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Josephson junction with variable thickness of the dielectric layer
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The dynamics of the fluxon in the Josephson junction is studied. The dielectric layer of the junction has a
variable thickness. It is shown that the modified area of the junction acts on the fluxon as a potential barrier. The
relation between the critical bias current and the thickness of the dielectric layer is analytically and numerically
determined.
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I. CONTEXT

At sufficiently low temperatures, some systems, such as the
liquids 3He and 4He, atomic Bose-Einsten condensates, and
superconducting materials, exist in coherent states. The issue
of the behavior of macroscopic quantum systems has attracted
much attention. On the effective level these systems can be
described by nonlinear field equations [1]. The properties
of these systems have found a variety of technical appli-
cations. In particular, superconductors are applied in many
devices. For example, two superconductors can be arranged
in a device known as a Josephson junction. The state of
each superconducting electrode is effectively described by a
many-particle wave function. The modulus of this function
describes the square root of the density of Cooper pairs
in the superconducting material. Because the electrodes are
separated by a very thin dielectric layer, the macroscopic
wave functions overlap and therefore the only nontrivial
variable that describes the dynamics of this system is the
gauge-invariant phase difference φ of the phase factors. This
system was first described by Josephson [2] and then this
description was confirmed experimentally by Anderson and
Rowell [3]. The dynamics of the φ variable is governed by
the sine-Gordon equation [4]. Further modifications of this
model, following from the theory of microscopic tunneling,
primarily appeared in [5]. This description has been developed
up to now [6]. The properties and applications of this model
are described in many textbooks and articles [7]. In some
physical contexts this equation also appears in a form that
explicitly breaks translational invariance [8]. In particular,
the Josephson junction is an example of a nonlinear electric
circuit, which has attracted the attention of researchers due to
its chaotic behavior [9].

The high speeds and low energy dissipation of its switching
has motivated the investigation of many electronic devices
constructed on the basis of the Josephson junction. The digital
electronics based on the flux quanta was proposed in [10].
However, the prospect of rapid single flux quantum (RSFQ)
technology based on point junctions is still unclear [11]. Many
devices are based on thermal effects in the junction. An exam-
ple is the topological variant of the superconducting quantum
interference proximity transistor (TSQUIPT). This device can

act as a thermal switch. Unlike a conventional superconduct-
ing quantum interference device (SQUID), this device does
not require any ring structure [12]. Another proposal is a
very sensitive detector of electromagnetic fields or even a
single photon detector based on a SQUID [13]. There are also
proposals of superconducting thermal memory devices. Such
devices can work even at GHz frequencies [14]. A further,
potentially very useful, device can serve as a superconducting
thermal router in which the thermal transport can be locally
controlled through kink excitations, whose positions can be
externally controlled through a bias current or a magnetic
field [15]. Other suggestions concern heat engines, energy-
harvesting devices, sensing devices, switching devices, and
clocking devices for caloritronics circuits and thermal logic
[16]. On the other hand, a single topologically protected
excitation, which represents a flux quantum, can be pinned by
inhomogeneities [17]. Moreover the fluxon can be moved and
controlled by bias currents and manipulated through shape
engineering [18]. In [19], the curved regions of the junction
can act as potential barriers. In this approach, through the
appropriate arrangement of the sequence of curved regions,
one can prepare the potential barriers. In this context, there is
also the idea of the application of two-dimensional junctions
with curved boundaries [20]. In this approach, the junction
is represented by a flat surface (a surface with zero external
curvatures) but curvature effects follow from the curvature of
the boundaries of this system. Another proposal concerns the
influence of variable width of the junction on the fluxon dy-
namics [21]. In addition to digital electronics, the Josephson
junction can find applications in quantum computing as qubits
[22], which are basic elements of quantum computers [23].

In the present paper we study the impact of the varying
the thickness of the dielectric layer of the Josephson junction
on the kink motion. We expect that the Josephson junction
studied by us can potentially be used in high-frequency
appliances. In particular, the promising area of applications
is technology of superconducting integrated receivers and
generators of submillimeter waves [24]. A local variation of
the barrier width, including its influence on the fluxon, has
been studied before in a number of papers [25]. We consider
the influence on the fluxon motion of deforming the regions
of the junction. In the next section we formulate the problem.
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Sections III and IV contain results concerning the interaction
of the soliton with a deformed sector of the junction. In these
sections we consider the dynamical impact of deforming of
the junction on the maximal reflection speed uc of the fluxon.
The results of these sections are used in the description of
the sine-Gordon model in the presence of dissipation and the
bias current in Secs. V and VI. In these sections we obtain
the dependence of the critical bias current on the parameters
of the deformation. The critical current separates the situation
when the fluxon stops at a deformation from the situation
when it passes through it. The last section contains some
remarks.

II. A JUNCTION WITH VARIABLE THICKNESS
OF THE DIELECTRIC LAYER

The equation that describes the dynamics of the gauge-
invariant phase difference in a long Josephson junction (which
is a one-dimensional system) has the form

1

c̄2
∂2

t φ − ∂2
x φ + 1

λ2
J

sin φ = 0, (1)

where the Josephson penetration depth λ2
J = h

2eJcμ0dm
is deter-

mined by the critical Josephson current Jc, Planck’s constant
h, the elementary charge e, the permeability of free space μ0,
and the magnetic depth dm = 2λL + a. The last quantity de-
scribes how deeply the magnetic field penetrates the junction.
The magnetic depth is specified by the London penetration
depths of both superconducting electrodes and the thickness a
of the dielectric layer. The variable x specifies the positions of
the points along the junction. In the present paper, we consider
the impact of varying the thickness of the dielectric layer on
the propagation of the fluxons along the junction. In particular
we pose the question of whether an area of increased thickness
may act as a potential barrier which reflects the fluxon.
We assume the dependence of the thickness of the insulator
on the space variable of the form a = a(x) = ab[1 + ω(x)],
where ab is a basic thickness and the function ω(x) describes
the variation of the thickness from its basic value. In these
conditions the total magnetic depth of the junction changes
according to the formula dm = dm0[1 + εω(x)], where dm0 =
2λL + ab measures the magnetic depth with respect to the
basic thickness of the dielectric layer and ε = ab

dm0
is a small

dimensionless parameter. Under these conditions, the Joseph-
son penetration depth λ2

J = λ2
J0

1
1+εω(x) = λ2

J0
1

g(x) is a space-

dependent quantity, where λ2
J0 = h

2eJcμ0dm0
and the function

g(x) = 1 + εω(x) is related to the thickness by the function
ω(x). Similarly, the Swihart velocity becomes the space-
dependent quantity c̄2 = c2 a(x)

εI dm (x) = c̄2
0

1+ω(x)
1+εω(x) = c̄2

0
1

η(x) ; here

c̄2
0 = c2 ab

εI dm0
is a constant defined with respect to the basic

thickness, εI is the permittivity of the insulator that forms the
dielectric layer, and η(x) = 1+εω(x)

1+ω(x) is a function that depends
on position. In the present paper, we set ε = 0.01. Next, we
introduce the dimensionless units x → x/λJ0, t → t c̄0/λJ0,
and then the field equation for φ takes the form

η(x)∂2
t φ − ∂2

x φ + g(x) sin φ = 0. (2)

l
b
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FIG. 1. An example of deformation of the dielectric layer with
finite size l .

This equation follows from the Lagrangian density

L = 1
2η(x)(∂tφ)2 − 1

2 (∂xφ)2 − g(x)(1 − cos φ). (3)

In the subsequent part of this article we consider some par-
ticular forms of the function ω(x). The junctions of this type
can be prepared with the use of lithographic techniques. The
resolution of these techniques is limited by the wavelength of
the source. In this regard, one of the most precise techniques is
x-ray and electron lithography, which enables the replication
of high-resolution patterns with the use of shadow printing.
The simplest arrangement that enables the realization of this
technique consists of an electron microscope controlled online
by a computer with software enabling the replication of a
given pattern [26].

The relative thickness of the dielectric layer, with respect
to the basic quantity ab, considered in the present paper is
presented in Figs. 1 and 2.

III. THE MOTION OF THE FLUXON IN THE PRESENCE
OF A UNIT STEP DEFORMATION

The Hamiltonian of the system described in the previous
section has the form

H =
∫ +∞

−∞
dx

[
1

2
η(x)(∂tφ)2 + 1

2
(∂xφ)2 + g(x)(1 − cos φ)

]
.

(4)

l
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FIG. 2. A deformation of the dielectric layer with unlimited size
l → ∞.
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The form of the functions η and g is crucial for the behavior of
the considered system. As a result of numerical simulations,
we confirmed that the two models, one described by the
functions η(x) = 1+εω(x)

1+ω(x) , g(x) = 1 + εω(x) and the second

described by the functions η(x) = 1
1+ω(x) , g(x) = 1 + εω(x)

for ε = 0.01, produce, with very high accuracy, the same
results. In other words, neglecting the linear term with respect
to ε in η has no impact on the dynamics of the fluxon. On the
other hand, the linear term with respect to small parameter ε

in the case of the function g(x) is crucial for the behavior of
the fluxon in the system and therefore cannot be omitted. The
neglected linear term in η causes only a small local change of
the Swihart velocity, whereas a small change of g(x) arranges
that there is no reflection from the deformed area. In the
further course of this paper we present results for the second
system, i.e., the system with neglected linear term (in ε) in the
function η.

The Hamiltonian (4) can be separated into the pure sine-
Gordon term and some modifications:

H =
∫ +∞

−∞
dx

[
1

2
(∂tφ)2 + 1

2
(∂xφ)2 + (1 − cos φ)

]

+
∫ +∞

−∞
dx

[
− ω(x)

2[1 + ω(x)]
(∂tφ)2 + εω(x)(1 − cos φ)

]
.

(5)

At first, we consider the modifications of the dielec-
tric layer thickness described by the formula ω(x) =
b[	(x) − 	(x − l )]. In the further parts of this paper, we will
show that the behavior of the fluxon is little sensitive to the
details of the shape of the function ω. The perturbed part of
the Hamiltonian connected with the above deformation can be
separated as follows,

H = HSG +
∫ l

0
dx

[
− b

2(1 + b)
(∂tφ)2 + εb(1 − cos φ)

]
,

(6)

where HSG represents the pure sine-Gordon Hamiltonian. The
Hamiltonian for the fluxon

φk (t, x) = 4 arctan[exp(ξ )], (7)

where ξ = x−x0−ut√
1−u2 is given by the function

H = 8√
1 − u2

+
√

1 − u2

[
− 4b

(1 + b)

u2

1 − u2
+ 4εb

]
×U (l, x0). (8)

Here U (l, x0) = 1
2 [tanh(ξx=l ) − tanh(ξx=0)]. The function U

for small velocities is presented in Fig. 3, where X = x0 + ut ,
and therefore ξx=l ≈ l − X and ξx=0 ≈ −X . The critical
velocity corresponds to the maximum value of the kink speed
for which reflection from the deformed area of the junction
occurs. In order to calculate this speed, we equate the fluxon
energy far from the deformed area (at the beginning of its mo-
tion) to the energy of the resting fluxon at the top of the defor-
mation. From (8), at the initial instant t = 0, the fluxon is far
from the deformed area and therefore E |u=uc,U=0= 8√

1−u2
c

.

At the end of its motion, the fluxon stops at a maximum of

l 10
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l 1

tanh l 2
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FIG. 3. U as a function of X .

U and therefore its energy is E |u=0,U �=0= 8 + 4εb tanh(l/2).
The speed that corresponds to this process is

uc =
√

1 − 1[
1 + 1

2εb tanh(l/2)
]2 . (9)

The same system could be described in the framework of
the perturbational scheme applied to the description of the
modified sine-Gordon model in [27]:

∂2
t φ − ∂2

x φ + sin φ = ε f . (10)

In reality, not all of the deformation term present in the
Hamiltonian (6) can be considered as a small perturbation.
In case of the fluxon (7), we assume a dependence on the
variable ξ = x−X√

1−u2 , where this time X = x0(t ) + ∫
0

t dt ′u(t ′).
Approximate equations of motion for X and u are

du

dt
= −1

4
(1 − u2)

∫ +∞

−∞
dx ε f (φ(ξ )) sechξ, (11)

dX

dt
= u − 1

4
u
√

1 − u2

∫ +∞

−∞
dx ε f (φ(ξ )) ξ sechξ . (12)

Explicit integration leads to the system of ordinary differential
equations

du

dt
= −1

4
(1 − u2)−3/2

(
b

1 + b

u2

1 − u2
+ εb

)
U1, (13)

dX

dt
= u − 1

4
u(1 − u2)

(
b

1 + b

u2

1 − u2
+ εb

)
U2. (14)

The auxiliary functions U1 and U2 have the form

U1 = sech2

(
X√

1 − u2

)
− sech2

(
l − X√
1 − u2

)

and

U2 = − X√
1 − u2

sech2

(
X√

1 − u2

)

− l − X√
1 − u2

sech2

(
l − X√
1 − u2

)

+ tanh

(
X√

1 − u2

)
+ tanh

(
l − X√
1 − u2

)
.

The critical point of the system (13) and (14) corresponds to
the fluxon at rest (u = 0) at X = l/2, the center of the barrier.
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FIG. 4. The critical velocity for l = 1. Black points represent
numerical results obtained from the field model (2). Gray points
represent the results of the simplified dynamical model (13) and (14).
The analytical formula is represented by the continuous line.

Now we will compare the values of the critical velocity uc

which follow from the complete field model (2) with those
that follow from the approximate dynamical equations (13)
and (14) and the analytic formula (9).

The values of the critical speed in Figs. 4 and 5 that follow
from the field model are represented by the black points.
The values of uc that follow from the approximate dynamical
model are represented by the gray points. The analytical result
is represented by the black continuous line. In Fig. 4, which
corresponds to a small width of the deformed area l = 1,
the analytical formula underestimates the numerical values
from the field model (2). On the other hand, the approximate
dynamical model slightly overestimates the values that follow
from the field equation. The situation for larger values of
the width of the deformation is different. Figure 5 shows
the excellent matching of the analytical formula (9) for l =
10 with the numerical result. The approximate dynamical
model (13) and (14) significantly overestimates the values
of the critical velocities. Moreover we performed numeri-
cal simulations for l ∈ {1, 3, 5, 10, 20, 50, 100} and also for
ω(x) = b	(x), which corresponds to an “infinite” width of
the deformation. There are two main observations that follow

0 2 4 6 8 10
0.0

0.1

0.2

0.3

uc

FIG. 5. The critical velocity for l = 10. As in the previous figure,
black points represent numerical results obtained from the field
model. Gray points represent the results of the simplified dynamical
model. The analytical formula is represented by the continuous line.

l � 10

l � 1

0 2 4 6 8 10
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0.05
0.10
0.15
0.20
0.25
0.30

uc

FIG. 6. The critical speed: Comparison of the numerical result
of the field model with analytical result for l = 10 (black points and
line) and l = 1 (gray points and line).

from these studies. First, the analytical formula better approx-
imates the numerical results of the field model than does the
simplified dynamical model. Second, for l � 10, the precision
of the analytical result is similar or identical to the precision
presented in Fig. 5. Due to these results, in the further parts
of this paper, we will only compare the analytical results with
the complete field model.

IV. INSENSITIVITY OF THE CRITICAL SPEED TO THE
DETAILS OF THE SHAPE OF THE DEFORMATION

In this section we test the sensitivity of the formula (9)
to the details of the deformation shape. We assume a de-
formation described by the function ω(x) = b{tanh(σx) −
tanh[σ (x − l )]}/2. We performed simulations for different
values of the parameters σ and l . It turns out that the
agreement of the numerical analysis with (9) for σ � 1 and
l � 10 is very good. We performed numerical tests for l ∈
{1, 3, 5, 10, 20, 50, 100} and for the step like function ω(x) =
b[tanh(σx) + 1]/2, which represents an unlimited value of
l . We also tested different values of the second parameter,
namely, σ ∈ {0.1, 0.5, 1, 5, 10}.

The precision of (9) can be presented with the example
of σ = 1 for l = 1 and l = 10. In Fig. 6, the numerical data
coming from the field model for l = 1 are represented by the
gray points and the analytical results by the gray continuous
line. On the other hand, the corresponding data for l = 10 are
represented by black points and the black line. At least the
same level of precision as for l = 10 was obtained whenever
l � 10 and simultaneously σ � 1. In fact, if the distance l
was so large that the function had a clear plato, then the results
for small σ were also consistent with (9). For instance, such a
situation takes place for σ = 0.1 and l = 100.

V. INFLUENCE OF THE BIAS CURRENT ON THE
MOTION OF A KINK WITH A UNIT STEP DEFORMATION

In the previous sections, we considered the ideal system
(without dissipation or bias current) in order to extract the
impact of the deformed area of the dielectric layer on the
fluxon motion. In this section we take into account the dissipa-
tion present in real systems and also the presence of the bias
current. First for completeness of the presentation we recall
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the result that concerns the junction without deformations
[27],

∂2
t φ + α ∂tφ − ∂2

x φ + sin φ = −γ . (15)

If we multiply both sides of this equation by the time deriva-
tive of the φ and then integrate it with respect to the space
variable, we obtain

d

dt
HSG = −

∫ +∞

−∞
dx[γ ∂tφ + α (∂tφ)2]. (16)

Next, one can put the kink solution (7) into the above formula,
thus obtaining an ordinary differential equation for the fluxon
velocity

du

dt
= 1

4
πγ (1 − u2)

3
2 − α u(1 − u2). (17)

The constant equilibrium solution of this equation, us =
constant, corresponds to the situation when the loss of power
due to dissipation is balanced by the power input caused by
the bias current:

us = 1√
1 + (

4α
πγ

)2
. (18)

This speed corresponds to stationary motion of the fluxon in
the junction. Equipped with this knowledge, we can consider
the system which is the main subject of the present paper: a
junction with a locally deformed dielectric layer. This system
is described by the equation

η(x) ∂2
t φ + α ∂tφ − ∂2

x φ + g(x) sin φ = −γ . (19)

In this section, as in Sec. III, the deformation is described
by the function ω(x) = b[	(x) − 	(x − l )]. The formula (18)
relates the bias current with the velocity which corresponds to
stationary motion (in our case far from the deformation). If
the velocity of the fluxon us does not exceed the critical value
(9), then the fluxon stops at the position of the deformation. In
the opposite case, the fluxon passes through the deformation.
The critical value of the bias current γc that separates these
two regimes corresponds to us = uc, i.e.,

γc = 4

π
α

√
u2

c

1 − u2
c

, (20)
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0.000
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Γc

FIG. 7. The critical value of the bias current as a function of the
thickness of the dielectric layer. The numerical results (gray points)
compared with those of the analytical formula (20) (gray line) for l =
1. For l = 10, black points (numerical) and black line (analytical).

0 2 4 6 8 10
0.000

0.001

0.002
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FIG. 8. The critical value of bias current as a function of the
thickness parameter b. The corrected analytical formula (21) is com-
pared with the numerical values. Black dashed line and black points
correspond to l = 10. Gray dotted line and gray points describe the
case of l = 1.

where the critical speed uc is given by (9). A graphical
comparison of the numerical results of the field model (19)
with those of (20) is presented in Fig. 7. The gray continuous
line and gray points represent the analytical results and the
numerical simulations for l = 1. The analytical formula in
this case fits the numerical data very well. The black con-
tinuous line and black points represent the analytical result
and the numerical data for l = 10. This time we observe some
discrepancy between the analytical result and the numerical
data. Moreover, we observe the same level of discrepancy for
l � 10, i.e., for l = 10, 20, 50, 100. In order to improve the
consistency of the results we introduced into the formula (20)
an empirical correction of the critical speed,

γc = 4

π
α

√
(uc − �uc)2

1 − (uc − �uc)2
, (21)

where �uc = u0 tanh(l/2) and the factor u0 is fitted for all
values of l by u0 = 0.0138. The corrected formula (21) is
compared with the numerical results in Figs. 8 and 9 for
different ranges of b. The gray dotted line corresponds to
l = 1 and the black dashed to l = 10. A similar level of
agreement is reached for all other values of l .

0.2 0.4 0.6 0.8 1.0
0.0002

0.0004

0.0006

0.0008

0.0010

Γc

FIG. 9. The numerical values of the critical bias current com-
pared with the modified analytical formula (21). Black dashed line
and black points correspond to l = 10. Gray dotted line and gray
points describe the case of l = 1. The results concern a narrower
range of the thickness parameter b than in Fig. 8.
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FIG. 10. Critical values of bias current for l = 10 black contin-
uous line compared with black dots and for l = 1 gray continuous
line compared with gray dots. Dots represent numerical values of the
field model and the continuous lines represent analytical result. In all
cases σ is set equal to 1.

VI. LIMITS OF INSENSITIVITY OF THE CRITICAL
BIAS CURRENT TO THE DETAILS

OF THE SHAPE OF THE DEFORMATION

In order to test how much the analytical results of the
previous section are sensitive to the details of the deformation,
we once again consider the system defined by Eq. (19), but
this time we consider a deformation of the form ω(x) =
b{tanh(σx) − tanh[σ (x − l )]}/2. First we compare the behav-
ior of the system that follows from the field model with the
predictions of (20). In Fig. 10, the numerical values of the
critical bias current for the small width of the deformation
l = 1 are represented by gray points and the values that follow
from the analytical formula (20) are represented by the gray
line. Similarly, the numerical values of the field model for l =
10 are represented by black points and the black continuous
line represents the analytical result for this deformation width.
In Fig. 10, the second parameter is set to σ = 1. In both
cases, (20) overestimates the numerical values. Moreover, the
relative error of this formula for l = 1 is significantly greater
than the error for l = 10. We also performed a comparison for
different values of l and σ and we noticed that for l � 10 and
σ � 1, the error is similar to that in the case l = 10 and σ = 1.
A similar comparison is presented for the case of the corrected
formula (21). This time, the analytical formula for l = 1 is
represented by the dotted gray line and the formula for l = 10
is represented by the dashed black line. For l = 10 we observe
a very good compatibility of the corrected analytical formula
(21) with the field model predictions, while for l = 1, (21)
overestimates the numerical values. In both cases, in the figure

0 2 4 6 8 10
0.000

0.001
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0.003

0.004

Γc

FIG. 11. The improved analytical formula (21) compared with
numerical results from the field model. The black, respectively, gray
points represent the numerical results for l = 10, respectively, l = 1.
The improved analytical formula is represented by the dashed black
line for l = 10 and gray dotted line for l = 1.

the second parameter is set to σ = 1. Moreover, we compare
the numerical values from the field model with the results of
the improved formula (21) and have a similar consistency (as
for l = 10 in Fig. 11) for all l � 10 and σ � 1.

VII. REMARKS

What is crucial for potential applications of the described
system is the fact that regions with an increased thickness of
the dielectric layer act on the fluxon as a potential barrier. We
have shown that the details of the deformation of the dielectric
layer have a negligible impact on the fluxon dynamics. This al-
lows forming potential barriers that can be used for the storage
of fluxons. We have proposed a formula that relates the value
of the critical bias current with the essential parameters of
the shape of the deformation. Summing up, we have proposed
an analytical description of Josephson junctions with variable
thickness of the dielectric layer. In these junctions, properly
prepared dielectric layers make it possible to store fluxons on
one side of a potential barrier. The crucial condition for the
transition of a fluxon through such a barrier is the value of
the applied bias current. Whenever the bias current exceeds
the critical value, we observe the transmission of the fluxon.
In the opposite case, the fluxon is stored on one side of the
deformed area.

One of the possible applications of the described junc-
tion could be the generation of high-frequency submillimeter
waves. This technology is justified by the development of
practical systems [24].
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