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Spatial correlations in a finite-range Kuramoto model
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We study spatial correlations between oscillator phases in the steady state of a Kuramoto model, in which
phase oscillators that are randomly distributed in space interact with constant strength but within a limited
range. Such a model could be relevant, for example, in the synchronization of gene expression oscillations
in cells, where only oscillations of neighboring cells are coupled through cell-cell contacts. We analytically
infer spatial phase-phase correlation functions from the known steady-state distribution of oscillators for the
case of homogenous frequencies and show that these can contain information about the range and strength of
interactions, provided the noise in the system can be estimated. We suggest a method for the latter, and also
explore when correlations appear to be ergodic in this model, which would enable an experimental measurement
of correlation functions to utilize temporal averages. Simulations show that our techniques also give qualitative
results for the model with heterogenous frequencies. We illustrate our results by comparison with experimental
data on genetic oscillations in the segmentation clock of zebrafish embryos.
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I. INTRODUCTION

The Kuramoto model [1–3] is paradigmatic for the study
of synchronization [4]. It has been applied in a diverse range
of settings, such as neuronal activity [5], coupled magnetic
spin torque oscillators [6], coupled Josephson junction arrays
[7,8], atomic lasing [9], and flashing fireflies [10]. Also during
vertebrate development, genetic oscillations in a mechanism
called the segmentation clock are synchronized to generate a
rhythmic pattern with a temporal periodicity that is converted
into a striped spatial pattern of gene expression that makes up
the embryonic segments across vertebrates [11–14].

Despite the conceptual simplicity of the basic Kuramoto
model, containing only a set of phase oscillators coupled
via a phase synchronizing interaction that is identical for all
oscillator pairs, the presence of noise already gives rise to
a host of additional mathematical features such as pattern
formation, bistability, and bifurcations [3,15,16]. Extensions
of the model additionally consider range-dependent couplings
[17,18] or time-delayed coupling [19], further enriching the
phenomenology.

Here we study phase correlations in a specific variant of
the model, with a finite-interaction range such that only oscil-
lators that are spatially separated by less than R0 interact with
constant instantaneous coupling strength κ0, while subjected
to noise [20,21]. Our objective is to contribute to experi-
mental estimates of oscillator coupling strengths leading to
synchronization in the segmentation clock [11–14,22–24] of
the developing zebrafish embryos, but the results are more
generally applicable.

We demonstrate that in the case of homogenous frequen-
cies, where all oscillators share the same natural frequency,
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the essential parameters of our interaction model, the range
R0 and coupling strength κ0, can be directly inferred from
nonlocal phase correlations in weakly synchronized regimes.
They can still be constrained through fitting the model to data
in more strongly synchronized regimes, or for heterogeneous
frequencies. We follow up on earlier studies on parameter
reconstruction in a similar model [25], while significantly
extending these results for cases with unknown or mobile os-
cillator positions, unknown network connectivity, and finite-
range interactions.

We finally explore correlations in the context of data from
genetic oscillators of the segmentation clock within develop-
ing zebrafish embryos. The oscillating quantity is the level of
gene expression within a cell. These cells characteristically
behave as autonomous cellular oscillators, while synchroniz-
ing interactions are provided by the intercellular delta-notch
coupling [26]. Parameters for models describing the coupled
cell system, such as coupling strength, cell-autonomous pe-
riod, and the coupling delays, have been inferred by disruption
of delta-notch intercellular coupling under various genetic
conditions [27,28] and the range of such interactions has
been theoretically estimated in another study [29]. Recently,
single-cell-based phase oscillator measurements provided a
framework to constrain the interaction parameters [23].

Since, within a biological context, individual systems are
typically insufficiently reproducible to allow a thorough en-
semble average, an interesting question is to what extent the
model used here is ergodic and hence allows the inference of
ensemble averages by replacing them with a time average in
a single system. We investigate this question numerically, and
find that in some cases of interest to us, the model behaves
ergodically.

This article is organized as follows: In Sec. II we describe
the version of Kuramoto (or Kuramoto-Sakaguchi) model that
we study and its known steady-state solution [25], which
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FIG. 1. Assembly of N phase oscillators (small green circles)
spread in 2D over a square of side-length L. Each oscillator interacts
with equal strength κ0 with all neighbours within a range R0 only,
indicated by large magenta circles around selected oscillators. This
is described by a finite range Kuramoto model. Oscillators can still
affect one another over distances d larger than R0, through chains of
intermediary oscillators as sketched by the red lines without arrows.

forms the basis for the analytical part of our work. We then
discuss how spatial correlation functions can be found in a
series expansion in Sec. III, and validate our calculations
through numerical simulations in Sec. IV. Section V explores
if correlation functions in this model can be sampled based on
an ergodicity assumption and Sec. VI shows how numerical
simulations of the underlying model can constrain experimen-
tal parameters for the example of genetic oscillations in the
segmentation clock. Details on the calculations in Sec. III are
provided in Appendix A for lowest-order solutions and Ap-
pendix B for resummation to all orders. Appendix C presents
a noise estimation method.

II. FINITE-INTERACTION-RANGE KURAMOTO MODEL

We consider a collection of N phase oscillators, arranged
in either a square area of side length L in two dimensions, as
sketched in Fig. 1, or a cubic box of side length L in three di-
mensions. Most results are presented for the two-dimensional
(2D) case, for easier computations and visualization. Our
general discussion applies to three dimensions as well. We
assume the phase evolution of the oscillators is described by
the set of coupled stochastic differential equations (SDEs)

dθn(t ) =
[
ωn −

N∑
m

κnm sin (θn − θm)

]
dt + dWn. (1)

Here the index n labels each of the oscillators, which may
differ in frequency ωn and are located at specific, temporally
fixed positions, rn. The random distribution of frequencies
has a mean 〈ωn〉 = ω and a standard deviation �ω. For
correlations of phases that we tackle later, the mean frequency

ω is irrelevant and hence can be set to zero without loss
of generality. Here and in the following 〈· · · 〉 denotes the
ensemble average. For this, quantities are averaged over a
large set of solution to (1) with different noise realizations
dWn.

The coupling coefficients κnm are given by

κnm = κnm(d ) = κ0θ (R0 − |rn − rm|), (2)

where θ is the Heaviside function, and thus κnm depend on
the distance d = |rn − rm| of two oscillators. The coupling
acts with strength κ0, only if oscillators are separated by
at most R0, and tends to synchronize phases owing to the
sinusoidal dependence on the phase difference. Finally, each
oscillator is subject to fluctuations randomizing the phases,
dWn, with correlations 〈dWn(t )dWm(t ′)〉 = 2δnmδ(t − t ′)/β,
where δnm is the Kronecker delta. Fluctuations are intrinsic
to gene expression [30] but might also contain environmen-
tal contributions and in this model are controlled by the
temperature type parameter β−1. Mathematically, dWn is the
stochastic increment of a Wiener process [31]. The model (1)
thus mainly differs from the original Kuramoto model by the
introduction of a finite range R0 of the coupling.

A special case of (1) is that of a homogenous frequency
distribution, where all ωn = ω and hence �ω = 0. Counter-
intuitively, there are cases where this variant exhibits even
more complicated dynamics than the heterogenous model,
depending on the other ingredients, e.g., couplings κnm [32].
In this article we focus on the homogenous frequency model
for tractable analytical calculations, and then show through
direct simulations in the case of the heterogeneous frequency
model to what extent our results are preserved in the latter.

Steady state in the homogenous frequency case

The set of Langevin equations (1) for ωn = 0 is equiva-
lent to a Fokker-Planck equation (FPE) for the distribution
function p(θ, t ) [31], where θ is the N-dimensional vector
containing all phase angles θ = [θ1, . . . , θN ]T . Introducing the
energy type expression

E = −1

2
x†Kx, (3)

where x = [x1, . . . , xN ]T with xn = exp [iθn] and K the cou-
pling strength matrix with elements κnm, the FPE that corre-
sponds to Eq. (1) can be written as [25,31]

d p(θ, t )

dt
= −

∑
n

∂

∂θn
Fn p(θ, t ) +

∑
nm

∂2

∂θn∂θm
Dnm p(θ, t ),

(4)

with drift coefficient Fn = − ∂
∂θn

E and diffusion coefficient
Dnm = β−1δnm. The interpretation of the equivalence is that,
if we propagate a stochastic ensemble of phases θn according
to the noisy Kuramoto model (1), the function describing the
random distribution of these phases will be p(θ, t ) and its
evolution is given by Eq. (4).

An important property of the ensemble, that we utilize
further below, is the degree of global synchronization encap-
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sulated in the phase order parameter:

Z =
∣∣∣∣∣
∑

n

xn

∣∣∣∣∣/N. (5)

We have Z = 1 when all oscillators lock into a synchronized
phase, and Z → 0 when phases are random. While it is not the
main focus of our study, we usually indicate the synchroniza-
tion level Z in the steady state for each choice of parameters
later in the article.

It is now possible to analytically determine the steady-state
distribution from Eq. (4) which fulfills d p(θ, t )/dt = 0, with
the closed form solution [25]

p(θ) = 1

N exp [−βE ], (6)

where N = ∫
dθN exp [−βE ] is a normalization constant

akin to a partition function. For the case �ω = 0 here, the
steady-state distribution (6) of the FPE (4) evidently takes the
form of a canonical equilibrium steady state. In contrast, for
�ω = 0 the more complicated result would form a nonequi-
librium steady state [33]. Based on Eq. (6), we now show how
to calculate spatial correlation functions. Temporal autocorre-
lation functions are, for example, discussed in Ref. [33].

III. DISTANCE DEPENDENCE OF PHASE
CORRELATIONS

As has been shown in Ref. [25], knowledge of the steady-
state distribution (6) can be helpful to infer the coupling
strengths κnm of an underlying model. They can be determined
if all multioscillator correlations 〈x∗

i x j〉 and 〈x∗
i x∗

j xkxl〉 in the
steady state are known.

In practice, obtaining the information required, which in-
cludes all the averages 〈x∗

i x j〉 and 〈x∗
i x∗

j xkxl〉, often poses a
severe challenge: Obtaining convergence for fourth-order cor-
relation functions will typically require a lot of reproducible
repetitions of a given experiment. Also assigning fixed labels
such as oscillator “n” versus oscillator “m” may be impossible
if these numbers evolve in time or from realization to realiza-
tion, because locations are not reproducible. Frequently even
the total number within an ensemble may vary.

However, in many cases of interest, the detailed knowledge
of all separate oscillator-oscillator couplings κi j is not re-
quired. When these are given by a simple distance-dependent
formula such as Eq. (2), all that can be of interest are the
parameters in the formula, in our case κ0 and R0. We show
in the following that, assuming interactions (2), the distance
dependence of ensemble averaged second-order correlations
is sufficient to extract all model parameters for homogenous
frequencies. We explicitly provide formulas for this in the
regime where the coupling can be perturbatively dealt with.
In the case of inhomogeneous frequencies, we show through
simulations that a lot of information can still be obtained.

Inferring interaction strengths of a physical model from
measured spatial correlation functions is a widely applied
technique, for example, in elementary particle or condensed
matter physics [34].

A. Series expansion

The clearest picture of the emergence of interoscillator
correlations is obtained through a series expansion, where the
coupling κ is assumed weak compared to the noise strength.
Let us consider the pairwise phase correlation function

gi j = 〈xix
∗
j 〉 =

∫
dθN xix

∗
j p(θ, t )

=
∫

dθN xix∗
j e

β

2 x†Kx∫
dθN e

β

2 x†Kx
, (7)

which we have now explicitly expressed through the underly-
ing probability distribution (6). In the exponentials of Eq. (7),
we now explicitly insert our interaction model (2) using κnm =
κ0θ (R0 − |rn − rm|), and obtain

exp

[
β

2
x†Kx

]
= exp

⎡
⎢⎣βκ0

2

∑
nm;n �=m

|rn−rm|<R0

xnx∗
m

⎤
⎥⎦. (8)

We discuss in Appendix A how the integration over phases θ

in Eq. (7) can be explicitly performed using a series expansion
of the exponentials. The first few terms of that series may be
sufficient if the parameter κ̄ = βκ0/2 is small enough. Let us
write

gi j =
∞∑

k=0

g(k)
i j , (9)

where g(k)
i j ∼ κ̄k for the expansion of gi j in powers of κ̄ .

We are only interested in correlations between different
oscillators, for which i �= j. Then g(0)

i j = 0, expressing that
two noninteracting oscillators are not correlated. The first-
order term turns out nonzero, however, given by

g(1)
i j = βκ0

2
θ (R0 − |ri − r j |), (10)

hence only oscillators within each other’s interaction range
will be correlated and then exhibit a constant correlation
strength. We thus notice that, if the leading order in pertur-
bation theory is valid, a measurement of g(1)

i j already allows
extraction of the range of interactions R0 and the factor βκ0.
Using an independent way to determine the noise strength
β−1, which we discuss in Appendix C, also the coupling
strength κ0 can be determined.

It is instructive to also move to the second-order result,
which is

g(2)
i j =

(
βκ0

2

)2

C(1)
i j;R0

, (11)

where C(k)
i j;R0

denotes the number of possible connections
between oscillators i and j using (k) intermediate oscillators
such that all links of the connection are shorter than R0 (see
Fig. 1). Hence the strength of correlations is set by βκ0, while
the spatial shape must depend on C(1)

i j;R0
(only). The derivation

of all results above can be found in Appendix A.
We can generalize this intuitive concept to all higher orders

in the perturbation expansion. For example, an interaction
between oscillators i and j′ in Fig. 1 arises in the eighth-order
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term of the series expansion (9), as sketched by the longer red
line.

For other applications of diagrammatic expansions as vi-
sualized in Fig. 1 to Kuramoto field theory, but with different
variants of the model and aims, see, e.g., Ref. [35].

B. Summation to all orders

It turns out that, for some parameters, the series expansion
underlying the previous section allows a complete resumma-
tion, enabling us to tackle also some nonperturbative condi-
tions. As discussed in Appendix B we find

gi j =
[

1

1 − β

2 K

]
i j

, (12)

where K is the interaction matrix with elements κi j , the square
brackets enclose a matrix function defined via the power series
of f (x) = 1/(1 − βx/2), and subscripts i j then imply taking
the corresponding matrix element of the result of the series.

Due to the finite radius of convergence of the series ex-
pansion of f (x), Eq. (12) cannot be applied for all choices
of parameters, but we demonstrate below that it reaches
significantly further than the lowest orders (10) and (11).

IV. COMPARISON WITH SIMULATIONS

We now proceed to verify the expressions obtained so
far through a direct numerical solution of the underlying
stochastic equations (1). To this end, we first generated a set
of N oscillator positions, uniform and randomly distributed in
a square of side length L as sketched in Fig. 1. We chose a
two-dimensional system for simplicity. Each oscillator also
has a random initial phase θn(t = 0) ∈ [0, 2π ). For direct
comparability with the analytical calculations above, we focus
on the case of identical frequencies ωn = ω = 0, unless oth-
erwise indicated. We then calculate a solution of Eq. (1) using
standard techniques within the high-level simulation package
XMDS [36,37]. Simulation durations T are chosen such that
the system had enough time to settle into its steady state.

We can determine phase-phase correlations such as Eq. (7)
for each pair of oscillators from an ensemble average over
Ntraj = 640 late time realizations of the simulation. These
pairwise correlations are further averaged in bins, according
to the spatial separation d between members of the pair, to
obtain a simple one-dimensional correlation function g(d ). To
be specific, we formally define

g(d ) = gi j |d<|ri−r j |�d+�d , (13)

with gi j from Eq. (7). Here · · · indicates the average over
all pairs fulfilling the indicated constraint: their pair distance
|ri − r j | lies between d and d + �d . Here �d is a chosen
discrete binning size. Throughout this section, we employ
simple dimensionless units for all variables.

We show in Fig. 2 the resulting correlation functions
for N = 500 oscillators within square boxes of side length
L = 1, leading to a mean nearest-neighbor distance [38] of
d̄ = (2

√
ρ)−1 ≈ 0.02 at density ρ = N/L2. We implemented

periodic boundary conditions over the box edges. The values
at d = 0 are excluded from the figure since they contain gii,
which are trivially equal to 1. To characterize the sample, we
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FIG. 2. Spatial phase-phase correlation functions g(d ) for d > 0
(solid black line). The standard error of the mean, �g, is indicated by
dotted lines at g ± �g. We compare with the analytical calculation of
g(d ) from Sec. III A to leading order (red dashed) and second order
(blue dot dashed). The synchronization Z from Eq. (5) is indicated in
each panel. We compare different representative sets of parameters:
(a) ω̄ = 0, �ω = 0, κ0 = 0.03, R0 = 0.1, β = 1. (b) As (a), but with
less noise, β = 2. (c) As (a), but with a distribution of frequencies
�ω = 0.5. (d) As (a), but with longer-range interactions, R0 = 0.2.
Additionally, the resummed nonperturbative result (12) is shown as
magenta (×); see text. (e) Strongly synchronized scenario with ω̄ =
0, �ω = 0.1, κ0 = 0.2, R0 = 0.07, β = 5. (f) Using ω̄ = 0, �ω =
0.1, κ0 = 0.05, R0 = 0.1, β = 10.

also indicate the ensemble averaged synchronization strength
Z from Eq. (5) in each panel.

Most cases show a clear plateau with stronger correlations
at short separations. This plateau now gives a good indication
of the interaction range in the model, R0, as for d > R0

correlations almost drop to zero. Also the product of noise-
parameter and interaction strength, α ∼ βκ0, can be read
from correlations, corresponding to the height of that plateau.
Both observations are based on the derivations in Sec. III A.
For Figs. 2(a) and 2(c), the lowest orders of the perturba-
tion expansion almost quantitatively describe the correlations.
However, in Fig. 2(d), despite a seemingly small perturbation
parameter κ̄ = 0.03, deviations between simulation results
and low-order perturbation theory arise. This highlights that
the convergence of the series Eq. (9) with k not only depends
on the smallness of the effective coupling, κ̄ , but also on
the behavior of C(k)

i j;R0
, which is the number of connections

between the oscillators. The latter has significantly increased
from Fig. 2(a) to Fig. 2(d), due to the doubled range of the
potential. However, in this regime the resummed expression
(12) gives good results, shown as magenta crosses.
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FIG. 3. Impact of frequency disorder on spatial phase correlation
functions. (a) The same parameters as Fig. 2(c), except, from top
to bottom, �ω = 0 (black solid line), �ω = 0.5 (red dashed line),
�ω = 1 (blue dot dashed line), �ω = 2 (magenta solid line), and
�ω = 4 (black dashed line). Dotted color matched lines indicate the
stochastic sampling error as before. (b) The same parameters as in
Fig. 2(d), with line styles as in (a).

For even more strongly synchronized scenarios than in
Fig. 2(d), shown in Figs. 2(e) and 2(f), we find that the matrix
series employed to evaluate Eq. (12) ceases to converge.
While we empirically find that the precise range R0 of the
potential is still manifest in the correlation function as a
clearly visible step, the difference between the plateau at
d < R0 and tail becomes less pronounced in this regime than
in the perturbative or near-perturbative cases [Figs. 2(a)–2(d)].

We can also already see in Fig. 2(c) that our results are ro-
bust towards the addition of a moderate amount of frequency
fluctuations �ω among the oscillators, for which analytical
calculations do not strictly apply. We explore this further in
the following section. For the simulations in Fig. 2(c), we
have assigned a random, temporally fixed frequency ωn to
each oscillator, prior to each stochastic solution of Eq. (1).
These frequencies were drawn from the Gaussian distribution
p(ω) = exp [−ω2/(2[�ω]2)]/(

√
2π�ω), with standard devi-

ation �ω.

Inhomogeneous scenario with frequency spread

The objective of the previous section was to validate
our analytical calculations in the clearly perturbative limit
and then explore its limitations towards the nonperturbative
regime. Another feature of model (1) that can limit the ana-
lytical results of Sec. III is a nonvanishing spread of oscillator
frequencies �ω. While this can still be incorporated in the
FPE (4) by redefining E = − 1

2 x†Kx + ∑
n ωnθn, we have not

found a technique to evaluate correlation functions based on
this expression. Nevertheless, the simulations in Fig. 2(c)
already indicate that including weak frequency disorder �ω

does not fundamentally alter the results.
In Fig. 3 we show a more extensive simulation survey of

the impact of frequency disorder �ω. We selected the cases
from Fig. 2(c), with parameters that are safely in the per-
turbative regime, and Fig. 2(d), with parameters that require
resummation to all orders in the calculation of correlation
functions. For these cases we have successively increased
the standard deviation �ω of the Gaussian distribution of
frequencies employed in the simulations.

It appears that the inclusion of random frequencies does
not affect the spatial shape of the correlation function. Instead,
increasing frequency disorder reduces the overall strength of
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FIG. 4. Correlation function ergodicity. Black solid lines are cor-
relation functions g(d ) obtained from the standard ensemble average,
with black dashed lines indicating the sampling error. These are
compared with g(d ) obtained from a time average within a single
realization of the simulation, assuming ergodicity (red dashed).
(a) Same parameters as Fig. 2(a). (b) Same parameters as Fig. 2(f).

correlations. This implies that measurements of correlation
functions in these perturbative cases can still uniquely identify
the range R0 of interactions in Eq. (2).

V. CORRELATION ERGODICITY

For many experimental applications of model (1), a mea-
surement related to an ensemble average may prove difficult.
This in principle requires the repeated observation of identical
systems, which may be impossible or require excessive exper-
imental effort.

The problem can be circumvented if the physical system
is ergodic, allowing us to replace the impossible ensemble
average, such as 〈xix∗

j 〉 with a long time average, such as

xix∗
j ≡ ∫ T

0 xix∗
j dt/T , for large T . While it may pose its own

experimental challenges, this average is at least conceptually
available.

In this section, we thus empirically determine whether the
finite-range, homogenous Kuramoto model is ergodic regard-
ing oscillator phase correlation functions. For this we consider
full numerical solutions of Eq. (1) and compare ensemble
averages over many realizations of Eq. (1), as discussed in
Sec. IV, with long-time averages over a single realization.
The results are shown in Fig. 4, for two selected cases already
presented in Fig. 2.

While for the case of Fig. 4(a) it appears that ergodicity
can be safely assumed, since the ensemble average and long-
time average agree, for Fig. 4(b) this is only true for shorter
distances. These results thus suggest caution and that further
explorations are warranted.

VI. APPLICATION TO THE ZEBRAFISH SEGMENTATION
CLOCK

We now consider phase correlation functions in a biophys-
ical setting, as a practical illustration for the results presented
here. Several systems in that field can be described by Ku-
ramoto oscillators. We pick an example from the early verte-
brate development, where the formation of the first muscular
structures called “somites” is controlled by a molecular clock,
the “segmentation clock.” These somites give rise to veterbrae
segments during later development of the embryo.

As an element of the clock, a population of autonomous
cellular oscillators are coupled via delta-notch signaling,
which results in oscillations of gene expression synchronized
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FIG. 5. Spatial phase correlation function from zebrafish em-
bryo genetic oscillations compared with simulations of model (1).
The experimental data described in the text are shown as a red
dashed line, with statistical errors indicated by red dotted lines.
We show only simulations where the parameters ω̄ = 0.15 min−1,
�ω = 0.07 min−1 are matched to those extracted from Ref. [23].
In the following we list the varied parameters, where simulations
are sorted in descending order of their correlation strength near
d ≈ 0: (a) κ0 = 0.55 min−1, R0 = 11 μm, β = 0.84 min; (b) the
same, but β = 0.4 min; (c) κ0 = 1.0 min−1, R0 = 11 μm, β = 0.4
min; (d) κ0 = 0.5 min−1, R0 = 13 μm, β = 0.66 min; and (e) κ0 =
0.18 min−1, R0 = 18 μm, β = 0.4 min. Dashed color-matched lines
indicate the sampling error, as before. The legend indicates the
respective overall level of synchronization Z and the inset shows the
initial spatial arrangement of cells in the experiment, for orientation.

between different cellular oscillators with a collective period
[27]. As a result, a rhythmic wave of gene expression peri-
odically traverses the embryonic presomitic mesoderm tissue
[26], the arrest of which defines the boundaries of future
segments of the organism.

One model for the formation of these waves is Eq. (1),
where ωi are cell intrinsic frequencies of genetic oscilla-
tion, κi j is intercellular coupling arising due to delta-notch
signaling, and dWn is the noise. Importantly, the precise
dependence of the cell-cell coupling on distance, κnm(d ), is
unknown. While more complicated functional shapes κnm(d )
could be studied in the future, we confine ourselves here to
the finite-interaction-range Kuramoto-Sakaguchi model given
by Eq. (2). Since the delta-notch interaction relies on cell-cell
contacts, we would expect R0 to be comparable in order of
magnitude to the mean cell diameter, here roughly dcell ≈ 11
μm.

The phases of individual cellular oscillators were ex-
perimentally determined from live embryos as described in
Ref. [23]. The spatial distribution of the actual cellular os-
cillators is shown in the inset of Fig. 5. From the phases
of individual oscillators, we then calculate the spatial phase
correlations as in Eq. (7) but with the ensemble average
replaced by a time average over the available experimental ob-
servation window (100 min). We thus invoke the assumption
of ergodicity, explored in Sec. V. The result is shown in Fig. 5
as a red dashed line, with dotted lines indicating the standard
error of the time average.

In this case, we find that no clear distinction between a
plateau and a tail is possible within the experimental uncer-

tainty, while the qualitative shape of the correlation function is
reminiscent of those shown in Fig. 2. In order to demonstrate
how information about the underlying interactions can still
be obtained from the data, we compare the correlations with
those from simulations of Eq. (1) for several selected parame-
ter sets in Fig. 5. We show the ensemble averaged correlation
function after the simulations have reached a steady state.

For simulations, we randomly distributed 800 oscilla-
tors (cells) within a cubic box of side length L = 80 μm,
corresponding to a three-dimensional (3D) density ρ3D =
0.0014/μm3, roughly matching the experiment, for which
the more complicated actual cell distribution is shown in the
inset of Fig. 5. We also adjusted the mean frequency to ω̄ =
0.15 min−1 and their standard deviation to �ω = 0.07 min−1,
such that they correspond to the experimental values, averaged
over the entire imaging region. Thus, importantly, these sim-
ulations correspond to the full-fledged Kuramoto model with
inhomogeneous frequencies. Finally we estimated the noise
content separately, using the technique proposed in Appendix
C, and found β = 0.4 min. We thus mainly focus on the latter
value in Fig. 5.

We find that, within model (2), interaction ranges R0

slightly larger than the cell diameter R0 ≈ 13–18 μm can
better reproduce the absence of a clearly visible plateau.
Nonetheless, these values are reasonable based on the expec-
tations from cell-cell contact interactions. Note that the shape
of the correlation function is quite sensitive to R0 for fixed κ

and β, which both in turn do not affect the shape [see, e.g.,
Fig. 5, cases (a)–(c) in the legend].

After constraining the interaction range R0 via the shape of
the experimental correlation function, and the noise parameter
β as in Appendix C, the best matching coupling strengths
based on this demonstration are roughly κ0 ≈ 0.18 min−1.
It is tempting to compare this value with those from exist-
ing parameter extractions in Refs. [27,28,39], which report
κ0 = ε/Nn, with ε = 0.07 min−1 where Nn is the number
of cell neighbors and a noise given by β = 154 min [trans-
lated to the noise term used here in Eq. (1)]. However,
note that the models underlying the parameter extraction
in Refs. [27,28,39] exclusively assume a two-dimensional
arrangement of oscillators. The corresponding qualitative
change in connectivity can explain, for example, the sig-
nificantly different noise parameter to reach similar syn-
chronization strengths, as previous work has shown that
the oscillator network topology significantly influences syn-
chronization [40]. It is encouraging, though, that the order
of magnitude for the coupling inferred here is in rough
agreement with earlier results, despite the vastly different
approaches.

We also analyzed the data for oscillators in the posterior
only, excluding the anterior which shows quite different syn-
chronization behavior [23]. This gave very similar results.

Note that a few important features of the in vivo system
are ignored here: time delays [28], wave propagation, syn-
chronization oscillations [23], and cellular motion [24,29,41].
This would be justified if correlations behave ergodically
despite these complications, and clearly a study of correlation
functions including these aspects would be desirable, but is
deferred to future work. Motion could for example effectively
increase the range of interactions [41] and thus contribute
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to the extracted R0 here being slightly larger than the cell
radius.

VII. CONCLUSIONS AND OUTLOOK

We have analytically and numerically studied phase-phase
correlation functions in a finite-range Kuramoto model. The
model is for example used to describe cellular gene expression
oscillations involved in the segmentation clock regulating the
growth of somites in developing zebrafish embryos.

Using a perturbation expansion, we develop analytical
expressions for phase correlations under weakly and inter-
mediately synchronized conditions for the case of identical
oscillator frequencies. These are verified with numerical sim-
ulations. In the weakly synchronized case, we show that the
interaction potential strength and range can be directly in-
ferred from the correlation data, provided the strength of noise
sources in the system is known. We also propose a method by
which the latter can be approximately inferred independently.
Our simulations show that analytical results are qualitatively
applicable to models with a spread of frequencies as well.

We finally compare the numerical model with experimental
data to demonstrate the extent to which interaction parameters
can be constrained by correlations. Important aspects of the
real biophysical system that require extensions of the present
work are the inclusion of time delays [28], motion of cells or
oscillators [24], and thus changing connectivity [42] as well
as traveling gene expression waves [43–45].

Another important feature of realistic settings to which
the present analytical calculations should be extended is a
nonvanishing distribution of frequencies, maybe following
techniques similar to those in Ref. [46].
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APPENDIX A: LOW-ORDER CORRELATION FUNCTIONS

As discussed in Sec. III A, we can explicitly evaluate
Kuramoto model correlation functions using

gi j =
∫

dθN xix∗
j e

β

2 x†Kx∫
dθN e

β

2 x†Kx
. (A1)

First, expanding the exponential function in the numerator, we
obtain

gi j = N−1
∫

dθN xix
∗
j exp

⎡
⎢⎣βκ0

2

∑
nm;n �=m

|rn−rm|<R0

xnx∗
m

⎤
⎥⎦

= N−1
∫

dθN xix
∗
j

[
1 + βκ0

2

∑
nm;n �=m

|rn−rm|<R0

xnx∗
m

+ 1

2

(
βκ0

2

)2 ∑
nm;n �=m

|rn−rm|<R0

xnx∗
m

∑
kl;k �=l

|rk−rl |<R0

xkx∗
l

+ O

(
βκ0

2

)3]
. (A2)

This expansion will typically be useful if α = βκ0/2 � 1, but
only if the coefficients of the powers of αk do not increase too
rapidly with k. The former condition will be fulfilled if the
coupling strength κ0 is much less than the noise strength β−1.

We are only interested in correlations between different
oscillators; hence, let us set i �= j. In that case the zero-order
term in (βκ0) vanishes, since

∫ 2π

0 dθ xk = ∫ 2π

0 dθ exp [iθk] =
0. In general, for the same reason, any term in Eq. (A2) will
vanish, unless all complex exponential functions contained
within are combined into pairs with identical indices and one
conjugate, such as (xix∗

m=i ). We then find for the first-order
term (up to k = 1)

g(1)
i j ≡ βκ0

2N

∫
dθN

∑
nm;n �=m

|rn−rm|<R0

xix
∗
j xnx∗

m

= βκ0

2N

∫
dθN

∑
nm;n �=m

|rn−rm|<R0

δimδ jn

= βκ0

2N (2π )Nθ (R0 − |ri − r j |). (A3)

In the last equality, we have used that the double sum only
contains indices m = i and n = j, if oscillator i and j are
separated by less than the interaction range R0.

For the final evaluation we require the normalization factor
N , which can similarly be obtained as a power series in α,
using

N =
∫

dθN

⎡
⎢⎣βκ0

2

∑
nm;n �=m

|rn−rm|<R0

xnx∗
m

⎤
⎥⎦

=
∫

dθN

⎡
⎢⎣1 + βκ0

2

∑
nm;n �=m

|rn−rm|<R0

xnx∗
m + O

(
βκ0

2

)2

⎤
⎥⎦. (A4)

Since Eq. (A3) already contains one power of βκ0, to
obtain the leading nonvanishing contribution, we can use
a normalization factor N = (2π )N , which is valid to zero
and first order. Altogether we obtain as the first nontrivial
contribution to the correlation function

g(1)
i j = βκ0

2
θ (R0 − |ri − r j |), (A5)

shown and discussed in Sec. III A.
It is instructive to proceed to the second-order term in

the perturbation expansion, which introduces longer-range
correlations through the effect of intermediary oscillators.
From Eq. (A2), we have

g(2)
i j ≡ α2

N

∫
dθN xix

∗
j

∑
nm;n �=m

|rn−rm|<R0

xnx∗
m

∑
kl;k �=l

|rk−rl |<R0

xkx∗
l . (A6)
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The same arguments that led to our first-order expression
allow us to identify this as the sum over all possible connec-
tions from oscillator i to oscillator j using one intermediary
oscillator, as sketched with two red lines in the bottom left part
of Fig. 1. The region in which these intermediary oscillators
can be located, given the interaction range constraints, is
shaded in blue.

We can thus write

g(2)
i j = α2

N (2π )NC(1)
i j;R0

, (A7)

where C(k)
i j;R0

denotes the number of possible connections
between oscillators i and j using (k) intermediate oscillators
such that all links of the connection are shorter than R0.

Assuming a large number density of oscillators ρ, we can
estimate C(1)

i j;R0
as C(1)

i j;R0
= ρA(ri, r j, R0), where in our 2D

case A is the overlap area of two circles with radii R0 that
are centered on the oscillator positions ri and r j , which are
separated by a distance d . This corresponds to the blue shaded
area in Fig. 1. Using

A(ri, r j, R0)

= 2R2
0 cos−1

(
d

2R0

)
−

√
(2R0 − d )d2(2R0 + d )

2
, (A8)

where this is real and positive, and A = 0 otherwise, we can
write

g(2)
i j (d ) = ρα2A(ri, r j, R0). (A9)

We could generalize this intuitive concept to all higher orders
in the perturbation expansion. For example, an interaction
between oscillators i and j′ in Fig. 1 arises in eighth-order
perturbation theory, as sketched by the longer red line. How-
ever, we have not succeeded to analytically evaluate quantities
like C(8)

i j;R0
that would be required in that case.

APPENDIX B: EVALUATION TO ALL ORDERS

It is, however, possible to evaluate the series in Eq. (9)
to all orders, in a brute force approach. To this end, let
us first inspect the role of the normalization factor N in
the calculation of gi j more closely. Note that the numerator
and denominator in Eq. (A1) are very similarly structured,
except that there are no “external” phase factors xi, x j in the
expression for N .

Consequently, applying the diagrammatic reasoning dis-
cussed in the previous section, the normalization factor in
the denominator quantifies the contribution of “closed loop”
diagrams as shown in Fig. 6 at the bottom. For example the
left-most triangular loop would correspond to a contribution

∼
∫

dθN xax∗
bxbx∗

c xcx∗
a (B1)

to the integration in Eq. (A4), where a, b, and c are the
indices of oscillators involved in the triangle. Note, however,
that these closed loop diagrams would also contribute to the
numerator as diagrammatically shown in Fig. 6. The effect of
the denominator, to any given order in α, is thus to precisely
cancel the contribution to our series expansion of all chains
of connected oscillators in which the two target sites of
interest, i and j, are not directly connected. The precisely
same mathematical features arise in diagrammatic expansions
of quantum field theory, where the normalization factor is

known to reduce the set of all Feynman diagrams to the set of
“connected diagrams,” by canceling “vacuum diagrams” [34].

Using this constraint allows a simplified evaluation of the
integrals in Eq. (A1) to all orders: Let us write

gi j = 1

(2π )N

∫
dθN xix

∗
j e

β

2 x†Kx

∣∣∣∣
connected

, (B2)

implying that in the series expansion the terms xi and x∗
j are

to be joined by one connected list of additional phase factors
as exemplified to second order in Eq. (A6) and Fig. 1. We
also incorporated that the leading order of N is (2π )N ; see
Appendix A.

When expanding the exponential

gi j = 1

(2π )N

∫
dθN xix

∗
j

∑
k

(β/2)k

k!

×
∑
n1,m1

· · ·
∑
nk ,mk

[x∗
n1

κn1m1 xm1 ] · · · [x∗
nk

κn1m1 xmk ]

∣∣∣∣
connected

= 1

(2π )N

∫
dθN

∑
k

(β/2)k

k!
k!

×
∑
n1,m1

· · ·
∑
nk ,mk

xi[x
∗
n1

=δin1

κn1m1 xm1 ]x∗
n2

=δm1n2

· · · xmk−1 [x∗
nk

=δmk−1nk

κn1m1 xmk ]x∗
j

=δmk n j

.

(B3)

In the second equality we have written the requirement that
two adjacent phase factors must have identical indices in order
to yield a nonzero integral. Note the following:

(i) There are k! permutations of intermediary phase factors
such that they overall connect xi and x∗

j ; hence we have added
a factor k!.

(ii) With the connections implied by · · ·, xi and x j must

be connected to each other and all other xn terms, hence we
dropped the tag “connected.”

We can now exploit the Kronecker deltas and perform the
final trivial integration over dθN to arrive, after renaming
indices, at

gi j =
∑

k

(β/2)k
∑

m1,mk−1

κnim1κm1m2 · · · κmk−2mk−1κmk−1n j

=
∑

k

(β/2)k[Kk]i j . (B4)

FIG. 6. Cancellation of disconnected elements of diagrams in the
series expansion of correlations. The top row indicates some selected
contributions to the numerator with target sites i j marked as red
dots. In addition to one identical connection via two intermediate
oscillators, additional closed loops may appear. Only the closed loops
also appear in the numerator. In a rigorous order-by-order expansion
of both, the numerator thus cancels all disconnected elements.
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FIG. 7. Extraction of noise amplitude in model (1) through sam-
pling of the time-increment histogram. Black (•): histogram of phase
increments � for 240 000 time samples of length �t = 2.5 for
the same parameters as in Fig. 2(f). The red line is the theoretical
expectation as described in the text.

We have recognized the summations as the k-fold matrix
power of K ; the symbol []i j implies taking matrix elements i j.
Finally using the series expansion 1/(1 − x) = ∑∞

k=0 xk for
|x| < 1, applied to a series of matrices, we arrive at Eq. (12).

The agreement between the result based on the discussion
of this section and a complete simulation in Fig. 2(d) ulti-
mately validates the approach above, regarding a cancellation
of disconnected elements of the diagrams. Unfortunately the
finite radius of convergence of the series expansion employed
apparently limits its use to an intermediate range of degrees of
synchronization.

APPENDIX C: NOISE AMPLITUDE DETERMINATION

As described in Sec. III, an extraction of the interaction
parameters of interest from the spatial dependence of phase

correlations is only possible if we have a separate means
to determine the noise-strength parameter β−1. One way to
obtain information about the noise is to consider the sum of
all oscillator phases  = ∑

n θn. Using model (1), we find that
the time evolution of summed phases is given by

d(t ) =
N∑
n

ωndt +
N∑
n

dWn = � dt + dξ . (C1)

The interactions have dropped out of the equation due to
their antisymmetry κnm sin (θn − θm) = −κmn sin (θm − θn). In
the second equality we have defined a summed frequency
� = ∑N

n ωn and summed noise term dξ = ∑N
n dWn. As the

sum of the N Gaussian random processes dWn, the variable
dξ is simply another random Gaussian process with variance
2N/β.

By integrating Eq. (C1) over a short time interval �t ,
one can then show that increments in time � = (t +
�t ) − (t ) are again Gaussian distributed, with mean ��t
and variance 2N�t/β. When (t ) can be experimentally
extracted for sufficiently many time samples, the variance of
the increments thus allows us to infer β.

Exemplarily, this is demonstrated in Fig. 7, where we
show a histogram of increments between different time sam-
ples of Eq. (C1), obtained from the simulation in Fig. 2(f),
clearly showing the Gaussian statistics. We would infer β =
10.003 from these noisy data, with a simulation parameter
of β = 10.
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