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Effective low-dimensional dynamics of a mean-field coupled network of slow-fast spiking lasers

A. Dolcemascolo,1 A. Miazek ,1 R. Veltz,2 F. Marino ,3 and S. Barland1

1Université Côte d’Azur, CNRS, INPHYNI, 1361 Route des Lucioles, 06560 Valbonne, France
2Inria Sophia Antipolis, MathNeuro Team, 2004 Route des Lucioles - BP93, 06902 Sophia Antipolis, France

3CNR-Istituto Nazionale di Ottica and INFN, Sez. di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino (FI), Italy

(Received 29 August 2019; revised manuscript received 23 December 2019; accepted 5 April 2020;
published 11 May 2020)

Low-dimensional dynamics of large networks is the focus of many theoretical works, but controlled laboratory
experiments are comparatively very few. Here, we discuss experimental observations on a mean-field coupled
network of hundreds of semiconductor lasers, which collectively display effectively low-dimensional mixed
mode oscillations and chaotic spiking typical of slow-fast systems. We demonstrate that such a reduced
dimensionality originates from the slow-fast nature of the system and of the existence of a critical manifold
of the network where most of the dynamics takes place. Experimental measurement of the bifurcation parameter
for different network sizes corroborates the theory.
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I. INTRODUCTION

The collective dynamics of large networks is a far-reaching
research topic and natural examples of reduced dynamics
dimensionality abound, like fireflies or applause synchroniza-
tion [1]. One paradigmatic example is the synchronization
of globally coupled phase oscillators as observed in the
Kuramoto model [2], whose relative simplicity has allowed
tremendous progress (see, e.g., Ref. [3]). Beyond this ideal-
istic case, a particularly relevant situation is that of spiking
nodes such as neurons, whose synchronization may play a key
role in epilepsy [4]. Thus, many studies focus on the reduced
dimensionality of the dynamics of networks of neuron models,
see, e.g., [5–11], often enabled by the Ott-Antonsen ansatz
[12,13]. In contrast to this rich theoretical literature, controlled
experiments are scarce. Here, we study a mean-field cou-
pled network of hundreds of chaotically spiking, dynamically
coupled semiconductor lasers. We observe experimentally
mixed mode oscillations and chaotic spiking in the mean field.
We establish analytically that the effectively observed low-
dimensional dynamics results from partial synchronization
along the slow manifold of the network, even in absence of
synchronization of the fast dynamics of the nodes.

The analysis of optical model systems is often useful in
nonlinear science, in particular regarding the synchronization
of oscillators as shown in [14,15]. With respect to spiking
nodes, optical analogs of neurons abound (recent references
include [16–21]) but only very few elements have been exper-
imentally coupled, because each element and coupling must
be controlled and accurately tuned into the desired operation
regime. Examples so far are limited to self-coupling with
delay in [22–24], two nodes in [25–28], and up to six in
[29]. In all these cases, the number of elements is small and
no attempt of demonstrating reduced dimensionality of the
dynamics is done. In contrast, we study a network of 451
elements, two orders of magnitude larger than any previous
realization. We establish theoretically the origin of the re-
duced effective dimensionality experimentally observed and

its validity for arbitrarily large networks. The coupling is
dynamic, mimicking pulse-coupled networks [30], and the
topology can be experimentally tuned from one to all to fully
connected. Each of the nodes is a three-dimensional slow-fast
system producing relaxation- and mixed mode oscillations
and chaotic spiking.

Although the mean field cannot be described by an or-
dinary differential equation, we observe an effectively low-
dimensional dynamics of the network due to the slow-fast
nature of the system. Most of the dynamics takes place close
to a simple critical manifold whose stability can be computed
analytically. The convergence of a bifurcation parameter to-
wards a unique value is observed experimentally by increasing
the network size in a quenched disorder configuration.

II. EXPERIMENT

The experiment, shown in Fig. 1(a), is inspired by the
chaotic architecture presented in [31,32]. We reproduce it here
with a laser array, leading to a mean-field coupled network of
many chaotic elements. As shown in [31,32], chaotic spiking
arises when a semiconductor laser is driven by an electric
signal proportional to the intensity of the light it emits, after
a saturable nonlinear transformation and high-pass filtering.
This electrical signal constitutes a third, much slower (typi-
cally 1 ms) variable, in addition to the light intensity (10 ps)
and the semiconductor medium (1 ns).

Here instead of a single laser, an array of 451 vertical cavity
surface emitting lasers (VCSELs) is submitted to an AC-
coupled nonlinear optoelectronic feedback. All the lasers are
driven by a single power supply whose current is distributed
evenly between all lasers (we assume identical impedance).
The threshold current distribution is symmetric with aver-
age value 183.3 mA and standard deviation 5.8 mA. The
emitted light is collected by a short focal length lens which
forms an image of the array after about 10 cm propagation.
Slightly before the image plane, the beam is split in two,
for detection and for the optoelectronic reinjection. In this
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FIG. 1. Experimental setup and typical dynamics. (a) The light
emitted by a VCSEL array is converted to an electrical signal
which, after filtering and nonlinear transformation, is reinjected into
the single current source driving all lasers. (b) Single-laser time
traces showing periodic oscillations, chaotic bursting, and spiking
(pumping currents 195.0, 196.5, and 187.0 mA). (c) Mean-field time
trace of 451 lasers (182.1 mA), showing MMOs. (d) Top panel: total
intensity of all 451 lasers, middle and bottom panels: intensity of two
different lasers (pumping is 189.9 mA).

beam, at the image plane a variable-aperture iris controls
the subpopulation driving the dynamics. The light emitted by
this population is converted by a photodetector into a voltage
which is logarithmically amplified,1 providing a saturable
nonlinearity. The continuous component is actively filtered
out (cutoff frequency 380 Hz), and the resulting signal is sent
as a control voltage into the laser power supply, whose input
bandwidth is 0–100 kHz. The aperture of the iris controls the
coupling, from one to all to globally coupled. Due to the large
pitch between the lasers there is no nearest-neighbor coupling.
The wavelength distribution of the lasers spans 2 nm and
prevents coherent interactions (a far field image is shown in
Appendix A). The control parameters are the driving current
and the amount of light sent to the detector (controlled via a
neutral density filter).

When the iris is closed to select a single laser, this device’s
intensity drives the current applied to the whole population.
The intensity of that particular laser can display complex dy-
namics, including relaxation oscillations and chaotic bursting
or spiking, as shown in Fig. 1(b). When the iris is completely
open, the total intensity drives the power supply pumping
the whole array, resulting in a mean-field coupled network
of 451 nodes. Strikingly, the network can display periodic
and chaotic mixed mode oscillations (MMOs) as shown in

1Based on a diode in the feedback loop of an inverting amplifier.
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FIG. 2. Dynamics of small networks. Different subpopulations
examples [(a), (b) and (c)] show different dynamics (left). Each
uncoupled population has a different laser threshold distribution
(right), and the black dashed line shows 〈Ith〉 for each population [(a)
185.63 mA, (b) 182.88 mA, (c) 180.81 mA]. Red dash-dotted line:
current value used in all measurements (193.50 mA).

Fig. 1(c). In Fig. 1(d) we show synchronous measurements of
the total intensity and of the intensity emitted by two different
lasers in the mean-field coupled configuration during chaotic
spiking: both lasers spike when the network spikes, but only
one laser (central trace) displays the subthreshold oscillations
observed at the network level (top trace). The other laser
remains quiet (at the detection noise level, bottom trace). In
most of the explored parameter regimes, nearly all lasers also
display the subthreshold oscillations.

Smaller networks can be studied by partly closing the iris
and detecting the corresponding population. Different dynam-
ics are observed depending on the subpopulation (Fig. 2). All
parameters are constant and the amount of light sent to the
detector is scaled with the neutral density filter to maintain
the coupling constant when changing population. We show
three example subpopulations, A, B, and C, each consisting of
seven elements with different threshold current distributions.
Network A shows relaxation oscillations, B shows chaotic
bursting, and C is stationary. Other examples can be found, but
in all cases the dynamics of the total intensity seems low di-
mensional. The existence of a well-identified low-dimensional
dynamics in populations of identical size but with distinct
average threshold suggests that this parameter controls the
dynamics.

III. MODEL

The effectively low-dimensional dynamics of this very
high dimensional system can be understood from the fol-
lowing theoretical analysis. We consider a population of N
semiconductor lasers coupled through a common AC-coupled
optoelectronic feedback. Each laser is modeled by rate equa-
tions describing the evolution of the optical intensity, carriers,
and feedback current. After proper scaling (see Appendix B),
the equations read

ẋi = xi(yi − 1), (1)

ẏi = γ [δi − yi + k(w + f (X )) − xiyi], (2)

ẇ = −ε(w + f (X )), (3)
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where time has been normalized to the photon lifetime,
xi, yi are respectively the dimensionless photon and carrier
density of the laser i, and X = 1

N

∑N
i=1 xi is the total intensity

normalized to the number of elements. The global variable
w is the (scaled) high-pass filtered feedback current, which
includes a saturable nonlinear function f (X ) = A ln(1 + αX ).
The optical and electrical propagation delays are negligible.
All the lasers are considered identical, except for the coherent
emission threshold current that is included in the control
parameter δi (proportional to the ratio between the common
pump and the threshold current of each laser).

Since ε is small, we know from the geometric singular
perturbation theory [33,34] that where the critical manifold
(found by setting ε = 0) is stable, the system will asymptoti-
cally converge to it. Thus, the stability of the critical manifold
is key to understanding the dynamics of this system. First we
analyze a single node, and next we compute the stability of
the critical manifold of the network. From that, we establish
analytically that the network, as a whole, undergoes very
similar slow dynamics to that of a single node, even when the
fast dynamics of the nodes is not synchronized.

For N = 1, the model is similar to [31,32,35], where
MMOs result from the three-dimensional slow-fast dynamics
near the fold of a one-dimensional critical manifold. Since the
normalized carrier rate γ and AC feedback cutoff frequency
ε are such that ε � γ � 1, Eqs. (1)–(3) are a slow-fast
system with three timescales. The slow dynamics takes
place near a one-dimensional manifold � = �x ∪ �y. The
lower attractive branch �x is given by the zero-intensity
solution (the laser is off) {x = 0, yw = δ1 + k1w,w},
while the middle repulsive and upper attracting branch,
�y = {xw, y = 1,w}, are implicitly defined by the equation
δ1 − 1 + k1w + k1 f (xw ) − xw = 0.

In correspondence with the laser threshold δ0 = 1, the
system undergoes a transcritical bifurcation where the zero-
intensity solution (0, δ0, 0) and the lasing solution [δ0 −
1, 1,− f (δ0 − 1)] become unstable and stable, respectively.
By further increasing the parameter δ0, even the stationary
lasing solution loses stability through a supercritical Hopf
bifurcation, followed by a period doubling cascade and by
the abrupt transition to a large-amplitude relaxation orbit.
The blowup of such slow-fast phase-space orbits and the
occurrence of MMOs can be inferred from the following. We
first notice that since w typically changes at a much slower
rate than x0 and y0, the motion splits into fast and slow epochs.
The slow dynamics take place on a one-dimensional mani-
fold � = �x ∪ �y, where the lower attractive branch �x is
given by the zero-intensity solution {x = 0, yw = δ0 + kw,w}
while the middle repulsive and upper attracting branches,
�y = {xw, y = 1,w}, are implicitly defined by the equation
δ0 − 1 + kw + k f (xw ) − xw = 0. Since two branches rapidly
attract all neighboring trajectories while the middle branch
repels them, canard and relaxation cycles arise. These features
are commonly found even in planar slow-fast systems, but
here the presence of a third intermediate timescale, 1/γ , in-
duces more complex scenarios. First of all, the fixed points of
the two-dimensional fast subsystem (see Figs. 1 and 2) laying
on the upper attractive branch consists of stable foci. As such,
the trajectories near these branches consist of shrinking heli-
coids (see Fig. 3), in contrast with the monotonic decay that

FIG. 3. Numerical simulation of a single laser modeled by
Eq. (1) with N = 1. The black and the green curve are the two
branches of the critical manifold (unstable when dashed). The green
and black points are attracting on the manifold they belong to.
The magenta point is the minimum of the parabolic part of the
critical manifold, where its stability changes. The red point is the
(unstable) intersection of the two critical manifolds: α = 2, k =
0.7, γ = 4.0 10−3, ε = 10−4, A = 1, δ0 = 1.25. (a) 3D phase space,
and (b) projection in the (x, w) plane shows the semiconductor laser
relaxation oscillations.

can uniquely be expected in the planar case. Second, a regime
of either regular or chaotic MMOs takes place, where canard
orbits are separated by small-amplitude, quasiharmonic os-
cillations surrounding the steady state of the system. When
laying on the middle repelling branch, such equilibrium is a
saddle focus and trajectories can rotate several times around it
before switching to the other stable branch of the manifold.
The number of these rotations, as well as the periodic or
erratic nature of MMOs, are determined by the rates at which
both y0 and w vary in the vicinity of the saddle focus. This
is related to the values of γ and ε, but also critically depends
on the bifurcation parameter δ0. This dependence is more and
more critical when γ and ε differ by orders of magnitude, with
chaos becoming increasingly difficult to observe (we observed
it up to γ = 4 × 10−3, ε = 5 × 10−5) due to the flattening of
the trajectories in the plane transverse to the critical manifold.

When N > 1, Figs. 1–3 describe a network of N such
elements, globally coupled through their slowest variable w.
Defining the mean carrier density Y = 1

N

∑N
i=1 yi, we derive

the following rate equations for the coupled network:

Ẋ = −X + 1

N

N∑
i=1

xiyi , (4)

Ẏ = γ

[
� − Y + k(w + f (X )) − 1

N

N∑
i=1

xiyi

]
, (5)

ẇ = −ε(w + f (X )), (6)

where � = 1
N

∑N
i=1 δi. As for N = 1, this is a slow-fast

system, and much insight can be gained by studying the
critical manifold and its stability. This analysis can be split
into three cases: all lasers are off, all lasers are on, or only
a subpopulation is on. From Eq. (4), we have that Ẋ =
0 ⇔ X = 1

N

∑N
i=1 xiyi. The critical manifold is a solution of

� − Y + kw + k f (X ) − X = 0, reminiscent of the case N =
1. It is clear that Ẋ = 0 is satisfied either if all lasers are
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off: xi = 0 ∀i, which gives Yw = � + kw; or if all lasers are
on: yi = 1 ∀i, so that Y = 1. This provides two of the one-
dimensional branches of the critical manifold of the full
network. These curves are defined by exactly the same equa-
tions as for the case N = 1 but where all the variables and
parameters are replaced by their corresponding mean values.

To analyze the critical manifold S in the general case, we
parametrize it by the set I of switched-ON lasers and we
introduce the new variable XI = 1

N

∑
i∈I xi and the parameter

�I = 1
N

∑
i∈I δi. We find that

SI = {(
xI

i (w), yI
i (w),w

)
, i = 1 . . . N, w ∈ R

}
,

with

(xI
i (w), yI

i (w)) =
{

(0, δi + k[w + f (XI (w))]), ∀i /∈ I,

(δi − 1 + k[w + f (XI (w))], 1) ∀i ∈ I,

where XI (w) is implicitly defined by

XI (w) = N+
N

(k[w + f (XI (w))] − 1) + �I . (7)

The critical manifold S of the coupled network thus consists
of 2N components: S = ∪I⊂[1,N]SI . Apart from the scaling
factor N+

N , the structure of the critical manifold is a bundle of
one-dimensional branches SI which, at zero order in z, closely
resembles that of the N = 1 case except for the “off” nodes,
those for which xi = 0. The stability of SI can be determined
analytically assuming that all lasers are similar enough, δi =
� + zηi, z � 1. The calculations are not immediate (they are
detailed in Appendix C) but demonstrate that the stability of
SI is, at zero order z, very similar to that of a single “mean”
laser with control parameter �. However, nodes which would
remain on the “off” branch without coupling may be expelled
from it by the coupling through w.

Thus, as the quenched disorder δi is not averaged in the
limit N → ∞, a truly mean-field limit cannot be established
as an ODE. However, due to the splitting of the timescales,
most of the motion takes place along the critical manifold,
leading to an effective low-dimensional dynamics similar to
that of a single element. In Fig. 4 we plot the numerical mean-
field trajectory together with the critical manifold of an aver-
age laser. The slow evolution of different nodes is perfectly
synchronized, even if some elements may be on different
branches of the slow manifold [explaining the experimental
observation Fig. 1(d)]. However, the individual trajectories
differ in the fast dynamics, transverse to the slow manifold.
This is clear on the right of Fig. 4, which shows a time trace of
the mean field together with the variance of the xi. In absence
of noise, the distribution of the xi tends to a Dirac function
whenever the system is close to the critical manifold, with a
much broader distribution when the system switches branch.
It is worth noting that the different trajectories persist even
when the timescales differ by several orders of magnitude, as
we have checked up to γ = 4 × 10−3, ε = 10−7.

Finally, the dynamics for z � 1, N < ∞ stays in a tube
around the dynamics for z = 0, in which case there is no
disorder and thus the dynamics is exactly that of the isolated
laser. This implies that the MMO and the chaotic behaviors
(for z = 0) are robust on finite time intervals when N grows to

FIG. 4. Numerical simulations of 104 coupled lasers modeled
by (1). Only three laser dynamics are plotted (dashed and dotted
lines). The mean dynamics is plotted in continuous black. The
parameters δi−〈δ〉

〈δ〉 are independent Gaussian variables of zero mean

and standard deviation 1 × 10−3 with 〈δ〉 = 1.2045, k = 0.7, A = 1,
α = 2, γ = 4 × 10−3, ε = 10−4. Black dot: intersection between the
two slow manifold branches. The parabola �y and the straight line
�x constitute the critical manifold calculated for a single laser with
parameter �.

infinity. As an example, Fig. 4 shows a chaotic trajectory with
z � 1, N = 104.

IV. EXPERIMENTAL VALIDATION

One theoretical prediction from the above is that the aver-
age threshold parameter � rules the dynamics. We corroborate
this experimentally by measuring the total intensity for differ-
ent population sizes (Fig. 5). All parameters are constant and
the iris is opened to include a larger and larger population.
For each network size, the total amount of light sent to the
reinjection detector is scaled to keep the coupling parameter
constant. We show the bifurcation diagrams of networks of 19
(D), 251 (E), and 451 (F) nodes on Fig. 5. Similar sequences
are observed, although for different values of the control
parameter. The distributions of the uncoupled laser emission
thresholds are shown on the right column. The 451- and
251-element networks are very similar, but the 19-element one
differs markedly. As expected from theory, this hints at � as
the control parameter for the network.
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FIG. 5. Bifurcation diagrams of three networks of different sizes
(D:19, 〈Ith〉 = 185.32 mA; E:251〈Ith〉 = 183.70 mA; F:451). Right:
bifurcation curves for the uncoupled elements, and the dashed line
indicates 〈Ith〉.

We demonstrate this by measuring the current value at
which some prescribed dynamics takes place for different
populations. In Fig. 6 we plot the current value Is at which
the network returns to a stable fixed point after undergoing
the sequence of bifurcations described earlier, as a function of
the average threshold current of the subpopulation. The size
and color of each marker indicate the size of the network.
The error bars are estimates of the measurement error. Smaller
networks are disperse, but larger networks converge towards
the same point in this (〈Ith〉, Is) space. The dispersion of
the measurements around a straight line results from the
scaling of the bifurcation parameter � = I0−It

〈Ith〉−It
, where It is

the transparency current (assumed to be equal for all devices).

V. CONCLUSION

Summarizing, we have observed experimentally collective
mixed mode oscillations and spiking in a mean-field cou-
pled network of hundreds of lasers. The results are robust
with respect to some disorder (couplings or individual laser
impedances). Of course, many details are not taken into
account by the model, such as electronic characteristics of the
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FIG. 6. Upper bifurcation parameter value depending on average
laser threshold value for increasing sample size. Smaller samples
(lighter blue) are distributed along a straight line. When the sample
grows (darker blue) the bifurcation parameter converges to a well-
defined value.

individual lasers, which may result in additional intermediate
timescales. However, this does not alter the key dynamical
scenario, and we expect that our results open several research
avenues on the role of noise in coupled slow-fast systems and
on networks of networks. More importantly, we significantly
reduce the gap between the numerous existing predictions of
collective spiking and the very scarce laboratory experiments.
A transport equation for the probability density p(t, x, y,w, δ)
of the limit laser when N −→ ∞ involves the full distribution
of δi, which shows that the mean field cannot be described
with an ODE. However, through the stability analysis of the
critical manifold, we demonstrate that the network experi-
ences an effectively low-dimensional dynamics, even when
the fast dynamics of the nodes is not synchronized. Thus,
we have presented a scenario leading to effectively low-
dimensional dynamics of a large network. Since the analytics
are model specific, the theory is hard to generalize formally
and we leave that for future work. However, we believe that
many slow-fast systems coupled in mean field through their
slowest variable could follow the same scenario.
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APPENDIX A: LASER ARRAY
BASIC CHARACTERIZATION

In the main text we provide mean value and standard
deviation of the threshold current of the lasers. Here for
completeness we show the experimentally measured threshold
current distribution on Fig. 7.

The lasers couple only incoherently on the photodetector
due to their spectral distribution, which spans approximately
2 nm. An incoherent sum is shown in Fig. 8, where we show
a far field image of the whole array. No signs of interference
are detected, which indicates an incoherent sum.

FIG. 7. Distribution of laser threshold currents. The vertical lines
are the average and standard deviation of the distribution.
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FIG. 8. Far field image showing incoherent superposition of the
451 laser intensities.

APPENDIX B: MODEL DETAILS

The single laser with optoelectronic feedback can be mod-
eled with the following system:

ṡ = [g(n − nt ) − γ0]s, (B1)

ṅ = I0 + kI

ev
− γcn − g(n − nt )s, (B2)

İ = −γ f I + ˙f f (s). (B3)

After proper scaling, x = g
γcs , y = g

γ0
(n − nt ), and w =

I − f f ( γc

g x), we end up with the following system for a fully
connected network for i = 1, . . . , N :

ẋi = xi(yi − 1), (B4)

ẏi = γ [δi − yi + k(w + f (X )) − xiyi], (B5)

ẇ = −ε(w + f (X )), (B6)

where the time variable has been normalized to the photon
lifetime and xi, yi are respectively the dimensionless photon
and carrier density of the laser i. X = 1

N

∑N
i=1 xi is the to-

tal intensity normalized to the number of elements in the
network. The global variable w is the (scaled) high-pass
filtered feedback current, which includes a saturable nonlinear
function f (X ) = A ln(1 + αX ).

APPENDIX C: EQUILIBRIA AND CRITICAL
MANIFOLD STABILITY

Throughout this section, I denotes a subset of the integers
[1, N] of the cardinal N+. It will be used to label the lasers
which are switched ON.

1. Stationary states

We start by computing the stationary solutions of (B4)
when N lasers are connected. Let us write PI the equilibrium
for which ∀i ∈ I, xi > 0 and xi = 0 otherwise. One also can
define X eq

I = 1
N

∑
i∈I xi. We first have 0 = w + f (X eq

I ).
(1) Case i ∈ I . One finds that xi = δi − 1 and yi = 1.
(2) Case i /∈ I . It gives xi = 0 and yi = δi.

Finally, w = − f ( 1
N

∑
i∈I δi − N+

N ). Note that there are 2N

such equilibria.

a. Stability of the stationary states

In this section, we compute the stability of the equilibria PI .
To this end, we write xi(t ) = xeq

i + eλt ui, yi(t ) = yeq
i + eλtvi,

and w(t ) = weq + eλtω. We then Taylor expand (B4)–(B6)
under the assumption that ui, vi, ω are small. The goal is to
find the eigenvalues λ associated to a nontrivial set of ui, vi, ω.
One gets X eq

I := 1
N

∑
i xeq

i , and

λui = xeq
i vi + ui

(
yeq

i − 1
)
,

λvi = γ

{
−vi − xeq

i vi − uiy
eq
i + k

[
ω + f ′(X eq

I

) 1

N

∑
k

uk

]}
,

λω = −ε

[
ω + f ′(X eq

I

) 1

N

∑
k

uk

]
,

which gives (
λ − yeq

i + 1
)
ui = xeq

i vi, (C1)

(
λ + γ + γ xeq

i

)
vi = −γ uiy

eq
i − γ k

λ

ε
ω, (C2)

(λ + ε)ω = −ε f ′(X eq
I

) 1

N

∑
k

uk . (C3)

We can find some eigenvalues analytically. Indeed, if we
consider i0 /∈ I , then xeq

i0
= 0. This gives the following cases:

(1) Case ui0 = 1. We find that λ = yeq
i0

− 1 is an
eigenvalue. Indeed, set ui = vi = 0 for i = i0. Then ω =
− 1

N
ε

λ+ε
f ′(X eq), and vi0 is found using Eq. (C2). This gives

N − N+ eigenvalues.
(2) Case ui0 = 0. We find that λ = −γ is an eigenvalue.

Indeed, set ui = vi = 0 for i = i0. Then ω = 0, and vi0 = 1
is a solution of the above equations. This gives N − N+
eigenvalues.

We now look for the remaining eigenvalues. Using the
above Eqs. (C1)–(C3), one finds(

λ − yeq
i + 1 + γ xeq

i yeq
i

λ + γ + γ xeq
i

)
ui

= xeq
i

λ + γ + γ xeq
i

λ

λ + ε

[
ÃI

N

∑
k

uk

]
,

where we wrote ÃI := γ k f ′(X eq
I ). By summing this equation

w.r.t. i, one extracts an equation for
∑

i ui = 0 and get

1 = ÃI

N

λ

λ + ε

N∑
i=1

xeq
i

γ xeq
i yeq

i + (
λ + γ + γ xeq

i

)(
λ − yeq

i + 1
) .

We can simplify this equation in the case of the equilibrium
PI when λ + γ = 0 and λ = δi − 1 for i /∈ I into an equation
accounting for the dynamics of the switched-ON lasers:

1 = ÃI

N

λ

λ + ε

∑
i∈I

xeq
i

γ xeq
i + λ

(
λ + γ + γ xeq

i

) . (C4)
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Note that this polynomial equation has at most 2N+ + 1 zeros,
which in addition to the other 2(N − N+) zeros, gives 2N + 1
eigenvalues as expected.

b. Approximation of small deviation

Solving the previous Eq. (C4) is tedious, but we can
simplify it. Let us assume that δi = � + zηi, where z � 1,
i.e., the control parameters are peaked at around �. We use the
fact that xeq

i = � − 1 + zηi for i ∈ I and rewrite (C4) as1 =
P(λ, z). Also, we write ÃI = Ã0

I + zÃ1
I = γ k f ′[ N+

N (� − 1)] +
zγ k f ′′[ N+

N (� − 1)] 1
N

∑
i∈I ηi.

Using Maple, we Taylor expand P(λ, z) in z at first order:

1 = 1

N

λ

λ + ε

×
(

(Ã0
I + zÃ1

I )N+
� − 1

γ (� − 1) + λ[λ + γ + γ (� − 1)]

+ z
Ã0

I λ(λ + γ )

{γ (� − 1) + λ[λ + γ + γ (� − 1)]}2

∑
i∈I

ηi

)
.

We solve this equation perturbatively by seeking λ = λ0 +
zλ1 + O(z2). One gets

1 = Ã0
I

N+
N

λ0

λ0 + ε

� − 1

γ (� − 1) + λ0[λ0 + γ + γ (� − 1)]

and

λ1 ∝
∑
i∈I

ηi.

The first equation in λ0 is solved similarly to the single-laser
case. When N+ = N (all lasers are ON), the xeq

i solve the
same equations as for the isolated laser with common control
parameter �.

If we chose � = 1
N

∑N
i=1 δi, then one finds that

1
N

∑N
i=1 ηi = 0, and thus λ0 is precise at second order in z. The

second-order correction to λ is then a function of the second
moment

∑
i∈I η2

i .

2. Critical manifold SI

The critical manifold is defined by solving for each w the
following equations:

0 = xi(yi − 1), (C5)

0 = γ [δi − yi + k(w + f (X )) − xiyi]. (C6)

As before, we parametrize the critical manifold by the set
I , which labels the switched ON lasers. We denote by SI the
associated critical manifold. Note that the critical manifold is
composed of 2N components, namely, S = ∪I⊂[1,N]SI . Using
the same arguments as for the equilibria, it is straightforward
to show that

SI = {[
xI

i (w), yI
i (w),w

]
, i = 1 . . . N, w ∈ R

}
,

with

[
xI

i (w), yI
i (w)

] =
{{0, δi + k[w + f (XI (w))]}, ∀i /∈ I,

{δi − 1 + k[w + f (XI (w))], 1} ∀i ∈ I,
where XI (w) is implicitly defined by

XI (w) = N+
N

{k[w + f (XI (w))] − 1} + 1

N

∑
i∈I

δi. (C7)

a. Stability of the critical manifold

In this section, we compute the eigenvalues of the lin-
earized equation around the critical manifold when ε = 0:

ẋi = xi(yi − 1), (C8)

ẏi = γ [δi − yi + k(w + f (X )) − xiyi]. (C9)

To this end, we write xi(t ) = xI
i (w) + eλt ui and yi(t ) =

yI
i (w) + eλtvi and Taylor expand the above equation with

the assumption that ui, vi are small. The goal is to find λ

associated to a nontrivial set of ui, vi. One then gets

λui = xI
i vi + ui

(
yI

i − 1
)
,

λvi = γ

[
−vi − xI

i vi − uiy
I
i + k f ′(XI (w))

1

N

∑
k

uk

]
,

which gives (
λ − yI

i + 1
)
ui = xI

i vi (C10)

(
λ + γ + γ xI

i

)
vi = −γ uiy

I
i + γ k f ′(XI (w))

1

N

∑
k

uk (C11)

We can find some eigenvalues analytically. Indeed, if we
consider i0 /∈ I , then xI

i0 (w) = 0. This gives the following
cases:

(1) Case ui0 = 1. We find that λ = yI
i0 (w) − 1 is an eigen-

value. Indeed, set ui = vi = 0 for i = i0. Then vi0 is found
using Eq. (C10). This gives N − N+ eigenvalues.

(2) Case ui0 = 0. We find that λ = −γ is an eigenvalue.
Indeed, set ui = vi = 0 for i = i0. Then vi0 = 1 is a solution
of the above equation. This gives N − N+ eigenvalues.

We now look for the remaining eigenvalues. Using the
above Eqs. (C10) and (C11), one finds(

λ − yI
i + 1 + γ xI

i yI
i

λ + γ + γ xI
i

)
ui

= xI
i

λ + γ + γ xI
i

[
ÃI (w)

N

∑
k

uk

]
,

where we wrote ÃI (w) := γ k f ′(XI (w)). By summing this
previous equation w.r.t. i, one extracts an equation for∑

i ui = 0:

1 = ÃI (w)

N

N∑
i=1

xI
i (w)

γ xI
i (w)yI

i (w) + (
λ + γ + γ xI

i (w)
)(

λ − yI
i (w) + 1

) .

052208-7



A. DOLCEMASCOLO et al. PHYSICAL REVIEW E 101, 052208 (2020)

We can simplify this equation because (xI
i , yI

i ) belongs to SI ,
and when λ + γ = 0, λ = yI

i (w) − 1 (for i /∈ I):

1 = ÃI (w)

N

∑
i∈I

xi(w)

γ xi(w) + λ(λ + γ + γ xi(w))
. (C12)

This provides an equation for the remaining 2N+ eigenvalues.

b. Small deviation approximation of the critical manifold

For notation purposes, we write xI
i (w) = xi(w) and

yI
i (w) = yi(w).

Solving the previous Eq. (C12) is tedious but we can
simplify it. Let us assume that δi = � + zηi where z << 1,
i.e., the current values are peaked at around �. Our goal is to
Taylor expand (C12) in z and solve it perturbatively. Hence,
we need to find xI

i (w), yI
i (w) as a function of z.

We write ∀i ∈ I, xi(w) = x0
i (w) + zx1

i (w) + O(z2)
and note that yi(w) = 1. To find these expressions,
we need to find the following expressions: XI (w) =
X 0

I (w) + zX 1
I (w) + O(z2). We would then have x0

i (w) =
� − 1 + k[w + f (X 0

I (w))], which is independent of i and so
is written x0

I (w), and x1
i (w) = ηi + k f ′(X 0

I )X 1
I . Using (C7),

we find that X 0
I (w), X 1

I (w) solves

X 0
I (w) = N+

N

{
k
[
w + f

(
X 0

I (w)
)] − 1

} + �,

and

X 1
I (w) = N+

N
k f ′(X 0

I (w)
)
X 1

I + 1

N

∑
I

ηi ⇒ X 1
I (w)

=
1
N

∑
I ηi

1 − N+
N k f ′(X 0

I (w)
) .

We obtain the following expression:

x1
i (w) = ηi + k f ′(X 0

I (w)
)

1 − N+
N k f ′(X 0

I (w)
)

1

N

∑
I

ηi.

Note that the equation for x0
I is exactly the same equation as

for the single laser but with parameters α, δ changed into α
N+
N

and �.

c. Small deviation approximation of the stability
of the critical manifold

We now proceed to find the stability of the critical man-
ifold using (C12). As before, we write ÃI (w) = Ã0

I (w) +
zÃ1

I (w) = γ k f ′(X 0
I (w)) + zγ k f ′′(X 0

I (w))X 1
I (w). We Taylor

expand (C12) in z and find

1 = (
Ã0

I (w) + zÃ1
I (w)

)N+
N

x0
I (w)

γ x0
I (w) + λ

(
λ + γ + γ x0

I (w)
)

+ z
λ(λ + γ )[

γ x0
I (w) + λ

(
λ + γ + γ x0

I (w)
)]2

Ã0
I (w)

N

∑
i∈I

x1
i (w).

We solve this equation perturbatively by seeking λ = λ0 +
zλ1 + o(z). One gets

1 = Ã0
I (w)

N+
N

x0
I (w)

γ x0
I (w) + λ0

(
λ0 + γ + γ x0

I (w)
) (C13)

and

λ1 ∝
∑
i∈I

ηi.

The first equation in λ0 is quadratic and easily solved. In the
case N+ = N , as x0

I (w) solves the same equations as for the
isolated laser, and one finds that λ0 solves the same equation
for the stability of the critical manifold. In effect, those two
terms correspond to the single-laser case.

At zero order in z, the components (xi(w), yi(w)) for i ∈
I of the critical manifold SI are all the same and share the
expression of the critical manifold (with x > 0) of the single
laser with control parameter � and α → α

N+
N . When N+ =

N and at zero order in z, the stability of the S[1,N] branch is
therefore the same as that of an uncoupled laser with control
parameter �. However, when N+ < N , the other eigenvalues
yi(w) − 1 may influence the stability of SI .

d. Summary

The above discussion hints at introducing the laser
dynamics

ẋ = x(y − 1), (C14)

ẏ = γ

{
� − y + k

[
w + f

(
N+
N

x

)]
− xy

}
, (C15)

ẇ = −ε

[
w + f

(
N+
N

x

)]
, (C16)

with the critical manifold composed of the OFF branch
(0,� + kw) and the ON branch (xcrit, 1), where xcrit solves

xcrit (w) = � − 1 + k

[
w + f

(
N+
N

xcrit (w)

)]
.

The eigenvalues along the OFF branch are � + kw − 1 and
−γ . The eigenvalues λ along the ON branch are solutions of

λ(λ + γ + γ xcrit (w)) − γ

[
k

N+
N

f ′
(

N+
N

xcrit (w)

)
− 1

]
xcrit

= 0. (C17)

At zeroth order in z, the critical manifold SI is given by
(xI

i (w), yI
i (w)) = [0,� + kw + k f ( N+

N xcrit (w))] for i /∈ I and
(xI

i (w), yI
i (w)) = (xcrit (w), 1) for i ∈ I . Hence, only the OFF

part of the critical manifold SI differs from the above model
with the correction shown in red. For the stability of SI , we
have the eigenvalues −γ ,� + kw + k f ( N+

N xcrit (w)) − 1 and
the solutions of (C17) [which are the same as those of (C13)].
Hence, only the OFF part of the dynamics is inadequately
described by (C14)–(C16).
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