch = −0.2. The transition frequencies are
given in Table I. Similar to the results for ch = 0.2, at ω =
0, the quantity |s|2 is maximum for state f = 0, while for
states f = 1, 2, 3, and 4 the quantity |s|2 has the values
0.000397, 0.000167, 5.62 × 10−5, and 1.23 × 10−8. Further-
more, the sequence of resonance peaks obtained for states
f = 0, 1, 2, 3, and 4 is depicted in Fig. 4 for ch = 0. The
transition frequencies are tabulated in Table I. |s|2 takes on its
maximum value at ω = 0 for state f = 0, while for all other
states, |s|2 attains the same value, 1.5 × 10−34.

B. Effects of the amplitude of the high-frequency force

Here, the high-frequency field excitation is activated, and
its amplitude G is varied between 0 and 0.5 while keeping
its frequency � fixed at � = nω, where n = 5 is a positive
integer. The range of values of the low frequency ω was
appropriately chosen to ensure the existence of resonances as
discussed in Sec. III A. For all values of the positive, nega-
tive, and zero potential constants considered, we observed a
decrease in |s|2 to a minimum value as G increases and then
an increase with further increase in G as well as a monotonic
increase in the first-order probability amplitude |s|2 with
both the low-frequency and high-frequency driving forces.
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FIG. 5. Quantum vibrational antiresonance (QVAR) in the low-
frequency force regime of the Tietz-Hua quantum oscillator with the
zero potential constant, ch = 0. (a) ω = 1.0, (b) ω = 1.7, (c) ω =
2.0, (d) ω = 3.0, (e) ω = 4.0, and (f) ω = 5.0.

Henceforth, we refer to the former behavior as quantum
vibrational antiresonance (QVAR). We note that the results
for ch = −0.2 are similar to those for ch = 0.2. Thus, we
focus on only two cases: ch = 0 and ch = 0.2. The first-order
transition probability exhibits QVAR at certain values of ω as
G is varied for fixed � = nω. For fixed �, QVAR was realized
for all bound states of the TH quantum well for appropriate
choices of ω. In what follows, specific occurrences of QVAR
states are discussed for ω = 1, 1.7, 2, 3, 4, 5.

1. |s|2 for the zero potential constant

We begin our discussion by exploring the QVAR phe-
nomenon with the potential constant set to zero (ch = 0).
Note that the system under consideration then reduces to the
Morse oscillator given by Eq. (4) [7]. Figure 5(a) shows the
transition amplitude |s|2 for ω = 1.0 and for all the states. For
the bound states f = 1, 2, 3, and 4 the transition amplitude
increases monotonically with G. Here, no QVAR is observed
for any of the states. Moreover, for the state f = 0 the quantity
|s|2 is identically zero. In Fig. 5(b), for ω = 1.7, QVAR
is evidently well pronounced for only one state, f = 0, at
g = 0.202 and with the quantity |s|2 = 3.58 × 10−9, whereas
|s|2 increases monotonically with increasing G for all other
states. In Fig. 5(c) for ω = 2.0, the transition probability
amplitudes within the interval of interest for all the states
are identically zero. In Fig. 5(d), QVAR takes place in two
bound states when ω = 3.0. QVAR is marked for states f = 1
and 2 at g = [0.146, 0.008] with the quantity |s|2 = [1.37 ×
10−32, 3.24 × 10−34], respectively, whereas |s|2 for states f =
3 and 4 increases monotonically and takes on zero values for
state f = 0. Again, for ω = 4.0, |s|2 takes on zero values for
all the states, as shown in Fig. 5(e). However, when the value
of ω increases appreciably, QVAR reappears. For instance,
when ω = 5.0, shown in Fig. 5(f), marked manifestations of
QVAR are observed for three states, namely, f = 2, 3, and
4 at g = [0.125, 0.05, 0.03] with the quantity |s|2 = [5.38 ×
10−35, 1.06 × 10−3, 1.22 × 1034], respectively. The transition

FIG. 6. Quantum vibrational antiresonance (QVAR) in the low-
frequency force regime of the Tietz-Hua quantum oscillator with
a positive potential constant, ch = 0.2. (a) ω = 1.0, (b) ω = 1.7,
(c) ω = 2.0, (d) ω = 3.0, (e) ω = 4.0, and (f) ω = 5.0.

probability amplitude within the interval of interest for the
state f = 1 is nearly constant, while that of f = 0 vanishes.

2. |s|2 for the positive potential constant

Now we turn to the case when ch �= 0 and, in particular,
the case when it takes on positive values (ch = 0.2). We then
find QVAR occurring more frequently in nearly all the bound
states, including bound states where QVAR does not occur
when ch = 0, as shown in Figs. 5(c) and 5(e). For the purposes
of comparison with the Morse case (i.e., ch = 0) shown in
Fig. 5, Fig. 6(a) illustrates the transition probability amplitude
for ω = 1.0 under the same conditions as in Fig. 5(a). For
states f = 1, 2, 3, and 4, the transition probability amplitude
increases monotonically with G, with no occurrence of QVAR
in any of the bound states, and similar to the ch = 0 case, the
quantity |s|2 vanishes for the bound state f = 0. However, a
dramatic change from the zero values obtained for ch = 0, to
nonzero values, takes place, and the occurrence of |s|2 minima
is evident in Fig. 6(b) for ω = 1.7. It indicates the QVAR state
for f = 0 at G = 0.202, with the quantity |s|2 = 3.58 × 10−9

at |s|2min. For the other bound states, f = 1, 2, 3, and 4, the
transition probability amplitude monotonically increases with
varying G. A further increase in ω to ω = 2.0 induces QVAR
in the bound state f = 1 only at G = 0.017, as shown in
Fig. 6(c), while |s|2 is identically zero for f = 0 and increases
monotonically for all other bound states. We emphasize here
that the nonvanishing feature of |s|2 in the bound states f =
2, 3, and 4 and the occurrence of QVAR represent some
remarkable effects of the potential constant ch and are not
found in the Morse oscillator for which ch = 0 shown in
Fig. 5(c). The effect of G shown in Fig. 6(d) for ω = 3.0 is
identical to the observed features when ch = 0, where two
QVARs occur for states f = 1 and 2 at G = [0.113, 0.002]
with the quantity |s|2 = [8.73 × 10−33, 1.87 × 10−3], respec-
tively, while the transition probability amplitude for state
f = 0 is identically zero, and for states f = 3 and 4 |s|2
increases monotonically, without the occurrence of QVAR.
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In Fig. 6(e) for ω = 4.0, the QVAR states are abundant
for almost all the bound states, with the exception of the
ground state f = 0, where the first-order transition probability
amplitude within the interval of interest is identically zero.
For states f = 1, 2, 3, and 4 the QVAR phenomenon occurs
at G = [0.274, 0.046, 0.01, 0.002] with the quantity |s|2 =
[6.3 × 10−33, 5.53 × 10−34, 2.16 × 10−34, 1.62 × 10−34], re-
spectively. Again, the resonance feature at ω = 4.0 is ab-
sent for ch = 0 [see Fig. 5(e)]. In Fig. 6(d) three QVAR
states are shown for ω = 5.0 of the five states; namely,
f = 2, 3, and 4 and occur at G = [0.106, 0.046, 0.033]
with |s|2 = [6.53 × 10−35, 1.09 × 10−34, 1.2 × 10−34], re-
spectively. However, there is a gradual decrease in the first-
order transition probability amplitude for the bound state f =
1, while that of f = 0 is identically zero.

At this juncture, we make two remarks: (i) the main effect
of the high-frequency signal on the Tietz-Hua oscillator is the
induction of new QVAR states when ch �= 0; (ii) QVAR occurs
in a single quantum oscillator in the absence of coupling,
unlike classical vibrational antiresonance (VAR), which can
take place only in coupled nonlinear oscillators [49].

C. EFFECT OF HIGH-FREQUENCY ON
THE TRANSITION PROBABILITY

In the presence of the second harmonic force we investigate
the impact of its high-frequency component � on the first-
order transition probability for the states, and henceforth,
we focus on the positive potential constant (ch = 0.2). In
Eq. (A14) the high-frequency component � appears in the
arguments of r2+ and r2−, which are sinusoidal functions
of the first-order transition probability. Thus, the first-order
transition probabilities can exhibit sequences of resonance
peaks when � is varied while the other parameters of the
external field remain fixed. The high-frequency � is set as
an integer multiple of the low frequency (i.e., � = nω), with
n denoting the integer scaling factor, so that � varies with
the low frequency ω. The effect of � on |s|2 with n = 1,
5, 10, 20, and 50 was first investigated for all the bound
states and ch = 0.2 of the TH quantum wells within three
regions of interest, i.e., region I, ω < ω f i; region II, ω ≈ ω f i;
and region III, ω > ω f i. In addition, we chose appropriate
values for n and examined extensively the behavior of the
transition probability as a function of ω under the combined
effects of the two harmonic fields. For all the cases considered
here, the effect of the high-frequency component is observed
numerically from the variation of the quantity ln |s|2 with the
low frequency ω; the amplitudes of the two forces each remain
fixed at F = 0.05 and G = 0.5.

We now examine the effect of the high-frequency com-
ponent on different states (i.e., for f ∈ [0 : 4]), starting with
the ground state, f = 0. Remarkably, it is impracticable to
examine the effect of � = nω on the transition probability for
the state f = 0 in regions I (ω < ω f i) and II (ω ≈ ω f i) since
ω f i = 0 for all values of the potential constant. However, it is
clear from Fig. 7 that the transition probability for the ground
state for ch = 0.2 in region III is rapidly oscillating from its
maximum value at ω ≈ ω f i = 0 with multiple peaks occur-
ring sequentially for n ∈ [5, 10, 20, 50], with the number of
peaks increasing appreciably with an increase in the values of

FIG. 7. Effects of high frequency on |s|2 in the ground state f =
0 for different values of � = nω scaled as n = 1, 5, 10, 20, and 50.
The other parameters are ch = 0.2, F = 0.05, and G = 0.5.

n over the entire region. This scenario was also found for all
values of ch. However, when the system does not vibrate, i.e.,
for n = 1, the transition probability is characterized by slowly
varying peaks, with its minimum occurring at integer values
of ω over the given interval.

Next, we examine extensively the excited states of the os-
cillator. Illustrated in Fig. 8 and in the three-dimensional (3D)
plot displayed in Fig. 9 are sample results for the different
states (i.e., for f ∈ [1 : 4]). The behavior of the transition
probability in each of regions I, II, and III was examined
thoroughly and is summarized below.

1. Region I: ω < ω f i

The scaling integer n plays a significant role in the vibra-
tional dynamics. Clustered peaks dominate this low-frequency
regime of ω with the order of the onset of peaks occurring

FIG. 8. Effects of high frequency on |s|2 in the excited states
f = 1, 2, 3, and 4 for different values of � = nω scaled as n =
1, 5, 10, 20, and 50. The other parameters are ch = 0.2, F = 0.05,
and G = 0.5.
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FIG. 9. Three-dimensional views of the transition probability |s|2 as a function of ω and G showing the effects of high frequency for integer
multiples of � (� = nω): (a) and (b) n = 1 and (c) and (d) n = 50; ch = 0.2, and g = 0.05.

with decreasing magnitudes of the integer n (see Fig. 8).
Prominent multiple peaks with marked intensities occur in
the reverse order: n = 50, 20, 10, and 5. However, for n = 1
(i.e., � = ω), when the system does not vibrate, the states
show a sequence of slowly varying peaks with increasing
intensity. This reversal in the peak intensity can be understood
as follows. The r2− component of the probability amplitude s,
given by Eq. (A14) (see the Appendix), increases appreciably
with increasing n, thus attaining its maximum rapidly at low
ω values. The transition probability does not exhibit a mono-
tonic behavior within this region in all the states; rather, it os-
cillates rapidly with increasing n. The maximum peak points
for � = nω, with n = 5, 10, 20, and 50 for states f = 1, 2, 3,
and 4, are attained when the high-frequency component of
the biharmonic force equals the transition frequency of the
given state (i.e., � = nω = ω f i). The characteristic features
of the transition probability in this region are analogous to the
vibrational higher-order resonance observed in the classical
system [13].

2. Region II: ω ≈ ω f i

In this region, for states f = 1, 2, 3, and 4 with ch = 0.2,
the dominant peak is obtained when � = ω (i.e., n = 1). This
is to be expected judging from Eq. (A14), where it can be

inferred directly that the r1− and r2− components are equal,
with their respective denominator at its minimum value, with
|s|2 attaining its maximum value when � = ω = ω f i. The
QVR in this case is analogous to the traditional resonance
observed with the low-frequency force acting alone but differs
from it in that the second harmonic force also has its frequency
equal to that of the transition frequency of the given state.
This consequently gives rise to the increase in transition
probability with the amplitude G and frequency component
� of the second harmonic force. The minimization of the
denominator of the r1− component of the transition amplitude
increases the transition probability appreciably in this region
for n = 5, 10, 20, and 50, corresponding to the pronounced
QVR peaks exhibited by the transition frequencies of the
oscillator, as shown in Fig. 8.

3. Region III: ω > ω f i

In this region for all states ( f = 1, 2, 3, and 4) with ch =
0.2 fixed, the transition probability exhibits multiple peaks
of varying amplitude for n = 5, 10, 20, and 50. For n = 1,
however, |s|2 oscillates slowly with sequential peaks of de-
creasing amplitude, without any prominent maximum peak,
as ω increases.
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FIG. 10. Three-dimensional view of the transition probability |s|2 as functions of both ch and G showing the effects of high-frequency for
integer multiples of �(� = nω), where n = 5 is an integer and g = 0.05 and for different states: f = 1, f = 2, f = 3, and f = 4. Subplots
labeled (a)–(d) for different states f = 1, f = 2, f = 3, and f = 4 correspond to different values of the low-frequency ω fixed as: (a) ω = 1,
(b) ω = 1.7, (c) ω = 3, and (d) ω = 5.

IV. QVR REGIME IN PARAMETER SPACE: TRANSITION
FROM QVAR TO QVR

In this section, we describe the results of numerical exper-
iments using several different values of the scaling integer
n. Shown in Figs. 9(a) and 9(b) is the dependence of |s|2
on the parameters ω and G for n = 1. Notice that Fig. 9
is a 3D representative of Fig. 5 in which the occurrence of
QVAR was demonstrated in Sec. III B for selected values
of the low frequency, ω. The 3D representation provides
further insight into the parameter space of ω and G in which
resonance is expected to occur. With � = nω and n = 1,
we find in Fig. 9 that all the excited bound states exhibit
QVAR. However, the location and number of QVAR dips and
wells is dependent on the bound state, f = i (i = 1, . . . , 4).
Starting with state f = 1 and in the low-amplitude regime
of the high-frequency component of the driving force, three
distinct and separated QVAR dips are clearly visible, all of
which occur within the interval 0 < G < 0.3. Moving farther
from f = 1 to higher excited bound states f = 2, 3, 4, the
QVAR states become closely bunched in the neighborhood
of G < 0.05 with vanishing QVAR. This observed QVAR

resonance feature predominates when n < 50. The existence
of the dips in parameter space shown in Figs. 9(a) and 9(b)
suggests the likelihood of particle trapping in energy states
that are low compared to the higher excited energy states.
However, when the intensity of the high-frequency component
of the driving becomes stronger, the trapping probability tends
to zero during the transition.

When the scaling integer n becomes large such that � �
ω, there is a dramatic reversal in the nature of the reso-
nance oscillation in which a transition from QVAR to QVR
can occur. Here, QVR occurs when n = 50, as shown in
Figs. 9(c) and 9(d). Two of the most striking features evident
in Figs. 9(c) and 9(d) are the increase in peak densities and
the appearance of new peaks in the excited bound state, i.e.,
fi (i = 1, . . . , 4) of the Tietz-Hua oscillator. The observed fea-
tures are characteristic of QVR induced by the high-frequency
component � of the second harmonic field. The phenomenon
appears more pronounced in the low-ω regime (typically, ω =
[0, 1]) for all states in which |s|2 exhibits multiple resonances
as well as a sharply defined maximum transition probability,
as shown in Fig. 10.
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In the preceding discussions, we set the potential parameter
ch = 0 corresponding to the Morse potential and chose an
arbitrary value (ch = 0.2) for the TH potential system. In di-
atomic molecules, ch can take on a wide range of both negative
and positive values (see, for instance, Refs. [41,42,50,51])
which determines the rotation-vibration spectrum of a given
molecular system explicitly. We now consider the behavior of
|s|2 over wide ranges range of the parameters ch and G and
its impact on resonance. Illustrated in Fig. 10 is the variation
of |s|2 as a function of ch and G. Simulations were carried
out for all the bound states and for different values of the low
frequency ω[1.0, 1.7, 3.0, 5.0] while keeping other system pa-
rameters fixed. For state f = 1, QVAR is predominant for all
values of ch with the QVAR depth located in the neighborhood
of G = 0.1 when ω = 3.0. In state f = 2, however, QVAR
occurs abundantly at higher values of ω, namely, ω = 5.0, and
as higher energy states are approached ( f = 4), QVAR seems
to disappear, with QVR features (indicated by the red-colored
regions) predominating.

V. SUMMARY AND CONCLUSIONS

In summary, the phenomenon of vibrational resonance oc-
curs when the response of a low-frequency-driven classical os-
cillator is enhanced by means of a second, but high-frequency,
signal whose frequency is comparatively very strong relative
to the low-frequency force. In this paper, we have investigated
the quantum counterpart of this phenomenon in a quantum
mechanical Tietz-Hua oscillator driven by a dual-frequency
field consisting of weak and strong contributions at different
frequencies. We explored, identified, and classified the vari-
eties of resonances induced by the high-frequency vibration
characterized by the appearance of minima and maxima of
the first-order transition probability amplitude |s|2. With only
the low-frequency ω component of the driving force, |s|2
exhibited a sequence of resonances of decreasing amplitude,
with the dominant resonance occurring at the low frequency
ω equal to the transition frequency of the bound state un-
der consideration. However, under the combined actions of
the low-frequency and high-frequency excitations, we found
some interesting resonance phenomena, which we classify as
follows: quantum vibrational resonance (QVR), wherein a
maximum or peak in |s|2 occurs; quantum vibrational antires-
onance (QVAR), wherein a minimum or dip in |s|2 occurs; and
quantum vibrational multiresonance (QVMR), wherein either
or both QVR and QVAR occur in two or more bound states or
in a given parameter space.

Conclusively, it was found that the high-frequency excita-
tion field significantly enhances the transition probability of
the bound states when its frequency is very large in com-
parison with ω: typically, � = 50ω in the low-frequency ω

regime, where it may be considered otherwise weak in the
presence of a single harmonic force. Notably, the amplitude
G of the high-frequency external field induces QVAR modes
in all of the states considered, depending on the values of ω.
In addition, by setting the high-frequency component � as an
integer multiple of the low-frequency ω component, QVMR
appeared, in addition to pronounced maximum intensities,
and was found to characterize the excited energy states. The
onset of maxima depended on the magnitude of n when

ω < ω f i, with ω f i being the transition frequencies. Finally, in
the two-parameter space of ω − G, a transition from QVAR
to QVR, wherein peaks in |s|2 predominate, was found when
n ≈ 50. For n < 50 in the ω − G parameter space, QVAR
predominates in all the bound states.
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APPENDIX: QUANTUM THEORY OF
VIBRATIONAL RESONANCE

In principle, a quantum mechanical oscillator undergoes
transitions between the energy eigenstates when subjected to
an external field. It is therefore justifiable to focus our atten-
tion on determining the probability of finding the oscillator in
any fth state at time t (see Ref. [7] for details). The starting
point is to consider the time-dependent Schrödinger equation
for any quantum mechanical system, given as

ih
∂ψ

∂t
= Hψ, (A1)

where ψ (x, t ) is the wave function of the perturbed system,
which may be written as

ψ (x, t ) =
∑

n

an(t )φn(x)e− iEn
h̄ t . (A2)

The probability of finding the system in state n is

Pn(t ) = |an(t )|2,
∑

n

|an(t )|2 = 1. (A3)

To determine the probability amplitude an(t ), we apply stan-
dard time-dependent perturbation theory. Suppose the external
field is switched on at t = 0 and switched off at t = T , i.e.,
after a finite time interval T . Suppose also that the system was
initially in the ith state with the eigenfunction φi. Then, at
t = 0 the probability of finding the system in the ith state is
1, and the probability of finding the system in any other state
is zero, that is, an(0) = δni. Under the influence of the applied
fields, the system can make a transition from the ith state to
another state after time T . Once the perturbation is switched
off, the system settles into a stationary state, and this final state
is denoted as f .

Substituting Eq. (A2) into Eq. (A1) yields

ih̄
∑

n

ȧne− iEn
h̄ tφn = λ

∑
H0

1 e− iEn
h̄ t , (A4)

where H0
1 = W (x)e−iωt . Multiplying Eq. (A4) by φ∗

f and
integrating over all space, we have

ih̄ȧ f = λane−i(ω fn −ω)t Hfn , (A5)

where

ω fn = (E f − Ei )/h̄, (A6)

Hfn =
∮ ∞

−∞
φ∗

f W (x)φndx. (A7)
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Expanding a f (t ) = a(0)
f + λa(1)

f + λ(2)a(2)
f + · · · , we obtain

the evolutions for a0
f and a1

f as

ih̄ȧ(0)
f = 0, (A8)

ih̄ȧ(1)
f =

∑
a0

nei(ω fn −ω)t Hfn . (A9)

Thus, Eq. (A8) gives a(0)
f = at

f .
Equation (A9) is a set of coupled integro-differential equa-

tions. For a system with n discrete eigenstates Eq. (A9)
consists of n equations, each of which has n terms on the
right side. To simplify the problem, we modify it slightly by
assuming that the perturbation is switched on at t = 0 and
switched off at t = T . At t = 0 the system may be assumed
to reside in the eigenstate φi such that a0

ni = δni. Once the
perturbation is switched off, the system settles down to a
stationary final state denoted by f . We are interested in the
probability of finding the system in state f after time T . This
probability is denoted as Pfi = a∗

f a f . Equation (A9) may be
written as

ȧ(1)
f = 1

ih̄
e−i(ω f fi

−ω)t Hfi . (A10)

Integrating Eq. (A10) from zero to T gives

a(1)
f (T ) = Hf1

ih̄

∫ T

0
e−i(ω f fi

−ω)t dt

= Hf1

h̄
(
ω fi − ω

) (1 − e−i(ω f fi
−ω)T ). (A11)

Then,

Pfi (T ) = 4|Hfi |2
h̄2(ω fi − ω)2

sin2[(ω fi − ω)]T/2. (A12)

For H1 = x[gcos(ωt ) + G cos(�t )],

a f (T ) = Hf1

2h̄
s, s = g(r1+ + r1−) + G(r2+ + r2−), (A13)

with r1± and r2± given, respectively, as

r1± = 1 − ei(ω f1 ±ω)T(
ω f1 ± ω

) , r2± = 1 − ei(ω f1 ±�)T(
ω f1 ± �

) , (A14)

Hfi =
∮ ∞

−∞
φ∗

f xφidx. (A15)

The transition probability from the ith state to the f th state
is therefore given by Pfi (T )|δ fi + λa(1)

f (T )|2, where s depends
solely on the parameters of the biharmonic forcing and T .
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