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Stochastic master stability function for noisy complex networks
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In this paper, we broaden the master stability function approach to study the stability of the synchronization
manifold in complex networks of stochastic dynamical systems. We provide necessary and sufficient conditions
for exponential stability that allow us to discriminate the impact of noise. We observe that noise can be beneficial
for synchronization when it diffuses evenly in the network. On the contrary, an excessively large amount
of noise only acting on a subset of the node state variables might have disruptive effects on the network
synchronizability. To demonstrate our findings, we complement our theoretical derivations with extensive
simulations on paradigmatic examples of networks of noisy systems.
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I. INTRODUCTION

Elucidating the underlying mechanisms that drive a group
of coupled individual toward a synchronized motion has been
the focus of an intense research effort in the last decades [1,2].
Scientists from diverse disciplines have wondered how a
school of fish may move at unison to escape from preda-
tors [3,4], birds migrate together in flocks [5], and honeybee
workers perform coordinated wagging to indicate the direc-
tion of the food source [6]. This surge of interest for synchro-
nization crossed the borders of natural sciences, due to the
countless applications on engineered systems, ranging from
cryptography and communications [7,8], swarm robotics [9],
vehicle coordination [10], and electric power networks [11],
to name a few.

The study of dynamical complex networks has highlighted
that the interplay between the topological properties of the
graph describing the interaction between individuals and their
own (decoupled) dynamics is crucial to determine the emer-
gence of a synchronous behavior. In particular, the so-called
master stability function (MSF) approach provided necessary
and sufficient conditions for the exponential stability of the
synchronization manifold [12], shedding light on the role
played by the eigenvalues of the Laplacian matrix for network
synchronizability. Later works then focused on guaranteeing
global convergence of the node trajectories, and alternative
tools were employed to achieve this goal. Specifically, con-
traction theory has been used to assess convergence of neigh-
boring trajectories, thus resulting in conditions on appropri-
ately defined measures of the Jacobian matrix associated to
the network dynamics [13,14]. Lyapunov-based methods were

*fabio.dellarossa@polimi.it
†Corresponding author: pietro.delellis@unina.it

also employed to provide conditions for global synchroniz-
ability, which was shown to depend both on network connec-
tivity and on the properties of the vector fields describing the
individual dynamics, see, e.g., Refs. [15,16].

Most of the studies on synchronization in complex net-
works are framed in a deterministic setting, where the dynam-
ics are described in terms of ordinary differential equations.
However, the dynamical evolution of coupled systems may be
affected by noise, and a deterministic model would not faith-
fully reproduce the behavior of the network. Indeed, the pres-
ence of noise and uncertainty may hinder synchronizability,
and the convergence toward complete synchronous solution
is made more difficult by sudden bursts of desynchronized
behavior [17,18].

The use of ODEs and difference equations to model
complex networks affected by noise has been explored in
continuous- and discrete-time settings, respectively, see, e.g.,
Refs. [19–25]. These works mainly focused on the ad-
verse effect of noise on synchronizability, by (i) illustrating
that mean-square convergence is hindered by high levels of
noise [19–22] or (ii) applying the deterministic MSF to a set
of networks corresponding to the possible realizations of the
noise [23–25]. Following the observation that, in several do-
mains of application, noise may even induce synchronization
of decoupled systems [26–32], recent literature decided to
model noisy complex networks as coupled stochastic differen-
tial equations (SDEs). More specifically, researchers provided
sufficient conditions for global synchronizability [33,34] and
observed that a common noise acting on all the network
nodes may induce synchronization. However, since all the
conditions for convergence of networks of noisy nonlinear
systems provided in the literature were sufficient but not
necessary, determining whether noise can be an opportunity
or an additional challenge toward synchronizing a complex
network is still an open theoretical research problem [34,35].
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In this work, we aim at providing a more complete picture
of the impact of noise, illustrating both its potential benefits
and hindrance for synchronizability. To this goal, rather than
looking for unavoidably conservative global conditions, we
broaden the master stability function approach to deal with
the presence of noise affecting the individual dynamics of the
network. Indeed, our approach allows to derive necessary and
sufficient conditions for almost sure local exponential stabil-
ity of the synchronization manifold. An extensive numerical
exploration of these conditions on paradigmatic testbeds of
complex networks highlights how generally low noise inten-
sities are beneficial for synchronizability, the effect on larger
noise signals depends on the way it diffuses in the network, on
the individual dynamics of the nodes, and on the connectivity
of the network topology.

The outline of the manuscript is as follows. In Sec. II, we
provide the necessary preliminaries on stochastic systems and
then review the traditional master stability function approach
for deterministic complex networks. Then, in Sec. III, we
introduce our stochastic complex network model and derive
the stochastic master stability function (SMSF) to provide
conditions for almost sure local exponential synchronizability
of the synchronization manifold. The beneficial and detri-
mental effects of noise are then discussed in Sec. IV, and
conclusions are finally drawn in Sec. V.

II. MATHEMATICAL PRELIMINARIES

A. Stochastic differential equations

Let us consider the following stochastic Itô equation:

dz(t ) = ϕ(z, t )dt + γ (z, t )db(t ), (1)

where z ∈ Rm, φ, and γ are nonlinear vector fields commonly
denoted as drift and diffusion functions, respectively, and
b(t ) is a Wiener process [36]. Let (�,F , P) be a complete
probability space with a filtration {Ft } satisfying

(i) ∅ ∈ F , where ∅ denotes the empty set;
(ii) A ∈ F ⇒ � − A ∈ F ;
(iii) A1 ∈ F , A2 ∈ F ⇒ A1

⋃
A2 ∈ F .

The following Lemma provides sufficient conditions on ϕ

and γ ensuring the existence and uniqueness of the solution
z(t ) of Eq. (1) on every finite subinterval [t0, T ] of [t0,+∞]:

Lemma 1 (Existence and uniqueness of a global solution).
[36 Thm. 2.3.6] If

(1) (Lipschitz condition) for every real number T > t0 and
integer δ � 1, there exists a positive constant KT,δ such that

max(‖ϕ(x, t ) − ϕ(y, t )‖2, ‖γ (x, t ) − γ (y, t )‖2) � KT,δ‖x − y‖2

for all t ∈ [t0, T ] and x, y ∈ Rn fulfilling max(‖x‖, ‖y‖) � δ,
and

(2) (Growth condition) for every T > t0 there exists a
positive constant KT such that

zT ϕ(x, t ) + 1
2‖γ (z, t )‖2 � KT (1 + ‖z‖2)

for all z ∈ Rn and t ∈ [t0, T ],
then there exists a unique global solution z(t ) to Eq. (1),

with z(t ) being a real-valued measurable {Ft }-adapted process
with finite variance.

Definition 1 (Equilibrium of a stochastic equation). z(t ) =
z̄ is the equilibrium of the stochastic Itô Eq. (1) if both

ϕ(z̄, t ) = 0 and γ (z̄, t ) = 0 ∀t .

If z̄ = 0, then the equilibrium is called the trivial solution
of the stochastic system (1).

Definition 2 (Sample Lyapunov exponent and almost sure
stability). Let us consider a stochastic Itô process of the
form (1) having the trivial solution z̄ = 0. The sample Lya-
punov exponent associated to z̄ is

Lyap(t, z(t0)) := 1

t
log (‖z(t ; t0, z(t0))‖). (2)

The trivial solution is locally almost sure exponentially stable
if and only if there exists ε such that

lim sup
t→+∞

Lyap(t, z(t0)) < 0 almost surely, (3)

for all z(t0) : ‖z(t0)‖ < ε, while it is globally almost sure
exponentially stable if and only if (3) holds for all z(t0) ∈ Rn.
Note that the left-hand side of inequality (3) can be used as
an estimate of the exponential rate of convergence toward the
trivial solution of (1).

B. Master stability function

Traditionally, a complex network has been modeled as the
following set of coupled ordinary differential equations:

ẋi(t ) = f (xi, t ) + σ

N∑
j=1

ai j[h(x j, t ) − h(xi, t )], (4)

for all i = 1, . . . , N , where N is the number of nodes, xi ∈ Rn

is the state of the ith node, f : Rn × R+ → Rn is a nonlinear
vector field, h : Rn × R+ → Rn is the inner coupling func-
tion, σ is the overall coupling strength, and ai j is the i jth ele-
ment of the adjacency matrix describing the interconnections
among the nodes.

Network (4) admits an invariant set xi(t ) = xs(t ) for all i =
1, . . . , N , denoted as synchronization manifold S , where xs is
a solution of the individual uncoupled dynamics. Therefore, to
assess the local stability of the synchronous state it suffices to
analyze the dynamics that are transverse to the synchroniza-
tion manifold. In Ref. [12], the authors showed that this can be
done by studying the lower-dimensional parametric equation

ζ̇ (t ) = [ fx(xs, t ) − ηhx(xs, t )]ζ (t ), (5)

where ζ ∈ Rn, η � 0, and the subscript x stands for the
derivative with respect to the first argument. For each value of
η, n Lyapunov exponents can be extracted. The largest of these
exponents MSF(η) is called master stability function. Now if
we sort the eigenvalues of the Laplacian matrix associated to
network (4) in ascending order, that is, 0 = λ1 � λ2 � . . . �
λN , then we can provide the following result on the local
stability of the synchronization manifold:

Lemma 2. The synchronization manifold is locally expo-
nentially stable if and only if MSF(σλi) < 0 for i = 2, . . . , N .

Depending on the individual dynamics f and on the cou-
pling function h, three types of MSF have been classified [37].
Specifically, type I is monotone increasing, type II is mono-
tone decreasing, while type III is nonmonotone. For type
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II MSF, the larger the Fiedler eigenvalue λ2 (also known
as algebraic connectivity), the easier is to synchronize the
network. Type III MSF is of particular interest, since it might
admit finite ranges of negative values, thus requiring the ratio
λN/λ2 to be small enough to guarantee the existence of a
coupling strength σ for which S is locally stable.

III. STOCHASTIC MASTER STABILITY FUNCTION

A. Stochastic complex network model

Here we consider a complex network of N > 1 stochastic
dynamical systems, diffusively coupled through an undirected
and connected graph G = (V, E ), where V and E are the
set of the network nodes and edges, respectively. To model
the presence of multiple sources of uncertainty acting on the
individual dynamics of each node, we assume that the network
is subject to p independent noises. Therefore, the traditional
deterministic model (4) is replaced by the following nonlinear
stochastic differential equation of Itô type:

dxi(t ) =
⎧⎨
⎩ f (xi, t ) + σ

N∑
j=1

ai j[h(x j, t ) − h(xi, t )]

⎫⎬
⎭dt

+
p∑

k=1

σ ∗
k gk (xi, t )dbk (t ), (6)

for all i ∈ V , where the diffusion function gk : Rn × R+ →
Rn models how the kth noise propagates through the network,
σ ∗

k modulates its variance, and b = [b1, . . . , bp]T is a standard
p-dimensional Wiener process that acts as a disturbance on
all the network nodes. We assume that all the functions we
have introduced satisfy the hypotheses of Lemma 1, so that a
unique global solution of the SDEs exists.

The assumption that the network is made of identical sys-
tems, i.e., the functions f and gk , k = 1, . . . , p, are identical
for all the nodes in V , see Eq. (6), grants that also in this
stochastic setting the invariant synchronization manifold S
exists [38]. The synchronous trajectory xs(t ) is a solution of
the stochastic differential equation

dxs(t ) = f (xs, t )dt +
p∑

k=1

σ ∗
k gk (xs, t )dbk (t ).

Introducing the synchronization error

e(t ) = [e1(t )T , . . . , eN (t )T ]T ,

with ei(t ) := xi(t ) − xs(t ), we can give the definition of expo-
nential convergence toward S in a stochastic sense. In fact, the
error dynamics is ruled by

dei(t ) = dxi(t ) − dxs(t ) =
⎧⎨
⎩ f (xs + ei, t ) − f (xs, t )

+ σ

N∑
j=1

ai j[h(xs + e j, t ) − h(xs + ei, t )]

⎫⎬
⎭dt

+
p∑

k=1

σ ∗
k [gk (xs + ei, t ) − gk (xs, t )]dbk (t ), (7)

for i = 1, . . . , N , and the trivial solution e(t ) = 0 of (7) cor-
responds to the invariant synchronization manifold S of (6).

Definition 3. The synchronization manifold S is almost
sure (a.s.) locally exponentially stable if and only if there exist
ε > 0 such that

lim sup
t→+∞

1

t
Lyap(t, e(0)) < 0 almost surely (8)

for all e(0) : ‖e(0)‖ < ε and 1T
N e(0) = 0.

B. Local stability analysis

To study the local stability of the synchronization manifold
we would need to focus on the dynamics of (7) that are
transversal to S . However, this could be computationally
prohibitive for large networks, as the the transversal dynam-
ics would be n(N − 1)-dimensional. As in the deterministic
case, our objective is then to infer the stability properties
of S by computing the sample Lyapunov exponents of a n-
dimensional system, thus making computations feasible even
for large networks. Toward this goal, we proceed by observing
that, in an infinitesimal neighborhood of the synchronization
manifold, the error dynamics can be written in compact matrix
form as

de(t ) = [IN ⊗ fx(xs(t ), t ) − σL ⊗ hx(xs(t ), t )]e(t )dt

+
p∑

k=1

σ ∗
k

(
IN ⊗ gk

x(xs(t ), t )
)
e(t )dbk (t ), (9)

where ⊗ is the Kronecker product, gk
x is the Jacobian of gk

with respect to the first argument, and the matrix L is the
Laplacian matrix associated to the graph G.

Let us now consider the transformation T that diagonalizes
L (i.e., TLT −1 = �, with � being the diagonal matrix con-
taining the eigenvalues of L) and define a transformed variable
ξ (t ) = (T ⊗ In)e. Notice that this transformation does not
act on the terms IN ⊗ fx(xs(t ), t ) and IN ⊗ gk

x(xs(t ), t ), k =
1, . . . , p, that are already in block diagonal form, since it only
affects the identity matrix IN . Hence, the dynamics of ξ can be
obtained by applying the Itô’s formula from (9), and is given
by

dξ (t ) = [IN ⊗ fx(xs(t ), t ) − σ� ⊗ hx(xs(t ), t )]ξ (t )dt

+
p∑

k=1

σ ∗
k

[
IN ⊗ gk

x(xs(t ), t )
]
ξ (t )dbk (t ). (10)

System (10) is in block diagonal form, with (n × n)-
dimensional blocks, and each block is associated to an eigen-
value of L. Being G a connected graph, the eigenspace
spanned by the eigenvalue 0 has dimension 1 and is orthog-
onal to all the other eigenvectors [39]. As in the determin-
istic case, this transformation allows to separately studying
the motion along the synchronization manifold S and the
one transverse to it. Indeed, introducing the vector ξi =
[ξ1,i, . . . , ξn,i]T , Eq. (10) can be rewritten as

dξi(t ) = [ fx(xs(t ), t ) − σλihx(xs(t ), t )]ξi(t )dt

+
p∑

k=1

σ ∗
k gk

x(xs(t ), t )ξi(t )dbk (t ) (11)
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for i = 1, . . . , N . Replacing λi in (11) with the parameter η,
we obtain the following family of stochastic linear equations:

dζ (t ) = [ fx(xs(t ), t ) − ηhx(xs(t ), t )]ζ (t )dt

+
p∑

k=1

σ ∗
k gk

x(xs(t ), t )ζ (t )dbk (t ) (12)

that we call stochastic master stability equation. Now, we
define the stochastic master stability function SMSF(η) as
the function that associates to η � 0 the sample Lyapunov
Exponent associated to the trivial solution ζ (t ) = 0 of (12).
We are now ready to provide our main stability result.

Theorem 1. The synchronization manifold is locally ex-
ponentially stable if and only if SMSF(σλi ) < 0 for all i =
2, . . . , N .

Proof. The thesis follows from Definition 3. �
Our theoretical derivations allow to highlight the contribu-

tion of the individual dynamics and of the network topology
to the stability of the synchronization manifold. Indeed, the
SMSF is a property of the drift function f , the output function
h, the diffusion functions gks, and the noise strengths σ ∗

k s. The
topology, instead, impacts on the local stability of S through
the eigenvalues of the Laplacian matrix and the coupling
strength σ .

Remark 1. The diffusion functions gks appear in the
stochastic master stability function (12) only through their
partial derivative gk

x with respect to the state. This means that
an additive noise, that is, a noise whose intensity does not
depend on the value of the state, acting on all the nodes of
the network, has no impact on the local stability properties of
the synchronization manifold.

Remark 2. In the deterministic case, the value of the MSF
when η = 0 is the maximum Lyapunov exponent on the
synchronization manifold, that is, the maximum Lyapunov
exponent of the uncoupled system. This implies that if the
MSF is negative at the origin, then the system will converge
to an equilibrium point. Indeed, only converging toward the
same equilibrium point two uncoupled systems can synchro-
nize when starting from different initial conditions. In the
stochastic case, this consideration does not hold anymore. A
negative value of the SMSF at η = 0 means that two uncou-
pled systems eventually synchronize, but does not imply a
trivial asymptotic behavior, as will be illustrated in Sec. IV A.

C. Convergence toward a stationary point

A specific instance of synchronization is the consensus
toward a point x̄ of the state space, that is, xs(t ) = x̄ for
all t . Notice that, as a necessary condition for synchroniza-
tion is that xs is a solution of the uncoupled dynamics, this
implies that

f (x̄, t ) = 0, and gi(x̄, t ) = 0, i = 1, . . . , p.

For the sake of simplicity, in what follows we study the
consensus problem in the presence of a single noise, i.e.,
when p = 1. In this case, the stochastic master stability
equation (12) becomes

dζ (t ) = (F − ηH )ζ (t )dt + σ ∗
1 Gζ (t )db(t ), (13)

where F = fx(x̄, t ), H = hx(x̄, t ), and G = g1
x(x̄, t ). We can

now give the following corollary of Theorem 1.
Corollary 1. Let x̄ be an equilibrium of the uncoupled

dynamics, and p = 1. The synchronization manifold xi(t ) = x̄
for all i is locally exponentially stable if (F − ηH ) and G
commute for all η, and

max
(
Re

{
eig

[
F − σλi(L)H − 1

2 (σ ∗
1 G)2]}) < 0, (14)

for all i = 2, . . . , N .
Proof. Let us introduce

Y (t ) = (
F − ηH − 1

2 G
)
t + G[b(t ) − b(0)]. (15)

Noting that

dY (t ) = (
F − ηH − 1

2 G
)
dt + Gdb(t ), (16)

we can then show that

Z (t ) = exp[Y (t )] (17)

is the fundamental matrix of the stochastic master stability
Eq. (13). Indeed, by applying Itô’s formula [36] to (17), we
can write

dZ (t ) = exp[Y (t )]dY (t ) + 1
2 exp[Y (t )][dY (t )]2. (18)

As (F − ηH ) and G commute for all η, we obtain

dZ (t ) = (F − ηH )Z (t )dt + GZ (t )db(t ), (19)

thus proving that Z (t ) satisfies Eq. (13) and therefore is its
fundamental matrix. We then have that the unique solution
of (13) is

ζ (t ) = exp{(F − ηH − G/2)t + G[b(t ) − b(0)]}ζ (0). (20)

We can then conclude that the stochastic master stability
function is

SMSF(η) = max
(
Re

{
eig

[
F − ηH − 1

2 (σ ∗
1 G)2

]})
.

The thesis trivially follows. �
When the noise diffuses proportionally to the node state,

the previous corollary can be further specified.
Corollary 2. Let x̄ be an equilibrium of the uncoupled

dynamics, and p = 1. The synchronization manifold xi(t ) = x̄
for all i is locally exponentially stable if g1(xi, t ) = xi and

max(Re{eig[F − σλi(L)H]}) − 1
2 (σ ∗

1 )2 < 0, (21)

for all i = 2, . . . , N .
Proof. As g1(xi, t ) = xi, we have G = In. This means that

(i) (F − ηH ) commutes with G and (ii) Eq. (21) is equivalent
to (14). From Corollary 1, the thesis follows. �

These two corollaries demonstrate that when the network is
in the neighborhood of an equilibrium point of the uncoupled
dynamics, and the noise acts evenly on each state variable, it
can only be beneficial for synchronizability. Indeed, its effect
is to shift downward the SMSF, the shift being proportional
to the noise intensity. In the following section, we will notice
how this is not always true for nonlinear systems synchroniz-
ing onto a nontrivial trajectory.
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IV. NUMERICAL EXAMPLES

Here we illustrate how our theoretical findings can be
used to assess the impact of noise in networks of nonlinear
systems. Specifically, we start by studying a network of Van
der Pol oscillators, where we show an instance of the so-
called noise-induced synchronization [26–32,34]. Then, we
consider the example of coupled Chua’s circuits to compare
our local necessary and sufficient conditions for exponential
synchronization with the global sufficient conditions available
in the literature [34]. Finally, we consider a network of Rössler
systems, where these global conditions cannot be used to
study synchronizability. On the contrary, our local analyses
allow for a thorough characterization of the effect of noise,
showing that it may also destabilize the synchronization man-
ifold.

In all our numerical analyses, we employ the standard
Euler-Maruyama weak integrator [40] to simluate the SDEs,
and the time step is fine-tuned to ensure convergence. Further,
we employ an optimized version of the discrete QR method
given in Ref. [41] to compute the transversal sample Lya-
punov exponent. To increase the robustness of the numerical
analysis, in all the plots of this section, each sample Lyapunov
exponent is computed as the maximum value reached over 10
computations. For ease of illustration, we focus on the case of
p = 1 noise acting on the network, since the case p > 1 would
not be qualitatively different.

A. Network of noisy Van der Pol oscillators

Here we consider a network of Van der Pol oscilla-
tors [42] with damping coefficient μ = 0.2 and coupled
through springs sharing the same elastic coefficient σ . In our
model (6), this means that

f (xi, t ) =
[

xi2

μ
(
1 − x2

i1

)
xi2 − xi1

]
, h(xi, t ) = [0, xi1]T ,

where xi1 and xi2 are the angular position and velocity of the
ith oscillator, respectively. Further, we assume that a turbulent
wind acts on the system, which we model as a noise acting on
the second state variable, that is, we set g1(xi, t ) = [0, xi2]T .
In this setting, the stochastic network model (6) becomes

dxi1 = xi2dt

dxi2 =
⎡
⎣μ

(
1 − x2

i1

)
xi2 − xi1 + σ

N∑
j=1

ai j (x j1 − xi1)

⎤
⎦dt

+ σ ∗xi2db(t ). (22)

Notice that, considering the physical interpretation of net-
work (22), noise can only act on the second state variable,
since by definition the angular velocity xi2 is the derivative of
the angular position xi1.

In Fig. 1, we report the SMSF for different values of the
noise intensity σ ∗. In the absence of noise (σ ∗ = 0), we
observe that the (deterministic) MSF of the system is zero
when η = 0 (the uncoupled dynamics converge toward a limit
cycle), and then linearly decreases until η = 0.43, where a
negative plateau is reached. When noise affects the dynamics,
its effect is not trivial as in the consensus case studied in

FIG. 1. Stochastic master stability function of the network of Van
der Pol oscillators (22) for selected values of the noise intensity σ ∗.

Corollary 2. Although local exponential synchronization is
always guaranteed in coupled Van der Pol oscillators, the
presence of noise may reduce or increase the exponential
convergence rate. Indeed, introducing a small amount of noise
improves the rate of convergence for sparse networks [i.e.,
networks with a small Fiedler eigenvalue λ2(L)], which is
instead reduced for densely connected networks [i.e., large
λ2(L)]. In simple terms, the fact that all the network nodes
are subject to the same noise (e.g., the turbulent wind) makes
synchronization easier if the oscillators are weakly coupled,
while acts as a disturbance when they are densely connected.
Finally, when the noise is excessively large, its impact on
synchronizability dominates that of the coupling. Indeed, the
SMSF tends to becomes flat, that is, the rate of convergence
becomes independent of the network connectivity, and shifts
downward as the noise further increases. As a result, indepen-
dent of the coupling configuration, the oscillators will con-
verge toward the same highly noisy trajectory, thus achieving
synchronization.

This paradigmatic examples also allow us to discuss an
instance of noise-induced synchronization, a phenomenon
that is well-known in the literature on stochastic systems,
see, e.g., [26–32,34]. While decoupled deterministic systems
can only synchronize at a point of the state space that is
an asymptotically stable equilibrium point of the individual
dynamics, this is not true in the presence of noise, as noted
in Remark 2. To demonstrate this point, we simulate the time
evolution of two uncoupled Van der Pol systems subject to
the same noise with strength σ ∗ = 0.25. Figure 2 illustrates
how the error norm exponentially converges to zero, with the
individual trajectories converging toward a stochastic version
of the Van der Pol attractor, and this is consistent with the fact
that, when σ ∗ = 0.25, we have SMSF(0) = −0.018.

B. Network of noisy Chua’s circuits

Here, in the general Eq. (6), we consider as individual
dynamics a stochastic version of the well-known Chua’s cir-
cuit [43]. Specifically,

f (xi, t ) =
⎡
⎣α[xi2 − γ (xi1)]

xi1 − xi2 + xi3

−βxi2,

⎤
⎦, (23)

where α = 9, β = 100/7, and

γ (xi1) = m1xi1 + 1
2 (m0 − m1)(|xi1 + 1| − |xi1 − 1|),
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FIG. 2. Simulation of N = 2 uncoupled stochastic Van der Pol
systems (22) when σ ∗ = 0.25. Phase-portrait of node 1 (left panel)
and time evolution of the norm of the synchronization error (right
panel).

with m0 = −1/7 and m1 = 2/7 selected so that, in the ab-
sence of noise and coupling, the dynamics exhibit the double
scroll chaotic attractor. Note that the system is piecewise
linear, and therefore (23) can be rewritten as

f (xi, t ) =
⎧⎨
⎩

A1xi − b, if xi1 > 1,

A2xi, if |xi1| < 1,

A1xi + b, if xi1 < −1,

with b = [m0 − m1, 0, 0]T , and

A1 =
⎡
⎣−αm1 α 0

1 −1 1
0 −β 0

⎤
⎦, A2 =

⎡
⎣−αm0 α 0

1 −1 1
0 −β 0

⎤
⎦.

Thus, it satisfies the QUAD assumption [44], that is, for all
(x, y) ∈ R3 and t ∈ R+, it fulfills the following inequality:

(x − y)T [ f (x, t ) − f (y, t )] � k f ‖x − y‖2,

where k f = max (λN (Asym
1 ), λN (Asym

2 )) = 8.1, with Asym
i =

(Ai + AT
i )/2. In Ref. [34], the authors showed that, if the sys-

tems are coupled through the identity function, i.e., h(xi, t ) =
xi, only one noise affect the system (p = 1), with g1(x, t ) =
G(t )x, and σ ∗

1 = σ ∗, then the stochastic synchronization man-
ifold is globally stable when

σλ2(L)>k f + (σ ∗)2

2
[d̄ (t )2 − 2d (t )2], (24)

where d̄ (t ) and d (t ) are the eigenvalues of G(t ) with the
largest and the smallest absolute value, respectively [45]. As
the diffusion function considered in our numerical analysis
is g1(x, t ) = xi, we have d̄ (t ) = d (t ) = 1. Figure 3 depicts
the stochastic master stability function computed for different
values of the noise intensity σ ∗, from which we observe
that the stability region, i.e., the region where SMSF < 0, is
unbounded.

We notice how the global condition given in Ref. [34]
is unavoidably conservative. Indeed, in Fig. 3, the green
area on the left of the white line corresponds to coupling
configurations and noise intensities for which condition (24)
is not fulfilled, while the SMSF is negative, thus implying
local exponential stability. To further illustrate this point,
we consider a network of N = 100 Chua’s circuits, whose
stability is characterized by the black point in Fig. 3. Indeed,
the network topology, illustrated in the left panel of Fig. 4, is

FIG. 3. Stochastic master stability function of the network of
stochastic Chua’s circuits (6)–(23) for σ ∗ ∈ [0, 5]. The white line is
the locus η − (σ ∗)2/2 = k f . The stars identify the points (σλ2(L), 0)
and (σλ2(L), 1) for the network depicted in Fig. 4.

characterized by λ2(L) = 2.84, and we selected σ ∗ = 1 and
σ = 0.1. From Theorem 1, we have that, although the black
point (σλ2(L), σ ∗) in Fig. 3 is far from the white line, almost
sure local exponential synchronization is achieved. This is
consistent with the performed numerical simulation, whose
outcome is depicted in the right panel of Fig. 4.

C. Network of noisy Rössler oscillators

Here we consider the case when the individual dynamics
do not fulfill the QUAD assumption, and therefore the global
conditions for synchronizability presented in Ref. [34] can-
not be employed. Indeed, we select a stochastic version of
the Rössler system [47] as individual dynamics in network

FIG. 4. Simulation of a network of N = 100 stochastic Chua’s
circuits (6)–(23) when g and h are both the identity function, and
σ = 0.1. The left panel depicts the network topology, generated
through the Watts-Strogatz model [46], while the norm of the error
with respect to the average trajectory x̄(t ) = 1N ⊗ ∑N

i=1 xi(t )/N is
plotted in the right panel when σ ∗ = 1 (black line) and in the absence
of noise (blue line).
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FIG. 5. Stochastic master stability function of the network of
stochastic Rössler systems (6)–(25), with h(xi, t ) = g(xi, t ) = xi, for
σ ∗ ∈ [0, 1].

model (6). Namely,

f (xi, t ) =
⎡
⎣ −xi2 − xi3

xi1 + axi2

b + xi3(xi1 − c)

⎤
⎦, (25)

where a = b = 0.2 and c = 5.7 are selected so that, when
the noise is absent, the uncoupled dynamics of each node
admits a chaotic attractor. Furthermore, we select the cou-
pling and diffusion functions as the identity, i.e., h(xi, t ) = xi

and g1(xi, t ) = xi. The SMSF of the network is reported in
Fig. 5 to illustrate that, in this case, noise helps the systems
to synchronize, and, when its intensity overcomes a certain
threshold (numerically identified as σ ∗ = 0.63), it induces
synchronization between decoupled systems. The addition of
noise in the network shifts downward the SMSF, as clearly
highlighted in Fig. 6, where the SMSFs of the network for
increasing noise intensities are reported. This behavior is
qualitatively similar to what has been theoretically proved for
consensus when the noise diffusion function is the identity,
see Corollary 2.

FIG. 6. Stochastic master stability function of the network of
stochastic Rössler systems (6)–(25), with h(xi, t ) = g(xi, t ) = xi, for
selected values of the noise intensity σ ∗.

FIG. 7. Stochastic master stability function of the network
of stochastic Rossler systems (6)–(25) with h(xi, t ) = g(xi, t ) =
[xi1, 0, 0]T for σ ∗ ∈ [0, 10].

Next, we make a different selection of the coupling and
diffusion functions, and specifically we set

g(xi, t ) = [xi1, 0, 0]T , h(xi, t ) = [xi1, 0, 0]T .

This yields to a qualitative change of the SMSF of the net-
work, which is reported in Fig. 7. While for small values
of σ ∗ noise still has a stabilizing effect, when its intensity
excessively increases, its impact on the stability of the syn-
chronization manifold dramatically changes. Indeed, for σ ∗ >

7 we have that the SMSF is positive for all values of η, thus
making synchronization unfeasible for all possible coupling
configurations.

A closer look at this transition toward instability can be
given in Fig. 8, which shows how the noise changes the
qualitative behavior of the SMSF, eventually turning the type
III deterministic MSF (when σ ∗ = 0) into a type I SMSF
(when σ ∗ = 8).

V. CONCLUSIONS

This paper contributes to improve our understanding of
the effect of noise on synchronizability of complex networks.

FIG. 8. Stochastic master stability function of the network
of stochastic Rossler systems (6)–(25) with h(xi, t ) = g(xi, t ) =
[xi1, 0, 0]T for selected values of the noise intensity σ ∗.
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Specifically, we broaden the master stability function ap-
proach, originally developed for deterministic networks, to
study networks of coupled stochastic systems. This allows to
provide necessary and sufficient conditions for the almost sure
local exponential stability of the synchronization manifold.
Different from existing work that only provided sufficient
conditions, our analysis allows to paint a wide picture of the
impact of noise. We show that, when it evenly affects all of the
node state variables, noise facilitates the emergence of syn-
chronization, acting as an entraining signal for the network.
In this case, when the noise overcomes a certain threshold,
almost sure synchronization is achieved even in the absence
of coupling, a phenomenon that has been classified in the
literature as noise-induced synchronization. However, when
the noise only enters in a subset of the node state variables, its
impact on synchronizability is less trivial. Indeed, noise can
also have the effect of reducing the exponential convergence
rate toward the synchronization manifold, or even making
it unstable. Assessing whether the noise is detrimental or
beneficial requires taking into account its intensity, the cou-
pling configuration of the network, and the individual node
dynamics. In our numerical analysis, we observed that low
noise intensities are typically beneficial for weakly coupled

systems, while the impact of high noise levels is very depen-
dent on the individual dynamics and coupling configuration of
the network.

The analysis performed in this manuscript can be extended
in several directions. First, it would be important to investi-
gate the impact on synchronization of parameter mismatches
among the coupled oscillators. In this case, although the
synchronization manifold would not be invariant, thereby pre-
venting complete synchronization, a relevant research prob-
lem would be to assess whether the distance among the
trajectories of the oscillators would remain almost surely
bounded. So far, this problem has only been addressed in a
deterministic setting [48]. Second, currently the noise only
enters at the nodes individual dynamics, but in general it may
also affect the communication protocol, as illustrated, e.g., in
Refs. [23,24,33]. Ongoing works are devoted to extend the
stochastic master stability approach to also encompass these
cases [49].
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