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Disentangling synchrony from serial dependency in paired-event time series
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Quantifying synchronization phenomena based on the timing of events has recently attracted a great deal of
interest in various disciplines such as neuroscience or climatology. A multitude of similarity measures has been
proposed for this purpose, including event synchronization (ES) and event coincidence analysis (ECA) as two
widely applicable examples. While ES defines synchrony in a data-adaptive local way that does not distinguish
between different timescales, ECA requires selecting a specific scale for analysis. In this paper, we use slightly
modified versions of both ES and ECA that address previous issues with respect to proper normalization and
boundary treatment, which are particularly relevant for short time series with low temporal resolution. By
numerically studying threshold crossing events in coupled autoregressive processes, we identify a practical
limitation of ES when attempting to study synchrony between serially dependent event sequences exhibiting
event clustering in time. Practical implications of this observation are demonstrated for the case of functional
network representations of climate extremes based on both ES and ECA, while no marked differences between
both measures are observed for the case of epileptic electroencephalogram data. Our findings suggest that careful
event detection along with diligent preprocessing is recommended when applying ES while less crucial for ECA.
Despite the lack of a general modus operandi for both event definition and detection of synchronization, we
suggest ECA as a widely robust method, especially for time-resolved synchronization analyses of event time
series from various disciplines.
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I. INTRODUCTION

Along with the rising availability of empirical data across
many scientific fields, in the past decades a variety of statis-
tical methods have been newly developed to deal with ever
larger data sets. As specific events, particularly extremes,
in both nature and society attract a great deal of attention
from the academic world as well as the general public [1],
a methodologically sound analysis of event time series in
general, and synchrony between event in particular, is crucial
not only for research progress, but also for informed decision
making relying on confident results. Accordingly, in different
fields of science, the quantification of event synchronization
has recently become a focal point of a plethora of different
studies and methods. Among the methodological develop-
ments aimed at serving this purpose, event synchronization
(ES) [2] and event coincidence analysis (ECA) [3,4] stand
out as two conceptually simple nonlinear measures that are
potentially applicable to a broad variety of problems of such
diverse fields like neuroscience and climatology.

Being originally motivated by the emerging nonlinear dy-
namical analysis of electroencephalogram (EEG) recordings
in terms of spike train synchrony between different brain
areas [2,5–12], ES has recently been applied to problems
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outside the neurosciences as well, including group dynamics
in both humans and animals [13,14], econophysics [15], and
climate extremes [16–28]. Notably, the thorough application
to climate problems has been mainly governed by a method-
ological combination with the paradigm of functional network
analysis [29,30], as will be further detailed in the course of
this work. ES has the important advantage of automatically
classifying pairs of events at two distinct spatial locations
as (not) synchronized without the need to manually select
any algorithmic parameters, particularly a maximum tolerable
mutual delay to consider two events synchronized.

On the other hand, ECA has been recently introduced based
on the general idea of capturing event synchrony between
point processes, which do not necessarily share the common
properties of neuronal spike trains like a relatively well-
expressed pacemaker. Successful applications of the method
can be found across various disciplines, including paleocli-
matology [3], the climate-security nexus [4,31], plant sciences
[32–36], modern-day climatology [37,38], and even seismol-
ogy [39]. As opposed to ES, ECA commonly requires at
least one input parameter (the maximum possible delay) to be
selected, which, however, also entails the potential advantage
of a more refined analysis by isolating certain timescales
based on a priori knowledge or specific research questions.
Unlike ES, ECA has so far not been used to analyze EEG
data or generate functional network representations of large-
scale spatiotemporal climate data, making this a novelty worth
exploring in the forthcoming sections.
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Both ES and ECA share the fundamental property of
basically counting synchronous events based on pairwise
comparison and subsequent aggregation. Yet they differ in
the specification of the tolerance window for identifying
synchronous events, with ES relying on a dynamic (data
adaptive) and hence local approach, while ECA requests a
static (global) parameter to be selected. Even though both
methods have been demonstrated to be applicable to a wide
range of research problems, they have exhibited a tendency to
remain used by rather disjoint scientific communities, as no
in-depth comparison, which elaborates on the (dis)advantages
of each method, has been conducted so far.

Accordingly, in the present paper, we attempt to provide
a thorough comparison between ES and ECA by means of
numerical simulation of simple coupled stochastic processes
along with real-world applications to two exemplary climate
and EEG data sets. First, in Sec. II we introduce formally
correct variants of both association measures that address
previous ambiguities in the counting procedures, thereby
reestablishing proper normalization, which is especially rel-
evant for short time series with low temporal resolution. In
Sec. III we consider coupled autoregressive AR(1) processes
to demonstrate that ES has structural difficulties to capture
synchrony in the case of events that are temporally clustered,
i.e., serially dependent.

This clustering is no typical feature of EEG recordings but
emerges rather commonly in climate data sets [40], as we il-
lustrate with a functional network analysis of the Indian mon-
soon system that replicates previous studies and highlights
their methodological deficiencies (Sec. IV B). Therefore, we
argue that previous research results need to be interpreted with
caution. On the contrary, we provide evidence that ECA is
not markedly affected by event clustering, but provides the
additional benefit of allowing for testing physical hypotheses
via systematically varying the associated parameter settings
(which may be guided by a priori knowledge of the system).
Building on these conceptual concerns, we propose ECA
as a promising robust alternative to ES if temporal event
clustering cannot be ruled out. By analyzing epileptic rat EEG
signals (Sec. IV C), we find that for time series with relatively
regularly spaced peaks, ES and ECA are practically inter-
changeable. However, if the integration of different timescales
into one measure is contextually justified and events can be
clearly marked off, ES may still be the favorable method,
since it does not require any parameter selection by the user.
In Sec. V we discuss the repercussions of event definitions on
the choice of association measures that can be derived from
our numerical results. Finally, some general conclusions are
drawn in Sec. VI.

II. METHODS

Both ES and ECA provide measures that go beyond
second-order moments captured by classical correlations.
They are based on pairs of event sequences or binary event
time series as inputs. When being initially given two “nor-
mal” time series of nonbinary (continuous or discrete valued)
variables, such sequences are often obtained by applying a
threshold to the underlying time series at a given percentile
(other options will be discussed later). We extract the time
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FIG. 1. Schematic illustration of event synchronization.

indices of these threshold exceedance events and let t i
l denote

the time of event l in time series i and t j
m the time of event

m in time series j with l = 1, 2, . . . , si and m = 1, 2, . . . , s j ,
where si and s j denote the number of events in the respective
series.

A. Event synchronization (ES)

As mentioned previously, ES was first introduced by Quian
Quiroga et al. [2] as a parameter-free method for the analysis
of synchronization phenomena in spiky electroencephalogra-
phy (EEG) data, but has recently been applied to other fields
of research as well. Figure 1 schematically illustrates the basic
idea behind ES.

Two events at t i
l and t j

m are considered synchronized if they
both occur within a certain data adaptive time interval of width
τ

i j
lm defined as

τ
i j
lm = 1

2 min
{
t i
l+1 − t i

l , t i
l − t i

l−1, t j
m+1 − t j

m, t j
m − t j

m−1

}
, (1)

with l = 2, 3, . . . , si − 1 and m = 2, 3, . . . , s j − 1 so that
τ

i j
lm is not evaluated for the first and last event in order to

ensure proper consideration of the boundaries.
Equation (1) implies that the more rarely events occur in

either (or both) of the time series, the larger τ
i j
lm will be, so

that we refer to it as a dynamic (local) coincidence interval.
Thus, if events are rare in the vicinity of either of the two
events, larger deviations from an instantaneous coincidence
might still be considered synchronized. The factor of 1/2 is
included to avoid double counting by making τ

i j
lm less or equal

than half the minimum interevent waiting time. The dynamic
nature of τ

i j
lm simplifies the separation of independent events,

which in turn results in a variety of temporal scales to be
captured by a single measure. The trade-off is that, by design,
the value of τ

i j
lm constantly changes between different pairs of

events.
Counting the number of synchronized event occurrences in

i given an event in j yields

c(i| j) =
si−1∑
l=2

s j−1∑
m=2

Ji j
lm, (2)
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where Ji j is a counting function that incorporates τ
i j
lm and

depends on whether or not the synchronization condition

σ
i j
lm =

{
1 if 0 < t i

l − t j
m � τ

i j
lm

0 else
(3)

is met for the considered and neighboring events:

Ji j
lm =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if σ
i j
lm = 1

and σ
ji

m,l−1 = 0

and σ
ji

m+1,l = 0

1/2 if t i
l = t j

m

or σ
i j
lm = 1 and(
σ

ji
m,l−1 = 1 or

σ
ji

m+1,l = 1
)

0 else

. (4)

We note that the counting function in Eq. (4) deviates from
the original definition of ES and admittedly looks rather cum-
bersome. For correct specification, the changes are inevitable,
though, as otherwise erroneous double counting might occur.
Due to the condition of an interevent distance that is smaller
than, or equal to, the dynamical coincidence interval τ

i j
lm in

both directions, in the original definition events could be
counted twice. In order to avoid this, we thus need to check
for all event pairs whether one of the events has already been
counted as synchronized in the opposite direction. If this is
the case, a weight of 1/2 is assigned to this pair so that
normalization is again carried out correctly. Such a situation
can occur only if t i

l − t j
m = τ

i j
lm and the respective events then

contribute equally to c(i| j) and c( j|i). While this correction
should always be incorporated, it is especially important for
time series with comparably low temporal resolution (like
daily values of some climate variable). Alternatively, it is
possible to exchange � for < in Eq. (3), which has been done
in later applications of the ES concept [41,42]. However, this
leads to an entirely new measure, called “SPIKE synchroniza-
tion,” with different aggregation and normalization. Because
our focus here lies on revealing potential shortcomings that
result from application of ES in its original form, we leave
these more recent developments aside and restrict ourselves
to a correction of the original ES measure, which has seen
extensive use as mentioned earlier. Furthermore, we presume
that for high-resolution time series the differences will likely
be small as the fundamental functioning of the dynamical
coincidence interval is left unchanged.

By full analogy, we further define c( j|i) and infer the
strength of event synchronization between i and j as

QES
i j = c(i| j) + c( j|i)√

(si − 2)(s j − 2)
, (5)

which is normalized so that 0 � QES
i j � 1, where QES

i j = 1
implies complete event synchronization and QES

i j = 0 the ab-
sence of any synchronized events.

For the purpose of generating a functional network rep-
resentation of a set of time series, we consider the pairwise
ES strength as a generic statistical association measure, the
estimated values of which provide the coefficients of a matrix
QES = (QES

i j ). Since QES
i j as defined above is symmetric with
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FIG. 2. Schematic illustration of event coincidence analysis.

respect to interchanges between i and j, this matrix is square
symmetric and can therefore be used to construct an undi-
rected network from multivariate event data (see Sec. IV A).

As a simple example of the proposed modifications to
the original ES definition, consider an alternating event time
series, e.g., t i ∈ {1, 3, 5, 7, 9, 11} and t j ∈ {2, 4, 6, 8, 10, 12}
with τ

i j
lm = 1 ∀ l, m. Using the original definition would

yield c(i| j) = 3, c( j|i) = 4 and therefore QES
i j = 3+4√

4·4 = 1.75,
which is not normalized as required. Our corrected version
instead yields c(i| j) = 1.5, c( j|i) = 2 and thus QES

i j = 0.875,
because for every event pair at least one event is synchronized
with another event in the opposite direction. Note that in
perfectly alternating event time series the value QES

i j will
always be less than 1 because the first event in one time
series (here in i) cannot be synchronized to any event in
the other time series (here j) in the calculation of c(i| j).
The ES strength between two completely synchronized event
sequences, however, always yields 1, e.g., QES

ii = QES
j j = 1.

B. Event coincidence analysis (ECA)

Event coincidence analysis (ECA) [3,4] is a recently de-
veloped method to measure similarities between event time
series by incorporating static (global) coincidence intervals
(as opposed to the dynamic coincidence interval of ES) and
potentially also mutual time lags (which have been rarely
considered along with ES in the past, but could be included
here as well). Figure 2 illustrates the general idea of ECA.

In the following, we will explain the estimation of event
coincidence rates in full detail only for the case where events
in j precede events in i. Event coincidence rates for the other
direction are obtained by simply exchanging i and j in all
formulas. Again, let t i

l denote the time index of event l in
series i and t j

m the time index of event m in series j, but
now again with l = 1, 2, . . . , si and m = 1, 2, . . . , s j . All
events have been observed during the same observation period
[t0, t f ]. We define an instantaneous event coincidence if two
events at t i

l and t j
m occur within a certain static coincidence

interval �T so that 0 � t i
l − t j

m � �T . Accordingly, a lagged
event coincidence is a coincidence between a time-shifted
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event at t i
l − τ and an event at t j

m � t i
l − τ , with a given time

lag τ � 0, implying that 0 � (t i
l − τ ) − t j

m � �T holds.
To quantify the degree of synchrony between event in the

two time series i and j, we distinguish between so-called
precursor and trigger event coincidence rates [4,31]. This
distinction relates to the question whether the number of
events in i or j are used for normalization: the precursor rate
quantifies the fraction of events in i that have been preceded by
at least one event in j, while the trigger rate gives the fraction
of events in j that have been followed by at least one event
in i.

Formally, the precursor event coincidence rate is thus
defined as

rp(i| j; �T, τ )

= 1

si − si
′

si∑
l=1+si

′
�

{ s j∑
m=1

1[0,�T ]
[(

t i
l − τ

) − t j
m

]}
. (6)

Since it measures the fraction of (τ -lagged) events in i that
are preceded by at least one event in j, multiple events in
j falling within the static coincidence interval �T relative
to an event in i are only counted once. Here �(•) denotes
the left-continuous Heaviside step function with �(0) = 0,
which rules out double counting. 1I (•) represents the indicator
function of the interval I defined as

1I (x) =
{

1 if x ∈ I
0 if x /∈ I

. (7)

Here the integer s′
i denotes the number of events in i that occur

within the interval [t0, t0 + τ + �T ]:

s′
i =

si∑
l=1

1[t0,t0+τ+�T ]
(
t i
l

)
. (8)

By full analogy, we define rp( j|i; �T, τ ) as the precursor
event coincidence rate for the case of events in j being
preceded by at least one event in i.

In turn, by taking the events in j as the basis for normal-
ization, we obtain the trigger event coincidence rate

rt (i| j; �T, τ )

= 1

s j − s′′
j

s j−s′′
j∑

m=1

�

{
si∑

l=1

1[0,�T ]
((

t i
l − τ

) − t j
m

)}
, (9)

which measures the fraction of events in j that are followed
by at least one event in i. Here s′′

j counts the number of events
in j that occur within the interval [t f − (τ + �T ), t f ]:

s′′
j =

s j∑
m=1

1[t f −(τ+�T ),t f ]
(
t j
m

)
. (10)

The primes in s′
i and s′′

j are intended to avoid confusion
once the indices are swapped to calculate the same types of
coincidence rates in opposite directions. One prime refers to
the number of events in the interval at the beginning of the
time series, while two primes refer to the number of events in
the interval at the end. Finally, we can define rt ( j|i; �T, τ ) as
the trigger coincidence rate for the opposite case of events in
i preceding events in j. Clearly, being defined as fractions, all

four possible event coincidence rates are confined to values
between 0 and 1.

The idea to truncate the succeeding time series at the
beginning for the precursor event coincidence rate and the
preceding time series at the end for the trigger event coinci-
dence rate provides a necessary correction of the original ECA
definition [4]. Ignoring this may again lead to an erroneous
normalization especially if τ �= 0, because for the precursor
event coincidence rate, events in i before t0 + τ can never
coincide with any event in j. Similarly, for the trigger event
coincidence rate, events in j after t f − τ can never coincide
with any event in i. If this is disregarded, the respective
event coincidence rate may end up at a value below 1, even
if all events that could possibly coincide also do coincide.
This might lead to an underestimation, but at least not to
values larger than 1 as for the uncorrected ES definition. The
committed error without this correction vanishes with long
time series as the number of events becomes sufficiently large.
However, for finite event sequences, proper truncation should
be employed.

Altogether ECA yields four event coincidence rates for
every pair of event time series, namely, the precursor and
trigger event coincidence rates in both directions. In what
follows, we will only use the trigger event coincidence rates as
the differences with respect to the precursor event coincidence
rates have been found to be commonly very small across all
numerical investigations presented in the following. However,
it should not be argued that this is necessarily always the
case by construction. Consider, as a simple thought example,
two event sequences with the same number of events. In the
first series, all events occur with a precise clock after a fixed
waiting time, and every second of those events is followed by
two events in the other series that occur in close succession
(within �T ). In this case, each event of the second series has
a precursor in the first series, while only every second event
of the first series triggers events in the second one.

In order to obtain a single statistical association measure
QECA

i j as the degree of event synchrony, we can employ either
the mean or the maximum value of the two directed trigger
event coincidence rates rt (i| j; �T, τ ) and rt ( j|i; �T, τ ), de-
noted as QECA,mean

i j or QECA,max
i j , respectively. The former is es-

pecially appropriate for bidirectional dependencies, whereas
the latter emphasizes the strengths of unidirectional depen-
dencies more strongly, irrespective of the direction.

Finally, similar to the ES, we can create a similarity matrix
from pairwise values of event coincidence rates if more than
two simultaneously measured time series are available. The
resulting similarity matrix QECA = (QECA

i j ) of either the mean
or maximum values is again normalized to 0 � QECA

i j � 1 and
square symmetric.

Note that for simplicity and tractability of our main ar-
gument, we herein refrain from exploring information on
directionalities in both ES and ECA. In the context of ES,
additional directionality information can be obtained by con-
sidering the differences between c(i| j) and c( j|i) [2,16,17].
In turn, for ECA either a similar difference between any
of the two event coincidence rates under an exchange of i
and j or the distinction between trigger and precursor event
coincidence rates could be used for a similar purpose. We
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Time series j

Time series i

FIG. 3. Schematic illustration of an example of clustered event
time series.

outline corresponding further theoretical studies as a subject
of future work.

III. NUMERICAL STUDY: BIVARIATE AR(1) PROCESSES

We first compare ES and ECA for artificial data stem-
ming from a simple bivariate first order vector autoregressive
[VAR(1)] process. A comprehensive, yet not completely ex-
haustive, comparison of different synchronization measures
for dynamical systems has been provided in Kreuz et al.
[8], but only included ES and not ECA, and only compared
the different approaches with regard to coupling and noise
strength, but not to serial dependency and particularly event
clustering, which remains our focus in the following.

Figure 3 shows a stylized example where events tend to
occur in pairs at subsequent time steps. Evidently, there is
some form of lagged synchronization since a sequence of
one to three consecutive events in j is always followed by
an event pair in i. However, ES is unable to detect this
type of synchronization, because the dynamical coincidence
interval τ

i j
lm always remains small due to the short interevent

distances. The illustrative result of QES
i j = 0 is unsatisfactory

and highlights a major caveat of ES: it fails to properly unravel
different temporal scales if events are clustered in time. By
contrast, given appropriate parameter values for �T and τ ,
ECA would clearly detect a directional relationship so that
QECA

i j = 1.
Although, for a juxtaposition of two nonlinear methods, it

might appear sensible to analyze coupled nonlinear systems, a
simple linear VAR(1) process already suffices to demonstrate
the fundamental differences between ES and ECA with regard
to event clustering. This approach is also much easier to
comprehend, whereas nonlinear systems often defy straight-
forward imagination. Therefore, we use a VAR(1) model

xt = ϕ1xt−1 + κ1yt−1 + ε1,t , (11)

yt = ϕ2yt−1 + κ2xt−1 + ε2,t (12)

to create artificial time series that depend on autoregressive
parameters ϕ1 and ϕ2 (modeling serial correlations) and cou-
pling parameters κ1 and κ2 (modeling cross correlations) for
two variables xt and yt . The error terms ε1,t and ε2,t follow two
independent standard normal distributions with mean μ = 0
and variance σ = 1, i.e., ε1,t ∼ N (0, 1) and ε2,t ∼ N (0, 1).
Similarly, the initial values x1 and y1 are also drawn from two
independent standard normal distributions.

For a given realization of this bivariate stochastic process,
the time steps where the associated values exceed a given
percentile threshold yield two event time series, which can

be used as an input for both ES and ECA. As an illustrative
example, for ECA we set the parameters to τ = 0 and �T =
3. We simulate with a time series length of 1000 points
and threshold at the 90th percentile, yielding si = s j = 100
events per time series. We consider 1000 independent runs and
calculate the averages of QES

i j , QECA,mean
i j , and QECA,max

i j over
i, j = 1, . . . , 1000, respectively. These ensemble averages
are denoted as Q

ES
, Q

ECA,mean
and Q

ECA,max
, respectively, all

of which are functions of ϕ1, ϕ2, κ1, and κ2. Following our pre-
vious considerations (see Fig. 3), we expect that ES will show
an undesirable negative dependency on ϕ1 and ϕ2. However,
simulating the time series for a discrete set of varying param-
eters with ϕ1, ϕ2, κ1, κ2 ∈ {0, 0.05, 0.1, 0.15, . . . , 0.95, 1} to-
gether with the choice of using either QECA,mean

i j or QECA,max
i j

entails (too) many degrees of freedom for a meaningful anal-
ysis. In order to reduce computational efforts and focus on the
most relevant aspects, we consider here only two illustrative
settings, one simplified bivariate and one extreme univariate
case.

Figure 4 shows four 3D surface plots of the ensemble
means Q

ES
and Q

ECA,mean
in dependence of the AR(1) and

coupling parameters. The top row with subplots (a) and (b)
contains the simplified bidirectional case, for which we set
ϕ := ϕ1 = ϕ2 and κ := κ1 = κ2. The bottom row with sub-
plots (c) and (d) contains the extreme unidirectional case, for
which we again set ϕ := ϕ1 = ϕ2, but now κ1 = 0 so that
κ2 = κ remains the only free coupling parameter. For brevity,
we leave out the results of Q

ECA,max
as they turned out to be

qualitatively indistinguishable from Q
ECA,mean

. Note that the
plots do not share the same z axes as the absolute values are
not directly comparable among the different measures.

Looking at the simplified bidirectional case [Figs. 4(a) and
4(b)], we see that for ϕ + κ � 1 the results of both methods
equal 1, since the VAR(1) process becomes nonstationary
so that xt and yt diverge and all events occur at subsequent
time steps. This leads to a perfect, albeit meaningless, syn-
chronization. Much more interesting is the behavior of ES
and ECA in dependence on the AR(1) parameter ϕ, which
controls the serial dependency and, hence, temporal clustering
of events. For any κ �= 0, we observe that Q

ES
first decreases

with ϕ, whereas Q
ECA,mean

continuously increases with ϕ.
This is depicted more clearly in Fig. 5, where a transect of
both panels at κ = 0.2 is shown together with the respective
ensemble standard deviations. The results confirm our initial
expectation that ES is adversely affected by serial dependen-
cies, which are here parameterized via the AR(1) parameter
ϕ as justified below. On the other hand, ECA values show
a strictly positive dependence on ϕ. This is a much more
understandable and meaningful behavior as increasing ϕ also
increases statistical persistence, which makes events occur
less erratically, but rather in temporal clusters. While this does
not justify a stronger synchronization as such, it does lead to
the fact that if a synchronization occurs it is more likely to
include several events at once. As normalization in ECA is
carried out over the number of individual events in the time
series, increasing serial dependencies through ϕ ultimately
increases the event coincidence rate (as is also common in
other classical statistical association measures like Pearson
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FIG. 4. Ensemble means of the statistical association measures provided by ES and ECA for simplified bivariate and univariate cases of
the bivariate VAR(1) model. (a) Bidirectional coupling, ϕ := ϕ1 = ϕ2, κ := κ1 = κ2, ES. (b) Bidirectional coupling, ECA. (c) Unidirectional
coupling, ϕ := ϕ1 = ϕ2, κ1 = 0, ES. (d) Unidirectional coupling, ECA.

correlation). Such reasoning would also be plausible for ES,
but clearly does not become apparent from our numerical
results.

Turning to the extreme unidirectional case [Figs. 4(c) and
4(d)], the strong bias of ES in the presence of serial depen-
dencies stands out even more prominently as Q

ES
decreases

with respect to ϕ for all values of κ2 up to ϕ ≈ 0.7. Quite
contrarily, the values of Q

ECA,mean
increase slowly but steadily

for almost all values of κ2 up to ϕ ≈ 0.7. These patterns match
the expected behavior, underpinning our conceptual concerns
regarding the potential caveats of ES and providing indica-
tions in support of ECA as a more reliable measure of event
synchronicity. Yet, for ϕ � 0.7, the results show intriguing
patterns. The ES values now increase again with rising ϕ,
only to drop abruptly at ϕ = 1. The initial increase is likely
a result of increasing persistence that eventually leads to the

expected pattern that is commonly observed for ECA, but only
commences for very high ϕ in ES. The abrupt drop appears to
be a statistical artifact stemming from the nonstationarity of
the process at ϕ = 1. In turn, for ECA, the obtained values
above ϕ � 0.7 reverse the initial pattern by falling again. As
statistical persistence increases with ϕ, events in both xt and yt

form more and more clusters in a certain part of the underlying
time series. For xt , which is entirely independent of yt as
κ1 = 0, this means that the probability of event clusters falling
into the same period as in yt accordingly declines. For yt ,
even a large unidirectional coupling parameter κ2 does not
curtail this outcome substantially so that the overall mean
Q

ECA,mean
also declines. Altogether, the region above ϕ ≈ 0.7

in a completely unidirectional setting is a particularly extreme
regime that is intellectually interesting to scrutinize, but not
crucial for the overall interpretation of evolving tendencies.
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FIG. 5. Transect of the simulation results of ES (red, lower) and
ECA (blue, upper) for the symmetrically bidirectionally coupled
AR(1) processes [Figs. 4(a) and 4(b)] with κ = 0.2. Solid lines
and shadings indicate the ensemble means and standard deviations,
respectively.

In order to further confirm the effect of ϕ stipulated above
on the interevent distances that ultimately lead to the de-
scribed behavior in both considered cases, we define a simple
measure for event clustering, the pairing coefficient Pi, as the
fraction of events occurring on subsequent time steps,

Pi = 1

si − 1

si−1∑
l=1

δ
[(

t i
l+1 − t i

l

) − 1
]
, (13)

so that 0 � Pi � 1, where Pi = 0 means that no event pairs
form at all and Pi = 1 that all events occur on consecutive
time steps. Note that Pi is a univariate measure characterizing
the properties of a single time series i that essentially entails
the first value (�t = 1) of the respective empirical interevent
distance distribution. Thus, Pi allows us to scrutinize the
characteristics of the input data used for estimating ES and
ECA in a simple manner without any notion of coupling
or synchronization. Figure 6 shows the dependency of the
ensemble mean of Pi, denoted as P, on the AR(1) strength ϕ,
with calculations based on 1000 independent realizations as
before. Clearly, P is strictly monotonically increasing with ϕ.
At high values of ϕ, events exhibit strong serial dependencies,
thereby increasing statistical persistence. This confirms our
reasoning of using ϕ as a proxy for serial dependency in
the resulting event time series by providing the missing, but
expected, link. The pairing coefficient will be drawn upon
later again.

Even though the absolute difference between ES and ECA
results might not appear overwhelming for the bivariate case,
it should be noted that the respective quantities should only
be compared to each other in relative terms as they are usually
ranked internally, before being referred to. In functional net-
work analysis, for instance, the values of ES and ECA would
be ranked so that only the strongest links are included in
the network representation [29]. This implies that even small
changes in the corresponding association values might entail
large consequences for the inferred network structure. Thus,
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FIG. 6. Dependency of pairing coefficient Pi on AR(1) strength
ϕ, shown as ensemble mean (solid line) and standard deviation
(shaded band).

it is not the absolute values that should be compared, but
rather the patterns in response to changes in ϕ and κ as just
described.

Taken together, our simulation results confirm our initial
expectation that the dynamical coincidence interval τ

i j
lm unam-

biguously renders ES insensitive to properly detect synchro-
nization if the events in a time series are strongly clustered,
which is a common property of climate extremes [43]. This
undesirable outcome may hamper the reliability of results and
interpretations obtained from such networks, as we will show
in the following.

IV. REAL-WORLD EXAMPLES

Following our numerical results for the artificial data in
Sec. III, we next attempt to shed some more light on the
real-world implications of those findings. Considering the
extensive previous research on functional network analysis
based on ES as a statistical similarity measure, Sec. IV A
concisely reviews the key elements of network construction
and analysis. Then, in Sec. IV B, we demonstrate that ES
yields biased results for climate network representations of
heavy rainfall events, since climate time series commonly
exhibit serial dependencies and clustering among extreme
events. Along with reproducing some results of previous
studies based on ES, we present substantially different results
based on ECA that are not only more robust in the presence of
event clustering, but also allow us to analyze the temporal evo-
lution of extreme events in a functional precipitation network,
enabling worthwhile customized analyses on a more detailed
level than when using ES.

As an illustrative counterexample, Sec. IV C analyzes five
sets of bivariate rat EEG signals, including one nonepileptic
example and four epileptic spike trains, for which ES and
ECA yield qualitatively very similar results. This highlights
that due to a relatively narrow waiting time distribution
of clearly discernible EEG spikes (i.e., the existence of a
relatively regular internal pacemaker), temporal clustering
among events is not a major issue here (i.e., there exist serial
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FIG. 7. Flow chart of functional network analysis for a generic
example of spatially embedded time series.

dependencies among events, but of an entirely different form
than in the previous numerical example). Furthermore, we
compare our results in view of a different event definition that
is arguably more directly applicable to the detection of local
spikes in noisy EEG signals.

A. Functional networks

The combination of nonlinear time series analysis with
complex network theory is a rapidly growing area of research
as it allows to disentangle and visualize spatiotemporal pat-
terns from large-scale data sets. Figure 7 shows a flow chart
of how to incorporate ES and ECA into the construction of a
spatially embedded functional network. While this bears the
hallmarks of climate network analysis [29,30], it is straight-
forward to extend this approach to other applications.

A network G = (V, E ) is defined by a set of vertices (or
nodes) V = {1, . . . , N} with N = |V | and a set of edges (or
links) E ⊆ V × V . The edges E with K = |E | are represented
in the adjacency matrix A, in which self connections conven-
tionally do not exist so that Aii = 0 ∀ i. Having calculated the
similarity matrix Q from either ES or ECA, we link i and
j if Qi j is above a certain threshold θ . Thus, we obtain a
binary square symmetric adjacency matrix A of an undirected
network, where Ai j = Aji = 1 indicates a link between i and
j and Ai j = Aji = 0 the lack thereof. As a valuable alternative
to choosing a particular value of θ , it is common practice
to instead predefine a global edge density ρ, which extracts
the strongest statistical associations and thereby indirectly
defines θ .

Subsequently, the resulting adjacency matrix can be an-
alyzed by means of complex network theory. Out of the
abundance of existing network measures [44], for the sake of
brevity, in this work we only consider the degree density

ρi = 1

N − 1

N∑
j=1

Ai j (14)

as the simplest and most prominent vertex measure, yielding
the number of connections associated with each node, normal-
ized to 0 � ρi � 1.
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FIG. 8. Spatial pattern of the pairing coefficient and the degree
density of the ES-based functional climate network.

B. Precipitation data

Following upon previous works on ES-based functional
climate networks for the Indian subcontinent [16,17,24], we
use gauge-adjusted satellite data from the Tropical Rain-
fall Measuring Mission [45] to construct a climate network
representation of extreme precipitation during the Indian
Summer Monsoon. We select resampled daily precipitation
sums on a square grid with a spatial resolution of 0.25◦ ×
0.25◦ (∼28 km) for the period 1998–2015 (TMPA 3B42 V7),
from which we extract the summer monsoon season of June
to September. For the chosen area from 60.125–99.875◦E
and 5.125–39.875◦N, we thus have 22,400 (160 × 140) grid
points, each constituting a time series of 2196 (18 × 122)
days, i.e., a total of 49 190 400 observations. In accordance
with Stolbova et al. [24] we also threshold at the 90th per-
centile and select a global edge density of ρ = 0.05 as a
convenient value [29].

Although the capability of ES to dynamically incorporate
different timescales at once through τ

i j
lm appears worthwhile

at first, it entails a major disadvantage by overemphasizing
the node degree of the resulting functional climate network
in regions where events are temporally isolated. This is a
consequence of the systematic underestimation of the degree
values in regions where events tend to occur temporally clus-
tered and, hence, an immediate manifestation of the adverse
effect of temporal event clustering on the results of ES as
demonstrated in Sec. III. In order to quantify and visualize this
undesirable property, we calculate the previously introduced
pairing coefficient Pi for all grid points and plot this alongside
the ES degree density ρi in Fig. 8.

Notably, Fig. 8(b) reproduces the results of Stolbova et al.
[24, Fig. 3] almost exactly, with minor differences originating
from the described corrections of the ES algorithm and a
slightly longer time period covered. Furthermore, our results
are also very similar to those of Malik et al. [16,17], who used
a different data source without ocean coverage.

Although Fig. 8(a) solely contains local information of the
dynamical characteristics of events at each individual grid
point without any notion of coupling to other grid points
whatsoever, we observe interesting similarities in comparison
with Fig. 8(b). Specifically, in areas where the degree density
is high, the pairing coefficient very often has low values, and
vice versa. In many areas, the two figures resemble negative
images of each other. This holds especially true for regions
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FIG. 9. Estimate of the joint probability density of the pairing
coefficient and the degree density of the ES-based functional climate
network.

that had been reported in previous studies as important for
governing monsoon dynamics at large spatial scales, such as
northern Pakistan, the Tibetan Plateau, or the eastern Ghats
[17,24]. Note that even minor artifacts such as interspersed
grid points with low ρi values on the Tibetan Plateau can
exhibit a high pairing coefficient Pi. The effect of Pi on ρi

is further displayed in a two-dimensional density plot (see
Fig. 9), which reveals a negative relationship between ρi and
pairing coefficient up to Pi ≈ 0.2. Fundamentally, this means
that a trivial property of the local time series often predeter-
mines the event synchronization strength to other grid points
in many areas, especially those deemed pivotal for monsoon
dynamics. This suggests that ES may not be an ideal similarity
measure for time series of extreme climate events, which
frequently entail serial dependencies and temporal event clus-
tering [43]. Furthermore, our observations are compatible
with the artificial data results from Sec. III and highlight the
practical implications of the described weaknesses of ES.

On the other hand, the ECA-based networks do not ex-
hibit such adverse dependencies of the node degree on the
pairing coefficient. Figure 10 shows the degree density field
for four different parameter settings with �T = 5 and τ ∈
{0, 2, 5, 10} days. Varying τ while fixing �T enables us to
clearly isolate lagged synchrony and thus to analyze the spa-
tiotemporal evolution of synchronous extreme precipitation
events. Effectively, this moves the fixed-length synchrony
detection window back in time (see Fig. 2). This stands in
contrast to fixing τ while varying �T , which would not have
allowed us to clearly disentangle lagged from instantaneous
synchrony (within �T ). The obtained spatial patterns vastly
differ from those in Fig. 8(b), and the additional parameters
of ECA even allow to isolate distinct timescales, thereby
enabling us to assess the temporal evolution of heavy pre-
cipitation patterns along the sequence of climate networks.
In our opinion, this provides a valuable extension of the ES
approach, where the specific underlying timescales remain
unknown, rendering the outcome of functional climate net-
work analysis comparatively opaque. Similarly to the ES case,
Fig. 11 shows the influence of Pi on ρi for the four considered
parameter settings of the ECA-based network. In contrast to
Fig. 9, the relationship between both characteristics is far less
pronounced as the points scatter much more. The slightly
positive dependency in Fig. 11(a) gradually evolves into a
slightly negative one in Fig. 11(d) but is subject to strong
dispersion.
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FIG. 10. Spatial pattern of the degree density of the ECA-based
functional climate network for four different parameter settings.

Based on our findings as reported above, we tentatively
propose ECA as the preferable similarity measure for event-
based functional climate network construction and analysis
and stress that previous results based on ES should be in-
terpreted with caution and carefully reexamined wherever
possible. Apart from enabling a proper disentanglement of
synchrony from serial dependency, we further advocate ECA’s
ability to precisely analyze the temporal scales encoded in
a given network. Yet, even if such a refined analysis is not
desired, the adverse effects of event clustering on ES can still
overshadow the potential benefits of incorporating multiple
timescales at once to a large extent.

C. EEG data

As a second rather common example for the application
of bivariate event-based statistics, we analyze five pairs of rat
EEG signals obtained from electrodes at the left and right
frontal cortex of male adult rats, including one nonepileptic
case and four epileptic cases. This data set was also included
in Quian Quiroga et al. [2] and is publicly available [46] with
more detailed information on experiment settings, recordings,
and results to be found in Ref. [47]. Each signal was recorded
for 5s and digitized at 200Hz, yielding a time series of
1000 values. Figure 12 shows plots of the five EEG pairs.
Figure 12(a) displays the normal nonepileptic signal, while
Figs. 12(b) to 12(e) all exhibit clear epileptic activity as
apparent from regular spike discharges.

Under the plausible assumption that neither the spike shape
nor the background noise carry valuable information, we may
again extract events from the depicted time series, for which
we compare two options. First, similar to the climate data
case, we simply impose a threshold at the 97th percentile
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FIG. 11. Estimate of the joint probability density of the pairing coefficient and the degree density of the ECA-based functional climate
networks.

to obtain a well-defined discrimination of extreme events.
Second, we follow the approach of Quian Quiroga et al. [2] by
declaring events at t as local maxima fulfilling the following
conditions: (1) xt > xt+k for k = −K, . . . ,−1, 1, . . . , K
(also including k = 0 as stated in the original reference ap-

pears incorrect since xt > xt would never be satisfied) and (2)
xt > xt±K + h, with free parameters K and h. In agreement
with the original definition, we set K = 3 and h = 0.1. Sub-
sequently, we calculate QES

i j and QECA,mean
i j for both types of

event definitions.
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FIG. 12. The five considered examples of rat EEGs, with (a) a normal nonepileptic signal and (b)–(e) epileptic spike trains. Left hemisphere
signals (green, lower) are plotted with a vertical offset [−1.5 mV in (a), −5 mV in (b) and −3 mV in (c)–(e)] for better visibility, whereas the
right hemisphere signals (blue, upper) are plotted without an offset. Note the different vertical scales.
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TABLE I. ES and ECA results for five selected rat EEGs.

Threshold exceedance Method from Ref. [2]

Case QES
i j QECA,mean

i j QES
i j QECA,mean

i j

(a) 0.22 (31%) 0.32 (43%) 0.70 (78%) 0.55 (79%)
(b) 0.50 (70%) 0.63 (85%) 0.77 (85%) 0.53 (76%)
(c) 0.21 (30%) 0.23 (31%) 0.77 (85%) 0.51 (74%)
(d) 0.43 (60%) 0.45 (60%) 0.85 (94%) 0.57 (81%)
(e) 0.71 (100%) 0.75 (100%) 0.91 (100%) 0.70 (100%)

Our results do not exactly replicate those in Quian Quiroga
et al. [2] as they replaced the dynamic local ES coincidence
interval τ

i j
lm with a fixed global value of two time steps,

i.e., 10ms. In our opinion, this practice of educated guessing
should be handled with care as it might void the normalization
by enabling unintentional double counting of event pairs.
However, to allow for some degree of comparison, we set
�T = 10 ms and τ = 0ms for the ECA parameters, which
can be done without jeopardizing normalization.

Table I displays the results of ES and ECA for both
event definitions and all five EEG pairs. Since ES and ECA
merely share a normalization to the same interval but differ
substantially between these boundaries, absolute values are
not strictly comparable as also mentioned previously. In order
to allow for a fair comparison, we thus also provide the per-
centage values in one column as compared with the maximum
value of that column. Note that this relative approach is also
consistent with our strategy used when studying the artificial
simulation and the real-world climate data. In the first case rel-
ative patterns rather than absolute values were analyzed, while
in the second case the network construction process extracted
only the strongest links on a relative basis (see Fig. 7).

In relative terms, the differences between ES and ECA
turn out to be small for both event definitions, with a max-
imum difference of 15%, for example, case (b). All other
examples exhibit even smaller differences. Irrespective of
either the event definition or the similarity measure, within
the epileptic signals (e) is always ranked first (most strongly
synchronized) and (c) last (least synchronized). Within each
event definition method and again except for example (a), the
ranking order remains consistent across both ES and ECA.
This confirms that the results of both approaches resemble
each other fairly well for time series that are characterized
by relatively constant event rates. However, this observation
even holds true for the nonepileptic case (a), where results are
also comparable for both event definitions. Yet we do observe
pronounced differences between the two event definitions,
which are discussed in more detail below. Of course, the ECA
results depend markedly on the parameter values, and similar
values can be obtained by setting the delay τ sufficiently close
to the mean interevent distance. However, admittedly, the
potential to analyze the temporal evolution of event synchrony
might not be regarded as an equally important feature for EEG
as for climate data.

Thus, if the two different event definitions are considered
separately, ES and ECA yield very similar results. This is
a direct and plausible consequence of a sufficiently narrow
interevent distance distribution for epileptic EEG spike trains

in examples (b)–(e), which stands in marked contrast to the
precipitation data used previously. Since ES was originally
designed with EEG applications in mind, our findings are
conceptually justified and not surprising. While the observed
consistency of ES and ECA was also facilitated by very
distinct events due to the recorded epileptic activity in exam-
ples (b)–(e), notably this also holds true for the nonepileptic
example (a), most likely because the probability distribution
of waiting times between subsequent events hardly shows
any values close to zero (not shown), which in turn would
correspond to a regime where we might expect deviations
between the two methods. This finding further underlines the
versatility of ECA.

The importance of unambiguous event extraction is more-
over revealed in examples (a) and (c). In example (a), the
threshold method only yields results of 0.22 (31%) and 0.32
(43%), while the event definition from [2] leads to values of
0.70 (78%) and 0.55 (79%). Similarly, in example (c) we ob-
tain 0.21 (30%) and 0.23 (31%) using threshold events versus
0.77 (85%) and 0.51 (74%) using Ref. [2]. In both examples,
these differences in both absolute, but more importantly also
relative values, are very likely caused by less pronounced
peaks over a dynamic background in examples (a) and (c)
as compared with the other examples, which probably led to
error-prone event definitions for a simple threshold method.
This already hints at the overarching issue of statistically
disentangling events from underlying phenomena, which will
be further discussed below in conjunction with the subsequent
choice of a proper similarity measure.

V. DISCUSSION

Within the scope of (extreme) event analysis, the problem
of serial dependencies in time can principally be tackled in
two ways: either by choosing a robust analysis method or
by defining events in different ways. For the first approach,
we have provided here tentative explanations why ECA may
outperform ES. However, it appears also viable to address the
issue already in the previous step of event definition. This
necessarily requires more involved preprocessing techniques
than a mere threshold exceedance strategy.

For EEG signals, the temporal resolution relative to the
number of spikes is usually much higher than for climato-
logical data. Thus, several time values that clearly belong to
the same peak might fulfill the threshold exceedance criterion,
even for very high percentiles. Since the focus in EEG spike
train analysis is on the extraction of singular events that are
local (or relative) maxima, which may well have different
amplitudes among themselves, the event definition method
by Quian Quiroga et al. [2] is a sensible approach for this
delicate task. For climatological extremes, we are, however,
not interested in local, but indeed rather in global (or absolute)
maxima with respect to some threshold (i.e., taking a peaks-
over-threshold approach as common in extreme value theory)
because these are the type of events with potentially devas-
tating impacts. Thus, applying the said EEG event definition
method also to climate data appears unreasonable. Yet another
possibility would be the utilization of sophisticated clustering
algorithms. However, we reject this as unnecessarily complex
for the sake of the present work, since ECA fulfills the
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same purpose in a much more straightforward and easily
understandable manner.

In a broader context, the task of disentangling event syn-
chrony from serial dependency therefore transitions into the
more profound endeavor of disentangling statistical events
from underlying phenomena, which we are eventually in-
terested in. In our opinion, this must be informed either
by a priori knowledge of the system or guided by specific
research questions targeted to the given data set under study.
A shared feature of the two aforementioned options is that
they both require some external parameters, which determine
the expected timescales of serial dependencies and which
cannot be set independent of data and context. In essence,
the values K and h for the event definition in [2] or �T and
τ for ECA constitute different parametrizations of just this
issue. Thus, in our opinion, the introduction of a sophisticated
clustering algorithm [19], which merges several previously
defined global extremes into one, may only shift the choice
of these timescale parameters elsewhere, without relieving us
of the actual task of determining them.

In this line of argument, there seems to be no universally
optimal method. While the inclusion of multiple timescales
into one single association measure for event sequences might
constitute a noteworthy advantage of ES over ECA, this can
only be truly exploited if the data have been preprocessed dili-
gently. Succumbing to the tempting pitfall of using ES without
preprocessing makes it vulnerable to the identified weak-
nesses originating from serial dependencies among events.
ECA, on the other hand, offers a more refined analysis of
timescales through �T (and τ ) with the considerable advan-
tage of dealing properly with both serially dependent and
independent event time series, albeit without the possibility
to dynamically incorporate changing event rates into a single
measure. Using a sliding windows approach could however
alleviate this alleged restriction.

For future research on functional climate networks, we
therefore reinforce our suggestion to use ECA instead of
ES. Even if serial dependencies were dealt with before so
that ES worked as intended, the algorithm would still lack
a clear declaration on the involved timescales as well as the
possibility to scrutinize the temporal evolution, which we
perceive as a valuable advantage in its own right. Additionally,
using ECA elegantly circumvents the need for declustering
along with its ensuing parametrization difficulties. Only if
the inclusion of varying timescales into one single measure
is essential, if events are clearly delineated and if refined
temporal analyses are undesired, ES appears to be the method
of choice. This is probably the case for EEG data, even though
ECA can also be adjusted to fit such applications as well.

At a final note, we emphasize that many other measures
have been used in the past for quantifying different as-
pects of statistical interdependence between two time series,
particularly in the context of functional network analysis. For
example, in the context of spatiotemporal fields of climate
data, Pearson correlation and mutual information have been
often used for this purpose. To understand the differences
with respect to ES and ECA used in the present work, one
should note that those (as well as many other) measures take
all existing data points (i.e., values from both the bulk and the
tails of the probability distributions of the variable of interest)

into account and attempt to quantify the strength of a linear
(Pearson correlation) or arbitrary functional relationship (mu-
tual information) between two series. Hence, those measures
are necessarily dominated by statistical associations among
the bulk values due to their by far larger number than that of
the values in the tails. In turn, there are important applications
where statistical associations among those bulk values are not
of primary interest, since the relationship between extraordi-
nary values (or extremes) can be believed to differ from that
under “normal conditions” [33] (for example, in the precipi-
tation example discussed in Sec. IV B). On purpose, only the
latter aspect has been addressed in the present work. Due to
their conceptual difference (continuum-based versus event-
based association measures), inferred statistical associations
among the given data sets may crucially change when either
considering all data or focusing only on the extremes (or even
more, in our present work, only the timing of extremes and
not their magnitudes). Intercomparisons between measures of
both types have been published elsewhere (e.g., in Ref. [48]
for neuroscience applications or Ref. [49] for climate data),
and we did not attempt to repeat such studies here to maintain
the topical focus of the present work.

VI. CONCLUSIONS

In this paper, we have explored the key differences of
two statistical association measures for event time series,
event synchronization (ES), and event coincidence analysis
(ECA). Both measures have been used extensively in different
disciplines, yet had hardly been systematically compared or
applied to the same data before [50].

First of all, building on identified ambiguities in the
theoretical definitions of both measures, we introduced and
implemented corrected versions of the original proposals.
We then created artificial data from a coupled autoregressive
process, by which we were able to provide evidence that ES
does not allow to unambiguously disentangle event synchrony
from serial dependencies, whereas ECA is significantly less
susceptible to such issues. Reproducing the results of previous
studies, we demonstrated ensuing implications for real-world
data that reinforce our conceptual concerns. We specifically
provided indications that results from several past climate net-
work studies, which rely on ES as a similarity metric, need to
be interpreted with caution as they might exhibit severe biases
originating from unaddressed serial dependencies between
events. On the other hand, for epileptic EEG data, we showed
that both ES and ECA yield qualitatively similar results as the
characteristic spike trains entail relatively constant event rates
without notable temporal clustering.

Furthermore, we discussed the nexus of event definitions
and appropriate similarity measures conceptually. We argued
that disentangling event synchrony from serial dependency
is on a lower level tantamount to disentangling statistical
events from underlying phenomena. While methods that ex-
tract local extremes prove to be sensible for data with clear
spikes of varying amplitude such as EEG signals, they are not
applicable for cases where the focus lies on global maxima
such as extreme climate events. Because ES works properly
only for preprocessed data with a priori knowledge, we
propose ECA as an alternative measure that can handle both
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serially dependent and independent data. Furthermore, ECA
allows one to explicitly analyze temporal evolution and ele-
gantly bypasses the need for unnecessarily complex clustering
algorithms that would be required if we wanted to analyze
extremes with ES.

While both ES and ECA have strength and weaknesses,
the nonparametric nature of ES makes it all too easy to
succumb to the temptation of omitting the definition of a
timescale, within which multiple events belong to the same
phenomenon. However, it appears impossible to leap over
this step for synchronization to be attributed between mean-
ingfully defined events. Whether it is best to stipulate this
timescale via parameters in the event definition or rather in
the subsequent analysis remains open for debate at this point.
Even though the quest for a universally optimal method in
our view thus constitutes an ill-posed problem, we advocate
in favor of ECA as providing a straightforward event-based
statistical association measure to analyze event time series that
may or may not include serial dependencies, without caveats
due to temporal event clustering.

Ultimately, the question which event definition and which
similarity measure is most appropriate remains a matter
of choice. But that choice should be made well-informed,

imperatively embedded into the research context and data
characteristics.
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