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Spectral theory of soliton and breather gases for the focusing nonlinear Schrodinger equation
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Solitons and breathers are localized solutions of integrable systems that can be viewed as “particles” of
complex statistical objects called soliton and breather gases. In view of the growing evidence of their ubiquity in
fluids and nonlinear optical media, these “integrable” gases present a fundamental interest for nonlinear physics.
We develop an analytical theory of breather and soliton gases by considering a special, thermodynamic-type
limit of the wave-number—frequency relations for multiphase (finite-gap) solutions of the focusing nonlinear
Schrodinger equation. This limit is defined by the locus and the critical scaling of the band spectrum of the
associated Zakharov-Shabat operator, and it yields the nonlinear dispersion relations for a spatially homogeneous
breather or soliton gas, depending on the presence or absence of the “background” Stokes mode. The key
quantity of interest is the density of states defining, in principle, all spectral and statistical properties of a soliton
(breather) gas. The balance of terms in the nonlinear dispersion relations determines the nature of the gas: from
an ideal gas of well separated, noninteracting breathers (solitons) to a special limiting state, which we term a
breather (soliton) condensate, and whose properties are entirely determined by the pairwise interactions between
breathers (solitons). For a nonhomogeneous breather gas, we derive a full set of kinetic equations describing
the slow evolution of the density of states and of its carrier wave counterpart. The kinetic equation for soliton
gas is recovered by collapsing the Stokes spectral band. A number of concrete examples of breather and soliton
gases are considered, demonstrating the efficacy of the developed general theory with broad implications for
nonlinear optics, superfluids, and oceanography. In particular, our work provides the theoretical underpinning
for the recently observed remarkable connection of the soliton gas dynamics with the long-term evolution

of spontaneous modulational instability.
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I. INTRODUCTION

There is rapidly growing interest in the subject of ran-
dom solutions to integrable nonlinear dispersive equations
prompted by Zakharov’s paper “Turbulence in integrable sys-
tems” [1]. The unlikely marriage of integrability and random-
ness within the framework of “integrable turbulence” is moti-
vated by the complexity of many nonlinear wave phenomena
in physical systems that can be successfully modeled by inte-
grable partial differential equations. Despite the integrability
of the mathematical model, physically reasonable results for
such systems can often be obtained only in statistical terms
(such as a probability density function, a power spectrum, a
correlation function, etc.). This is particularly true for modu-
lationally unstable media, where small random perturbations,
inevitably present in any physical system, rapidly grow, lead-
ing to disintegration of a constant or slowly varying back-
ground and the establishment of a turbulent nonlinear wave
field exhibiting spontaneous emergence of localized coherent
structures such as solitons and breathers [2]. Applications of
integrable turbulence range from oceanography to nonlinear
fiber optics and Bose-Einstein condensates. Indeed, recent
observations in ocean waves [3,4] and laboratory experiments
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in optical media [5—7] and classical fluids [8,9] provide grow-
ing evidence of the ubiquity and pervasiveness of integrable
turbulence in physical systems. Due to the complexity of
turbulent nonlinear wave fields, the majority of the existing
studies of integrable turbulence involve extensive numerical
simulations, while an analytical development, vital for the
understanding of this fundamental physical phenomenon, is
rather limited.

Our paper develops an analytical theory of an important
class of integrable turbulence called soliton gas, and its natural
yet nontrivial generalization, which we term breather gas,
in the framework of the one-dimensional focusing nonlin-
ear Schrodinger (fNLS) equation, a canonical model for the
description of the envelope dynamics of weakly nonlinear
quasimonochromatic waves propagating in dispersive, mod-
ulationally unstable media when dissipative processes are
negligible.

The notion of soliton gas—an infinite statistical ensemble
of interacting solitons—was first introduced by Zakharov
[10], who derived a kinetic equation for a “rarefied” gas of
KdV solitons by considering the modification of the soli-
ton velocity due to the position shifts in its pairwise colli-
sions with other solitons in the gas. The generalization of
Zakharov’s kinetic equation to the case of the KdV soliton
gas of finite density was obtained by one of the authors in
[11] by considering the infinite-phase, thermodynamic-type
limit of the Whitham modulation equations. In [11] the soliton
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distribution function was identified with the density of states,
the fundamental quantity in the spectral theory of random po-
tentials [12,13]. The finite-gap theory derivation in [11] served
as a motivation for a more intuitive, physical construction
of the kinetic equation for a dense soliton gas of the fNLS
equation in [14]. Very recently, the kinetic equation having
the same structure as the kinetic equation for soliton gas was
derived in the framework of the “generalized hydrodynamics”
for quantum many-body integrable systems [15-17]. These
theoretical studies, along with already mentioned observations
in a variety of physical media, strongly indicate that soliton
gases represent a fundamental object of nonlinear physics,
providing a number of intriguing, novel connections between
soliton theory, dispersive hydrodynamics [18], and statistical
mechanics. In particular, the dynamics of a soliton gas in
the fNLS equation recently attracted considerable attention
in relation with the description of the nonlinear stage of
spontaneous modulational instability [2,19] and the rogue
wave formation [20].

Solitons represent spatially localized, decaying at infinity
solutions of the fNLS equation. The presence of a nonzero
background gives rise to rich families of space-time localized
fNLS solutions called breathers. Thus the fNLS soliton gas
dynamics in the presence of a nonzero background can be
viewed as breather gas. If the background of a breather is a
plane wave, the corresponding fNLS solution in a general case
is the so-called Tajiri-Watanabe breather [21], with the “stan-
dard” Akhmediev, Kuznetsov-Ma, and Peregrine breathers
being its particular cases. The background of a breather can be
given by one of the nonlinear multiphase fNLS solutions, also
known as finite-gap potentials [22,23] (see [24] for a descrip-
tion of rogue waves within finite-gap potentials, and [25,26]
for the explicit constructions of fNLS breather solutions on
periodic (elliptic) and two-phase backgrounds, respectively).

Our paper is concerned with the analytical description of
soliton and breather gases using the tools of nonlinear spectral
theory, also known as finite-gap theory, which represents
an extension of the celebrated inverse scattering transform
(IST) method [27] to problems with periodic and quasiperi-
odic boundary conditions [22,28]. While the mathematical
development of the paper involves some technical aspects
of the finite-gap theory, the basic ideas behind the proposed
construction are very general, physically transparent, and fun-
damental. In fact, we show that the kinetic theory of breather
gas can be viewed as a broad generalization of the well-known
kinematic wave theory [29] to the case of nonlinear dispersive
random waves described by the fNLS equation. Below we
outline the organization of the paper and present a high-level
description of the main ideas and results. The mathematical
underpinnings of more technical aspects of the paper can be
found in the Appendix.

First we derive nonlinear dispersion relations for finite-
gap potentials of the fNLS equation, which generalize the
well-known notion of the dispersion relation w = wy(k) for
linearized waves. The finite-gap potential v, (x,t) is char-
acterized by n-component wave number k and frequency @
vectors, where n € N is the genus of the solution. The genus
of the solution is determined by the number of nonlinear
wave modes or phases comprising the wave field ¥ (x,1)
described by the fNLS equation. Within this classification, the

plane wave (condensate) with || = 1 represents a genus O
solution. The well-known elliptic solutions of the fNLS equa-
tion are genus 1| solutions, with the standard (fundamental)
solitons being a degenerate case of the genus 1. The standard
breathers (Akhmediev, Kuznetsov-Ma, and Peregrine) all rep-
resent degenerate genus 2 solutions [23]. In our construction
of breather gas, we assume an even genus n = 2N the results
for the potentials of an odd genus (yielding soliton gas in the
appropriate limit) are obtained by “collapsing” the breather
gas background to zero.

Nonlinear dispersion relations for the fNLS n-gap poten-
tials represent a system of linear equations (18) and (19)
relating k and ® with other parameters of the solution, which
are most conveniently expressed in terms of the band spectrum
3, € C of the Zakharov-Shabat (ZS) operator associated with
the fNLS equation [27]. We can symbolically represent these
relations in a parametric form,

w=8R(%,), k=K(EZ,). ey

The core of the paper is the derivation and analysis of the
nonlinear dispersion relations (25) and (26) for a breather
or soliton gas, which are obtained from relations (1) by
applying a special infinite-genus, thermodynamic-type limit.
The crucial role in our analysis is played by (i) a special
choice of the wave-number—frequency set in (1), and (ii) the
critical, n-dependent scalings of the band-gap distributions in
the finite-gap potentials. We distinguish between three such
scalings: exponential, superexponential, and subexponential,
each corresponding to a distinct type of breather or soliton gas.
Each type of scaling implies a specific balance of terms in the
nonlinear dispersion relations (1), resulting in certain distinct
properties of the corresponding soliton or breather gases.

We show that the superexponential scaling corresponds
to an “ideal gas” of noninteracting, isolated quasiparticles
(breathers or solitons), whose dynamics is determined by
secular (nonintegral) terms in the dispersion relations. In the
opposite case of the subexponential spectral scaling, the prop-
erties of the gas are entirely determined by the integral, inter-
action terms, and the individual characterization of quasipar-
ticles is suppressed. We call the corresponding gas a breather
(soliton) condensate. We show that a particular case of the
condensate representing a critically dense bound-state soliton
gas is characterized by a special density-of-states distribu-
tion (63), which coincides with the appropriately normalized
semiclassical distribution of the discrete spectrum in the ZS
scattering problem for a rectangular potential [27,30,31]. We
also present a nontrivial example of a non-bound-state soliton
condensate characterized by a circular spectral locus in the
complex plane, leading to the group velocity of quasiparticles
in the condensate being twice the speed of free solitons for
the same spectral parameter. Finally, the exponential spectral
scaling corresponds to the general case of a soliton or breather
gas of finite density, in which the effects related to the individ-
ual motion of quasiparticles and their pairwise interactions are
in balance.

As a straightforward consequence of the nonlinear disper-
sion relations of breather or soliton gas, we derive an integral
equation (37) relating the velocity s(n) of quasiparticles in a
breather or soliton gas (we call them the “tracer” breathers or
solitons) with the fundamental quantity u(n) called the density
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of states [12,13], n € C being the ZS spectral parameter.
This integral equation specifying s = F[u], where F is a
functional, can be viewed as the equation of state of a spatially
homogeneous (equilibrium) gas. The equations of state for
breather and soliton gases have the same structure but are
characterized by different forms of both secular (free-particle)
and integral (pairwise-interaction) terms. In both cases, the
interaction kernel is determined by the position shift in a
breather-breather and soliton-soliton pairwise interaction, re-
spectively. We also derive a “satellite” system, Egs. (88), (30),
and (47), describing the spectral distribution of the phase
velocity 3(n) of the carrier wave in a breather or soliton gas
with a given density of states u(n).

The evolution of slowly modulated n-gap potentials is
known to be described by the so-called Whitham modulation
equations [29,32] representing a system of quasilinear partial
differential equations for weak spatiotemporal deformations
of the finite-gap ZS spectrum X%, (x,t) [33,34]. The modu-
lation system for the fNLS equation necessarily includes the
n-component wave conservation law [29,33,35]

k; =y, 2

which should be complemented by the nonlinear dispersion
relations (1). The application of the thermodynamic limit
to the “nonlinear kinematic wave system” (2), (1) results
in a kinetic equation for the density of states u(n, x,t) in
a spatially nonhomogeneous breather or soliton gas. This
equation has the form of a transport equation u, + (us), =
0, complemented by the x,t-dependent equation of state
s(n, x,t) = Flu(n, x, t)]. Another consequence of the appli-
cation of the thermodynamic limit to the system (2), (1) is the
satellite transport equation i, + (@5), = O for the (continuous
interpolation of) carrier wave number #i(n, x, ¢) in a breather
or soliton gas.

Finally, we derive multicomponent hydrodynamic reduc-
tions of the kinetic equation for breather gas and obtain
the solution to a “shock tube” problem consisting of three
disparate constant states separated by two propagating con-
tact discontinuities satisfying appropriate Rankine-Hugoniot
conditions.

In this work, we do not consider particular realizations
Y,(x,t), n> 1, of the nonlinear random wave field in a
soliton or breather gas, which would depend on a specific
choice of the initial phase vector 8 € T of 1, (see Sec. Il
for details). In the construction of a spatially homogeneous
breather or soliton gas, it would be natural to assume that the
components of the initial phase vector 8 are independent
random variables, with © being uniformly distributed on T".
In the soliton gas limit n — oo, the uniform distribution of
phases on T" gets replaced by a suitably normalized Poisson
distribution on R; see [53]. The spectral theory developed in
this paper, however, is not based on any assumptions about the
phases of finite-gap solutions involved.

Due to the fundamental nature of the fNLS equation as
a universal mathematical model describing nonlinear wave
processes in a broad range of dispersive media, the theory
developed in this paper can find applications in various phys-
ical contexts, particularly nonlinear optics and deep water
waves, where complex statistical ensembles of breathers or

solitons represent ubiquitous phenomena observed in both
experimental and natural conditions.

II. FINITE-GAP SOLUTIONS: BASIC SPECTRAL
CONFIGURATION AND NONLINEAR DISPERSION
RELATIONS

In this section, we shall describe the basic mathematical
objects necessary for the derivation of the nonlinear dispersion
relations and the equation of state of the breather gas. We
consider the fNLS equation in the form

i+ Y + 21012y =0, 3)

where Y (x,t) is a complex wave field. Various families of
exact solutions to the fNLS equation are available due to its
integrability via the IST [27]. The key step in the integration
of the fNLS equation by the IST is the determination of
the spectrum of a linear (Dirac) operator with the potential
¥ (x, t)—the ZS scattering problem. The fNLS evolution (3)
is characterized by the ZS spectrum, which has a very simple
time dependence.

The original IST method enables the construction of fNLS
solutions in the class of functions (potentials) decaying suffi-
ciently rapidly at infinity. The long-time asymptotics of such
solutions include solitons (discrete ZS spectrum) and linear
dispersive waves (continuous spectrum). Various methods
including the Darboux transformation and Hirota’s bilinear
method enable the construction of exact solutions describing
solitons on finite background, also known as breathers (see,
e.g., [21,36-39]).

An extension of the IST to a certain class of periodic
and quasiperiodic potentials, the so-called finite-gap theory
(FGT) [22,28], enables the construction of a broad range
of nondecaying NLS solutions, which include solitons and
breathers as some particular, limiting cases. The ZS spectrum
of finite-gap solutions consists of a finite Schwarz-symmetric
collection of curvilinear segments y; C C called bands. Here
Schwarz symmetry means that if z € C is a point of the
spectrum, then so is the complex conjugate (c.c.). point Z.

An n-gap solution ¢ = v,(x,¢) of (3) is defined by
a fixed set of 2(n+ 1) end points of spectral bands y;,
j=1,...,n+1, and depends on n real phases @(x,t) =
kx + ot + 6° with the initial phase vector 0 T", so that
[V (x, )| = F,(0(x, 1)), where F; is a multiphase (quasiperi-
odic) function in both x and ¢ that can be expressed in
terms of the Riemann theta functions [40]. The n-component
wave number k and the frequency w vectors depend on
the endpoints {«;, j =0,1,2,...,n} of the spectral bands,
which define a hyperelliptic Riemann surface R of genus n
given by

R(Z)zl_[(z—aj)%(z_&j)%’ ()[jzaj+ibj, bj>0,
J=0

4)

z € C being a complex spectral parameter in the ZS scattering
problem; R(z) ~ 72" as 7 — oco. The branch cuts of R(z)
will be specified below. Finite-gap theory of the focusing NLS
equation, originally developed in [40,41], has been realized
in [42] as a powerful analytical tool for the understanding
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FIG. 1. The spectral bands y.; and the basis of cycles A, B4;.
The 1D curve I" consists of the bands y; and gaps between the bands.

of the fundamental phenomenon of modulational instability.
Finite-gap NLS solutions have since been used in a number
of physical applications, notably in water waves (see [23]
and references therein) and in fiber optics [43,44]. We note
here that the finite-gap theory provides a natural framework
for the construction of random solutions to the NLS equation
by assuming a uniform distribution of the initial phase vector
0° € T" [24,45,46].

We initially assume that all spectral bands lie along a
finite, one-dimensional (1D) Schwarz-symmetric curve I (see
Fig. 1); later this restriction will be removed to allow the bands
to be located in a 2D compact subset of C. The order we use
to enumerate the bands along I" is shown in Fig. 1. The curve
I" does not have to be a connected curve; the exact meaning of
this statement will become clear in Sec. III. We also assume
that the genus n is even, n = 2N, N € N; the transition to
an odd genus case will be described below. We enumerate
the branch points according to the following notations for the
spectral bands. The spectral band y;, j =1, ..., N, is defined
as the segment of I in the upper half-plane C* connecting the
branch points a; and a4 ; the spectral band y_; is Schwarz
symmetric to y;—it connects, naturally, the branch points &,
and @41, which, for convenience, we will denote as a_;
and a_»;_1, respectively. Finally, there is an exceptional band
band yy crossing the real axis and connecting the branch
points «; and @_; = &;. An odd genus case can then formally
be considered by collapsing the exceptional band into a point
on the real axis.

Note that generally one can have more than one ex-
ceptional band, yol, )/02, ..., ¥y". We remark that, in the
literature, the exceptional bands are sometimes associated
with the so-called Stokes modes [23] since, considered in
isolation, y; represents a “spectral portrait” of the plane-
wave solution of the fNLS equation, also called a Stokes
wave.

We can now define spectral gaps ¢;, j =1,..., N as seg-
ments of I' connecting the end point aj4; of y; with the
end point a4, of the neighboring band y;; (or a; of the
exceptional band yy if j = N), and their c.c. (with j < 0).

We define two sets of contours on the Riemann surface R:
the Aj-contours surrounding the bands y; clockwise, |j| =

4.0

3.5 A 14 .

Im(2)
o

3.0 A

2.5 - -2 T
-10 0 10

Re(2)

7]

2.0 1

1.5 A

1.0

0.5 -

0.0 T T T T T T T
-6 -4 -2 0 2 4 6

FIG. 2. Tajiri-Watanabe (TW) breather (a soliton on finite back-
ground). Shown is |[{rrw(x, 0)] and the spectral portrait (inset). The
spectral parameters are o = 7, oy = 6 + 0.996i.

0,...,N,and the Bj-contours, j =1, ..., N, so that B; starts
at the exceptional band yy, goes to the band y; on the upper
sheet clockwise, and returns to the band y, on the lower sheet
of the Riemann surface. For j < 0 we define B; = B_; with
the same clockwise orientation; see Fig. 1.

We notice that the contours A, |[j|=1,...,N, and —B;,
B_j, j=1,...,N, form a homology basis of the Riemann
surface R with the branch cuts along y;, |j| =0, 1,...,N.

Collapsing a single pair of bands y4;, j > 0, into a pair
of double points (ot+(2j+1) = 0t+2;) implies the appearance of
a soliton on an (n — 1)-gap solution background. Shrinking
all bands y4;, j=0,1,..., N, to points corresponds to the
transformation of a 2N-gap solution into a 2N-soliton solu-
tion with b; corresponding to soliton amplitudes and —4a;
corresponding to their velocities at + — oo [cf. Eq. (4) for
the definitions of a;, b;] provided that all a; are distinct. If
all a; are equal (without loss of generality, one can assume
that a; = 0 Vj, i.e,, each y; is an interval on the imaginary
axis), the limiting N-soliton solution is a bound state [27,47],
in which case all the solitons do not separate as ¢ — oo.
We note that in the soliton limit the exceptional band
collapses to the origin (the collapsed band can be associated
with a zero-amplitude soliton) and so it does not contribute
to the limiting N-soliton solution. If the exceptional band
yo remains finite, then collapsing all the other bands into
double points corresponds to an N-breather limit of a 2N-gap
solution with the finite band y, being “responsible” for the
background (indeed, the genus O solution with a single band
vo = [—iq, iq], g > 0, in the spectrum is the so-called plane
wave, or the condensate, given by ¥ = ge’2¢’"). The generic
“elementary” breather corresponding to a degenerate genus
2 solution is the so-called Tajiri-Watanabe (TW) breather
[21] with the typical behavior of the amplitude |Yrrw(x,?)|
shown in Fig. 2. The spectral portrait of the TW breather
(shown in the inset of Fig. 2) consists of the vertical band
connecting the points +ig, and two double points: A = a + ib
and its c.c. (note that A = ap, A = ov_, within our general
finite-gap construction). The analytical expression for the TW
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breather solution is available elsewhere (see, e.g., [21,48,49]).
Here we only present its group (envelope) and phase (carrier)
velocities:
Im[ARy(2)] 2 Re[ARy(A)]
cg=—"2——"—=stwh), Cp=——"F"F"T"—
ImRy(2) ReRp(2)
&)

where Ry(L) = /A2 + ¢2. The “standard” breathers, such
as the Akhmediev breather (AB), the Kuznetsov-Ma (KM)
breather, and the Peregrine soliton (PS), all of which play a
prominent role in rogue-wave theories [50,51], are particular
cases of the TW breather with yy = [—ig; iq] for some g > 0,
and the double points «y, = £ip, p > 0, with p < g (AB),
p > q (KM), and p = g (PS). The transition from the TW
breather solution to the fundamental soliton is achieved by
g — 0. The fNLS fundamental soliton solution is given by
[27]

Ws(x, 1) = 2ibsech[2b(x + dat — xg)]e”Hle+2a P oltion,
(6)

where xj is the initial position of the soliton, and ¢y is its
initial phase. The soliton (envelope) group velocity is ¢, =
—4a = —4ReA and the carrier phase velocity of a moving
(a # 0) soliton is ¢, = * — az)/a =-2 Re(Az)/ReA, in full
agreement with the respective TW breather expressions (5) in
the limit ¢ — 0.

The wave number and frequency vectors, k and , respec-
tively, associated with a given finite-gap solution ¥y (x, 1)
are not uniquely defined, as any linear combination of the
wave-number (frequency) vector components with integer
coefficients is also a wave number (frequency). Here we
introduce two special vectors: k = (ki, ..., ky, k.. IEN)
and w = (v, ..., oN, &1, ..., dy), Whose components are
defined as follows (see Appendix A 2 for details):

ka—f dp, wjz—f dg, j=1,...
A A

J J

B; B

J J

N, ()

The signs of the integrals in (7) and (8) will be opposite if we
replace j by —j. Here dp(z) and dgq(z) are the meromorphic
quasimomentum and quasienergy differentials with the only
poles at z = oo on both sheets, and defined by (see, e.g.,
[33,35])

dp=1+0@z2), dg=4z+0z2) )

near z = oo on the main sheet, respectively, and the normal-
ization conditions requiring that all the periods of dp, dq are
real (real normalized differentials). The wave numbers and
frequencies can be symmetrically extended to negative indices
by k_j=kj,w_; =w;, j=1,...,N, and similar equations
for the “tilded” quantities. They also satisfy the corresponding
Eqgs. (7) and (8), but the signs of the integrals in (7) and (8) will
be opposite when we replace j by —j.

The proof that k;, k j»w, and @ defined by (7), (8) are indeed
wave numbers and frequencies of the finite-gap fNLS solution
associated with the spectral surface R of (4) can be found in
Appendix B. We shall call the special set of wave numbers and
frequencies defined by (7), (8) the fundamental wave-number—

frequency set. We note that the wave numbers and frequencies
defined by (7) and those defined by (8) are of an essentially
different nature, which is clarified below.

Let us introduce two new quantities,

nj = %(Olzj +azjp1), 6; = %(OQj —a2j41), (10)

where j =1,..., N. We shall call the point n; the center of
the jthband y;, and 2|§;| the jth bandwidth. In the lower half-
plane, we denote 1_; =7j; and §_; = 5 ;. We also denote the
point of intersection of I" with the real axis as 1y and the end
of the exceptional band «; as 1y + §.

It then follows that the wave numbers and frequencies
defined by (7) and (8) have drastically different asymptotic
properties in the soliton or breather limit, when one of the
nonexceptional spectral bands collapses into a double point,
ait1, 02j — n; (see the end of this section for a qualitative
explanation):

51‘—>0 =>kj,a)j—>0,
ki, @; = 0(1),
j=1,...,N.

(1)

In particular, for N =1 (genus 2), the limit (11) (k; — O,
w; — 0) with a nonzero band yy (i.e., o) # o) corresponds
to the breather limit of the corresponding two-phase nonlinear
wave solution. The remaining wave number and frequency
ki =001), o =0Q1) correspond to the “carrier” wave of the
TW breather (see Fig. 2).

Motivated by these properties for N = 1, we shall call the
components k;, w; of the wave number and the frequency
vectors k and @ the solitonic components, and we shall call
the components k i ) j the carrier components.

It is instructive to characterize the limiting transitions from
the TW breather to the AB, KM, and PS in terms of appro-
priate limits of the fundamental wave-number—frequency set.
This will enable us later to identify special cases of breather
gas such as, say, PS gas or AB gas. The limiting transitions
to the standard breathers are achieved in the following ways
(assuming Iméy # 0):

TW — AB: @, — 0, k; = O(1), (12)
TW - KM : @; = O(1), k; — 0, (13)
TW > PS: & — 0, k; — 0. (14)

The key role in our construction of a breather gas is
played by the nonlinear dispersion relations for finite-gap
fNLS solutions. In the linear wave theory, the dispersion
relation connects the frequency of the linearized mode with
its wave number. For nonlinear waves, these relations are
more complicated, involving other parameters such as mean,
amplitude, etc. [29]. In the case of integrable equations, the
most natural parametrization occurs in terms of the finite-gap
spectrum so that the nonlinear dispersion relations have the
form k = k(a), @ = w(a) [34], where the vector & compo-
nents are the branch points o, |j| = 1,...,2N + L.

One can show that for the wave numbers and frequencies
(7), (8) associated with the finite-gap fNLS solution, the
nonlinear dispersion relations are given by (see Appendix C
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for the proof)
. Pi(¢)dt ¢P;(¢)d¢
k; + kmf =2
! l;l B, R(Q) R(¢)
= Pi(¢)ds £2Pi(£)dg
D+ " ! = f , (15
EAP I > A TR
ljl=1,...,N,

where § is a large clockwise oriented contour containing I,
+ 2N, (16)

and s ; are the coefficients of the normalized holomorphic
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of the wave number and frequency vectors. In particular,
for N = 1 one can show that Egs. (18) and (19) imply that
wi1/ky — ¢, and @;/k; — c, in the breather limit §; — 0,
where c,, ¢, are defined in (5).

We are now in a position to establish the key property
(11) for the wave numbers and frequencies in the soliton
limit. Indeed, one can see that relations (18) together with
(A10) imply that, for fixed N, the solitonic wave number and
frequency k;, w; go to zero as the jth bandwidth [§;] — 0.
Indeed, in this case, the integral fBJ_ %d z behaves like In §; due
to the contour B; crossing the shrinking band y; (see Fig. 1),
whereas the remaining integrals (the coefficients of the linear
system) remain bounded. Thus, to keep a balance of terms in
(18), k; and w; must go to zero together with §;, whereas the
carrier wave numbers k ; and frequencies @; given by system
(19) generally remain O(1).

We note that the relations similar to Eqs. (18) for the
solitonic components of the wave number and frequency vec-
tors also arise in the finite-gap KdV theory [52], where they
follow from the relations between real periods and imaginary
quasiperiods of the finite-gap KdV solution, with the mapping
between the two being realized by the Riemann period matrix.
Equations (19) do not have a KdV counterpart.

III. THERMODYNAMIC SPECTRAL SCALINGS
A. 1D case

We shall refer to the configuration described in the pre-
vious section, when the spectrum of the finite-gap potential
is located on a Schwarz symmetric curve I' C C, as the 1D
case. While being quite restrictive, this configuration provides
major insight into the spectral properties of breather and
soliton gases in the more physically realistic 2D case, where
the bands y; are located in some (Schwarz symmetric) region
A C C. It also covers the case of a bound-state soliton or
breather gas, when I' lies on a vertical line (so that all the
solitons in the gas have the same velocity).

Recall that we assumed an even genus, n = 2N. Due to the
symmetry of the curve I" (which may consist of several arcs),
it is sufficient to consider only the upper complex half-plane
(C™) part of it, which we denote I'" (so that 't =T N C™).
We shall be interested in a special, large-N limit of the
nonlinear dispersion relations (18). The main requirements
of this limit are that all the gaps cannot shrink faster than
O(N~'), and all but finitely many of them are of the order
O(N~"). At the same time, all but finitely many bands are of
order much smaller than O(N~!'). We assume that the only
bands with the width O(1) are the exceptional bands, i.e., the
Stokes bands crossing the real axis. In what follows, we shall
be assuming that there is at most one exceptional band yy,
although our results could be readily extended to the case of
any finite number of exceptional bands.

We assume that the shrinking bands fill all the curve
' except the exceptional band )y and the gaps adjacent
to it with some density ¢ > 0. In a more general setting,
one can consider the bands y;, j # 0, filling only certain
(Schwarz symmetrical) parts of I', separated from each other
by exceptional order 1 gaps. With slight abuse of notations,
we will keep the notation I for the locus of accumulation
of the bands y; on the original curve I". We also assume
@(w)|d | to be a probability measure on I'". Since collapsing
a Schwarz-symmetric pair of (nonexceptional) bands into
a pair of complex conjugate double points corresponds to
the appearance of a soliton, and the finite exceptional band,
considered in isolation, corresponds to the plane wave, it
is natural to associate the finite-band potential with N > 1
and all but one band being close to “collapse” with the gas
of solitons on a finite background, i.e., breather gas. In the
case of no exceptional bands, we will have the soliton gas
limit, and in the case of more than one exceptional band, we
will have the generalized breather gas limit. The generalized
breather gas can be viewed as a gas of solitons on the back-
ground of n-gap fNLS solution with n > 1. Indeed, multiple
exceptional bands, considered in isolation, would represent
the corresponding finite-gap solutions. Considered together
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with collapsing (in the appropriate 7 — oo limit) bands, one
obtains soliton gas on the finite-gap background.

We now assume that for N >> 1, the centers 7; of the bands
Yj»Jj =1,..., N, are distributed along I'" with some limiting
density ¢(u) > 0, u € I'*, that is smooth on I'*. It then
follows that [n; — 11| ~ 1/N.

As for the scaling of the bandwidths, we consider the
following options:

(i) Exponential spectral scaling: the bandwidths 2[5;| of y;
are exponentially narrow in N:

18,1 ~ Nl =1,....N, (20)

where 7(u) is a smooth positive function on I'" having the
meaning of the normalised logarithmic bandwidth [z (n;) ~
—In|§;|/N]. The limit obtained in this scaling will be referred
to as a (regular) soliton or a breather gas limit depending
on the size of the exceptional band (in the soliton gas limit
8o — 0).
(ii) Subexponential spectral scaling: for any a > 0,
—aN 1 .
e <<|81|<<N’ ljl=1,...,N. 21
We shall refer to the N — oo limit obtained in this scaling as
a soliton (breather) condensate limit (the reasons for this name
will become clear later). It is clear that in this limit, () — 0.
(iii) Superexponential spectral scaling: for any a > 0,

e > 18,1, ljl=1,...,N. (22)

The limit obtained in this scaling will be referred to as an ideal
breather or soliton gas limit. In this limit, () — oo.

Of course, one can also consider the case of simultaneous
different scalings on different parts I'* (a “mixed” scaling).
Even though such cases can be very interesting, we will not
discuss them in any detail here.

Note that in all three scalings, [5;] < [n; — nj4+1| so the
width of gaps |c;| ~ N~! and so |§;/|c;| = 0 as N — oo.
We then say that in the limit, each collapsed band y; —
n; corresponds to a soliton (breather) state within a soliton
(breather) gas. Invoking the interpretation of classical solitons
as elastically interacting wave particles, these states can be
viewed as quasiparticles that do not necessarily manifest as
localized entities in physical space, except in the case of a
rarefied gas. We also note that the exponential and subex-
ponential scalings have the “thermodynamic” property in the
sense that they preserve finiteness of the total density of waves
Ky =7 k; in the limit N — oo so that limy_. Ky =
K, where 0 < K, < 0o. Note that for the superexponential
scaling, Ko, = 0.

B. 2D case

In the case when the shrinking bands y;, j > 0 fill a
compact 2D region AT of the upper complex half-plane, the
counterpart of the exponential scaling (20)

18;] ~ e Nt (23)
Here t(n) is a positive smooth function on A*. The scaling of
the gaps remains O(1/N), where by the gap width we under-
stand the closest distance between the bands. In this case, ¢ (1)
is the 2D density of bands (and we also distinguish the cases of

exponential, subexponential, and superexponential scalings of
bands, similarly to the 1D case). We assume ¢(n) > O on A™.
We shall call such scalings the 2D thermodynamic scalings.
In what follows, we shall be using the unified notations I'"
for both 1D and 2D configurations, explicitly distinguishing
between these cases when necessary.

IV. NONLINEAR DISPERSION RELATIONS
FOR BREATHER AND SOLITON GAS

We now proceed with the characterization of breather and
soliton gases as thermodynamic limits of finite-gap solutions
of fNLS equation. For convenience, we will sometimes be
using the term “breather gas” in a generalized sense, assuming
that it includes soliton gas as well, the transition to soliton
gas being achieved by letting §o — 0. We also note that the
full construction of a breather gas [which ultimately includes
the determination of the random wave field v (x, ¢)] implies,
along with the thermodynamic spectral scaling, the random
phase approximation, i.e., the uniform distribution of the
phase vector 09 ¢ [24,45,46,53], but in this paper we
shall be concerned only with the spectral characterization of
breather gases. The description of the associated fNLS solu-
tions [the random process v (x,t) generated by the thermo-
dynamic spectral scaling and the uniform phase distribution]
will be the subject of a separate work. We only mention here
that the uniform phase distribution on T" gets replaced in the
thermodynamic limit by the appropriately normalized Poisson
distribution on R as shown in [53] for the KdV equation.

A. 1D case

We now apply the 1D thermodynamic spectral scalings to
the nonlinear dispersion relations (18). Without much loss of
generality, from now on we shall be assuming that yy C iR,
i.e., that the exceptional band y; lies on the imaginary axis.

We scale the solitonic wave numbers and frequencies as

k=L, wj=-2 N>»I, (24)

N

so that «; =«(n;) and v; =v(n;), where the functions
k(n) = 0 and v(n) are smooth interpolations of «;, v;. We
note that the existence of the interpolating functions «(n),
v(n), and the non-negativity of x(n) are physically reason-
able assumptions that need to be justified mathematically. A
clarifying comment will be presented later, when the (integral)
equations (28) and (29) for « () and v(n) are derived. We also
note that the sign of v(n) is not fixed.

The 1/N scaling (24) for the wave numbers and frequen-
cies follows from the requirement that the diagonal and off-
diagonal terms of systems (18) contribute at the same order;
this scaling is consistent with the exponential rate of shrinking
of the bands given in Eq. (20) since k; ~ — In~! [8;] for |§;] <
1. The scalings different from 1/N for k;, w; are possible
in the cases of subexponential or superexponential spectral
distributions given by Egs. (21) and (22), respectively. The
functions « (1) and v(n) in (24) are determined from 7 () and
@(n), and the geometry of I'", as we will now explain.

We denote Ry(z) = /2% — 63 with the branch cut [—§y, &o],

where 8y € iR™ and the branch of the radical is defined
by Ro(z) — z as z — oo. Then, applying the limit N — oo
to the nonlinear dispersion relations (18) augmented by an
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exponential spectral scaling (20) leads to the following rela-
tions (see Appendix D for details of the derivation):

./”‘ [ -7 Ro(mRo(1) + np — 83
i In +1In — — o)
o L m—n Ro(mRo(in) + nix — &
x u(p)ld | +io(n)u(n) = Ro(n) + ii(n), (25)

./'“ [ -7 Ro(mRo(w) + np — 8
i In +1In — - >
me L M —T Ro(m)Ro(j1) + nji — &
xv(u)ldu| +io(mv(n) = —2nRo(n) + (), (26)

where @i and ¥ are some smooth functions on I'" in-
terpolating I}j, @j, specifically, 2ii(n;) = 12,, —20(n;) = j,
j=1,...,N, the integration is performed between 7. =
limy_,oo 7y and n; along I'", x, denotes the characteristic
(indicator) function of the arc (14, n) of I'", and

+ im x, ()

+ i xy ()

1 1 27(n)
u(n) = 2—K(n)<p(n), v(n) = ——v(me), o) = .
7T 2z (1)

27)

Note that In ﬁ + im x, () varies smoothly as p traverses
the contour I'" bypassing n € 't from the left (positive) side
of I't. Equations (25) and (26) represent general complex
nonlinear dispersion relations for breather gas. They spec-
ify four unknown functions u(n), v(n), i(n), and v(n) in
terms of a single non-negative smooth function o(n) and a
contour 't characterizing the Riemann surface R of (4) in
the thermodynamic limit. The function u(n) > 0 defined in
Eq. (27) has the meaning of the density of states [12,13]
as u(n,)|dn| is the number of localized (soliton or breather)
states located in the spectral interval [, 0. +dn] C I'" and
c.c. per unit interval of space (provided the gas parameters
do not depend on x). At the intuitive level, one can think
of the density of states in a soliton gas as of the spectral
distribution of solitons “contained in a portion of gas of unit
length” by first assuming the zero boundary conditions at
x = £L, where L > 1, and then normalizing the obtained
distribution by L. This should be modified for breather gas
by replacing zero boundary conditions with the plane-wave
boundary conditions. The integral fn”; u(n)|dn| gives the total
density of waves K, introduced earlier. The function v(n)
then represents the temporal counterpart of the density of
states. The functions ii(n), (n) can be interpreted as the
carrier wave number and carrier frequency spectral functions
of a breather gas. Note that the integral term in (25) and (26)
corresponds to the off-diagonal terms of the linear systems
(15), whereas the nonintegral (secular) terms on the left-hand
sides of (25) and (26) correspond to the diagonal terms of (15).

Taking the imaginary part of Eqgs. (25) and (26), we obtain
the solitonic component of the breather gas nonlinear disper-
sion relations

/ A= Ro(mRo(p) + np — 8
n|——|+1In - - 3
r+ nw—n Ro(MRo(w) + npe — &
X u(p)|dp| + o (nu(n) = ImRo(n), (28)

w— Ro(nRo(w) + nu — 8¢
In|——|+1In - - 3
r+ m—n Ro(iRo(pe) + N — &

xv(w)ldu| +o@mv(n) = =2Im[nRy(n)], (29)

where, with a slight abuse of notation, we denoted
fn"; c+ldp| = [ps -+ - |dp|. We recall here that the interpola-
tion function k(1) was assumed to be non-negative, which,
together with positivity of ¢(7n), implies non-negativity of
the function u(n) = k(n)e(n) defined by Eq. (28). This is
actually a nontrivial fact that, generally speaking, needs to
be proven. Moreover, the very existence of solutions to the
integral equations (28) and (29), justifying the existence of
the interpolating functions «(n) and v(#) for the scaled wave
numbers and the frequencies (24), is not obvious. In this paper,
we shall present a number of physically relevant explicit solu-
tions to these equations, relegating the general mathematical
proofs to an upcoming publication.

Taking now the real parts of Egs. (25) and (26), we obtain
the carrier component of the breather gas dispersion relations

Ro(mRo(w) + niw — 83

/ [ w—n

arg — — — — 5
e T Ro(mMRo(i) + nip — & i
x u(pu)ld | = ReRo(n) + it(n), (30)

— 7T xy (1)

/ [arg P77 g RoODROG) + 5 _—_
N T Ro(mRo() + ni — 83 e
x v(w)ldu| = —2Re[nRo(n)] + B(n), 31

which relate the unknown functions i(n) and ¥(n) with the
density of states u(n) and its temporal analog v(n).

In the case §o — 0, which corresponds to the transition
from a breather gas to a soliton gas, the solitonic dispersion
relations (28) and (29) simplify to
m—=1
[ =2 aoidia + o puto) = 1, 32

r+ n=n

/ In Z‘n v(p)ldp| + o (mv(n) = —4ImnRen.  (33)
r+

These are analogs of similar equations obtained in [11] for
soliton gas of the KdV equation.

The corresponding dispersion relations for the carrier com-
ponents become

/ [ w=n
arg_
r+ Mm—n
/ [ w—n
arg —
r+ M=

These equations do not have a KdV counterpart as the KdV
solitons do not have a carrier component. Note also that
in the (ideal gas) limit u, v — O the expressions for 12, =
2i(n;) = —2Ren and for @; = —20(n,) = —4 Ren; coincide
with the respective coefficients in front of x and ¢ of the
phase ¢ of the oscillatory factor e in the fundamental soliton
formula (6).

The nonlinear dispersion relations (28) describe the gas
of generic moving breathers, which can also be called the
TW breather gas. By considering the particular spectral limits
motivated by the limiting cases of the TW breather [Eqs. (12)—
(14)], one can derive the reductions of nonlinear dispersion
relations describing gases of Akhmediev, Kuznetsov-Ma, and

-2 argu—ﬂxn(u)]u(u)ldul =Ren+ii(n),

-2 argu—ﬂxn(u)}v(u)ldul =—2Ren*+(n).
(34)
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Peregrine breathers. A special case of a soliton gas—the
bound-state soliton gas—when all the solitons in the gas move
with the same velocity, will be considered in detail later on.

B. 2D case

We now relax the basic restriction imposed on the spec-
trum locus that was used for the derivation of the dispersion
relations and the equation of state of the breather and soliton
gases, namely the requirement that n € I', where I" is a 1D
Schwarz-symmetric curve in the complex plane. We now as-
sume one of the 2D spectral thermodynamic spectral scalings
(exponential, subexponential, and superexponential) when the
shrinking bands y; fill a 2D region A of the complex plane;
see Sec. III B. The exponential 2D spectral scaling is given by
Eq. (23) while the gaps are scaled as O(N71) (see Sec. III B).
For the wave numbers and frequencies instead of (24) we
introduce

Kj Vj
kj:m, a)jz—m, N>> l,
where «; = k(n;) and v; = v(n;), and the interpolating func-
tions k() = 0, v(n) > 0 are assumed to be smooth on A™T.

Then the 2D thermodynamic limit of the nonlinear dis-
persion relations (18) leads to the same integral equations
(28)—(37) but with the line integration along I'"" replaced by
the integration over a 2D compact domain A™:

[ tdui > [ -asac
r+ At

where u = & + i¢. The density of states u(n) in the 2D case
is defined in such a way that u(u*)d& d¢ gives the number of
localized (breather or soliton) states per the element [£*, £* +
d&] x [¢*, ¢* 4+ dZ] of the spectral complex plane and per
unit interval of space, assuming spatially uniform gas.

For convenience of the exposition, in what follows we shall
be using the 1D notation [, - - - |du| in both the 1D and 2D
cases, keeping in mind that in the 2D case the meaning of the
integral is given by Eq. (36).

(35)

(36)

V. EQUATION OF STATE

We now look closer at the solitonic component of disper-
sion relations for breather and soliton gases [Eqs. (28) and
(32), respectively]. In both cases, elimination of o (1) yields a
single relation:

s(n) = so(n) + /r+ A, wls(n) — s()]u(u)ldul,  (37)

where s(7) = v(n)/u(n), and so(n) and A(n, ) are defined
as follows.
For breather gas,

Im([nRo(n)]

S0l = =2 ko)

_ 1 nw—n

A, 1) = ImR (1) [111 ‘ w— n)
Ro(mRo(w) + np — 8
Ro(Ro() + i — 82

} (38)

and for soliton gas [obtained from (38) by letting 6o — 0],

1 n— 1
son) = —4Ren,  AQpp) = —In|——" ‘ (39)
Imn |p—n

The relation (37) complemented by (38) or (39) can be
viewed as the equation of state of a breather (soliton) gas.

Since «(n) and v(n) are the scaled wave number and
frequency, respectively, in the thermodynamic limit [see (24)],
the quantity s(n) = v(n)/u(n) = v(n)/k(n)in (37) has a clear
physical meaning of the mean velocity of a “tracer” breather
(soliton) in a breather (soliton) gas. As we shall see, in a
spatially inhomogeneous breather gas, the function s(n) =
s(n, x, t) defined by Eq. (37) with u(n) = u(n;x,t) has the
meaning of the gas’ transport velocity; see Eq. (87) below.
For the fNLS equation, the soliton gas equation of state
(37), (39) was originally proposed in [14] using physical
reasoning while its KdV analog had been derived in [11]
using the exponential spectral scaling analogous to (20) (as
a matter of fact, the KdV spectral scaling occurs along the
real axis). The derivation presented here provides, along with
mathematical justification of the fNLS results of [14], their
major generalization to the case of breather gas with a number
of novel physical implications.

The equation of state (37) has a transparent physical inter-
pretation. The first term, so(7), has the meaning of the speed of
a “free” (isolated) breather or soliton with the spectral param-
eter 1. Indeed, in Eq. (39) so(n) = —4 Ren, which coincides
with the group velocity ¢, of the fNLS fundamental soliton

(6), while in Eq. (38) so(n) = —2% is the group veloc-
ity of the TW breather (5) [one sets §o = ig in Eq. (38)]. The
second (integral) term in (37) describes the modification of the
“tracer” breather (soliton) mean velocity due to its interaction
with other breathers (solitons) in the gas. The interaction
kernel A(n, n) for the soliton gas [cf. the second expression
in Eq. (39)] coincides with the well-known expression for the
position shift in the two-soliton interactions [14,27]. We then
conclude that Eq. (38) describes the position shift in a two-
breather interaction. The expressions for the position shifts in
the interaction of two TW breathers were recently obtained in
Refs. [49,54] in a different, less explicit, form. While we could
not see an obvious way to verify the equivalence between
the two representations analytically, we have undertaken a
numerical comparison with the representation obtained in [49]
for a range of parameters, which convincingly confirmed full
agreement between the two.

The fact that the pairwise interaction kernels (38) and (39)
show up in the equations of state (37) without assuming any
dilute nature of the gas implies that the properties of breather
and soliton gases are fully determined by the “fundamental”
two-particle interactions for the whole range of admissible
densities. We also note that the spectral thermodynamic limit
only yields the soliton-soliton (breather-breather) interaction
kernel but not the kernel related to the interaction of soli-
tons (breathers) with the continuous spectrum component,
confirming thus the original premise of our paper that the
thermodynamic limit of finite-gap potentials corresponds to
a “genuine” soliton (breather) gas.
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Finally, we note that the inequality o (1) > 0 in Eq. (28)
imposes a fundamental constraint

/r A, puGldp] < 1 40)

on the function u(n).

Example: Multicomponent breather gas

Consider a breather gas characterized by the density of
states in the form of a linear combination of Dirac §-functions
centered at different spectral points ) (we use an upper
index to distinguish these spectral points from the centers of
spectral bands 7n;, used earlier in the thermodynamic scaling
construction),

M
u(n) =Y w;8(n —n"), (41)

j=1

where w; > 0 are the given components’ weights and
Imn") > 0V,. The structure of the multicomponent reduction
of the equation of state for generalized soliton gas of the
KdV type [i.e., when the integration in (37) occurs along
the interval of the real line] has been studied in [55]. For a
particular case of a two-component (M = 2) fNLS soliton gas,
such a reduction has been considered in [14]. Here we present
a straightforward extension of the results of [14,55] to breather
gas.

Substituting (41) into the equation of state (37), we obtain a
linear system for the gas” component velocities s = s(n\),

M
SO =5"+ > AjpwnsP —s™), j=1.2,....M,
m=1,m#j

(42)
where s = son) = stw(1), Aj =AY, n™) [cf.
(38) for A(n, ) in breather gas]. For M = 2, system (42) can
be solved explicitly to give

N
1 — (Apws + Aywy)’
A — o)

1 — (Apwy + Agywy)

M _ (D
s =8

2 — 2
N —SO —

(43)

An important remark is in order on the meaning of the
S-function ansatz (41) for the density of states u(n). As
a matter of fact, the representation (41) is a mathematical
idealization, which has a formal sense in the context of the
integral equation of state (37), but it cannot be applied to the
original dispersion relations (28) and (29) where it appears
in both the integral and the secular terms. In a physically
realistic description, the §-functions in (41) should be replaced
by some narrow distributions around the spectral points 7/,
i.e., we first take the limit N — oo and then later allow the
distributions to become sharply peaked. As a result, Eq. (28)
would impose a constraint (40) on u(n) which, among other
things, implies that the denominators in (43) must be positive.
Other constraints could arise due to the requirements of non-
negativity for some statistical parameters of the fNLS field

(see [56] for the KdV soliton gas consideration), but we do
not consider them here.

VI. PROPAGATION OF AN ISOLATED SOLITON
OR BREATHER THROUGH A GAS

The equation of state (37) can be used to describe the
propagation of an isolated soliton (or breather) with the spec-
tral parameter n ¢ I'" through a soliton (breather) gas with
known density of states #(u) [and the corresponding velocity
s(w) by (37)], where . € I'". We shall call such an isolated
soliton (breather) a trial soliton (breather) [not to be confused
with the tracer soliton (breather) with n € I't]. Apart from
being a convenient tool for the numerical verification of the
developed theory (see the relevant comparisons [57] for the
KdV soliton gas case), the known dependence of the trial
soliton (breather) velocity on 7 [obtained, e.g., from a series of
measurements of the mean velocity of trial solitons (breathers)
of different amplitudes propagating through the same gas] can
be used for posing the inverse problem: recover the density of
states u(w), € I'" of a breather or soliton gas from a given
function s(n), n € I'", i.e., determine the gas by irradiating it
with the trial breathers or solitons and measuring velocities of
their propagation through the gas.

Expressing s(n) from (37), we obtain the expression for the
mean velocity of such a trial breather or soliton propagating
through a respective gas:

sy = 20U = Jr AGL WuGOsGIdp|
1= [ A, wu()ldp|

We note that technically, Eq. (37) is valid only for n € I'*,
but we can always assume that an isolated point n € C* can
be added to I'" with u(u) = wd(u — n) near that point. Then,
substituting this “extended” u(u) in (37) and taking the limit
w — 07, we obtain (44).

We would like to stress an important subtlety associated
with Eq. (44) that can be easily overlooked. For n € I't,
Eq. (44) is equivalent to the equation of state (37) and thus
it represents an integral equation for s(n). However, for n ¢
['*, the right-hand side of (44) is assumed to be already
known [from the solution of Eq. (37)] so in that case Eq. (44)
represents an expression for s(7) rather than an equation to be
solved.

(44)

Example: Propagation of a trial breather through
a one-component breather gas

Consider a trial breather with the spectral parameter
n =n", where Imn® > |8y|, propagating through a one-
component breather gas with u(7) = w28(n — n?), s(®) =
so(n®) = s§ [it is clear that in a one-component gas due to
the absence of interactions, the velocity of the gas coincides
with the free-soliton velocity; see Eq. (44) with the interaction
terms removed]. From Eq. (44) we obtain

1 2
S(l) _ S(() ) Alzwzsf))

45
1-— A12w2 ( )
which is consistent with Eq. (43) in the limit w; — 07.
Peregrine gas. Consider now the case when n® = §, = iq,
where g € RT, ie., the “mass” w of the §-function is at
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the end of the exceptional band yy = [—8p, §p]- This is the
“spectral portrait” of the Peregrine gas. Then the logarithmic
kernel in (28), evaluated at ;& = 8y, is

—1In =0,

(46)

8o — 8o — 82
0 7_]‘+1n‘7_10 g
do — 17 7750_80

where 7 is any point in the upper half-plane that has a
branch cut [0, §p]. Thus, by (38), A; =0 and Eq. (45)
yields s(V(n) = s(()l)(r]), i.e., the group velocity of the (free)
TW breather. Thus, the propagation of the trial TW breather
through a Peregrine gas is ballistic.

Kuznetsov-Ma breather gas. For the KM breather gas with
n® = ip, where p > g, we have ng) =0 [see (5)], so the
propagation speed of a trial breather through a KM gas is
found from Eq. (45) to be sV = s(()l)/(l — Agmws), wWhere
Axm = A with w = ipand p > |§y].

Akhmediev breather gas. Finally, for the AB gas with
n® =ip+e, where p € (0,|8]), € = 0, we have s(()z) N
+o00 [see (5)]. Denote the interaction kernel A, = Aag. Then
the velocity of a trial breather propagating through an AB gas

I_AQ%S(()Z) as € — 0. Note that due to the infinite
spatial extent of the AB, one should require that the density
of the AB gas w; — 0 so that wzs(()z) = O(1) in the latter
expression, thus ensuring finite velocity of the test breather.
These are prelimiary considerations as the case of AB gas
requires further careful study.

The breather or soliton interactions in a breather or soliton
gas not only modify the “particle” group velocity ¢, of a
tracer breather (soliton), but they also change the “wave”
phase velocity of its carrier ¢,. The phase velocity distribution
in the carrier of a breather gas can be naturally defined as
5(n) = v/i, where @i(n) and ©(n) are the continuous carrier
wave number and frequency functions, respectively, satisfying
the dispersion relations (30) (breather gas) and (34) (soliton
gas). As a result, we obtain

5(n) = So = Jr+ A, pwyu(p)s(u)ldp|
L= e A, wu(p)ldpl

where for breather gas,

is s ~ _

, (47)

s _ 2RelnRo(n)]

C T RelRy(]
. _ 1 n— @
A= RetRo)] [arg =

Ro(mRo(p) + np — 8
Ro(mRo() + njx — 82

and for soliton gas,

- ﬂxn(u)} (48)

2Re[n’]

So =
0 Ren

Ry p) = Ri[arg 122 dargp —ﬂxn(u)} (49)
en n—un

The expressions for 3p(n) in (48) and (49) coincide with

phase velocities ¢, of a carrier in a TW breather [cf. (5)]

and fundamental soliton [cf. (6)], respectively. The interaction

kernels A are clearly related to (but do not coincide with) the

expressions of the phase shifts in two-breather (two-soliton)
interactions (see [27,49,54]).

One cannot help noticing the similarity between Eqgs. (44)
and (47) defining, respectively, the group and phase velocity
of a “trial” or “tracer” breather (soliton) in a breather (soliton)
gas. We need to stress, however, that despite the apparent
similarity, these expressions have very different structure. In-
deed, Eq. (44) contains only one type of velocities (the group
velocities) while Eq. (47) connects two types of velocities.
Also, Eq. (44) has a different meaning depending on whether
n € 't (a “tracer” breather or soliton) or n ¢ 't (a “trial”
breather or soliton) [see the discussion after Eq. (44)], while
Eq. (47) does not distinguish between these two types of
propagating breathers or solitons.

VII. RAREFIED BREATHER OR SOLITON GAS
AND SOLITON CONDENSATE

The nonlinear dispersion relations (28) and (32) for
breather and soliton gas, respectively, were derived assuming
the general, exponential spectral scaling (20) implying that
generically, the integral and the secular terms in these relations
are of the same order. In the other two scalings considered in
Sec. III, one of these two terms must be subdominant: this
will be the integral term in the superexponential scaling and
the nonintegral term in the subexponential scaling.

It is convenient to characterize the spectral scalings and
the corresponding breather or soliton gases in terms of the
function o (1) parametrizing the dispersion relations (28) and
(32). From Eq. (28) we have for breather gas

_ Im[RoGpIL — Jre A, wu(p)ldpl] S0
u(n) -

where the interaction kernel A(n, i) is given by Eq. (38).
The expression for o(n) in a soliton gas is obtained from
Eq. (50) by replacing ImR(n) with Im#n and using Eq. (39) for
A(n, n). For the exponential scaling o () = O(1), while the
limiting cases 0 — oo and o — 0 correspond to the super-
and subexponential spectral scalings, respectively.

o(n)

(50)

A. Rarefied breather and soliton gases

Rarefied breather or soliton gas represents an infinite ran-
dom ensemble of weakly interacting breathers or solitons
characterized by small density of states, u < 1, and therefore
o > 1 by (50). We shall refer to the limit u — 0, ¢ — o0,
uo = O(1) as the ideal gas limit as it corresponds to the
gas of noninteracting breathers (solitons). Spectrally this limit
corresponds to the superexponential spectral scaling (22). For
a rarefied gas, the interaction (integral) term in the equation
of state (37) is subdominant so the leading-order term s(1) =
so(n) describes the group velocity distribution in an ideal
breather (soliton) gas. Then the first correction to the ideal
gas velocity so(n) is readily computed to give

S(n)%sO(nH/ A, w)lso(n) — so(u)lu(u)ldpl. (51)
1"+

Equation (51) represents a fNLS breather or soliton gas coun-
terpart of the equation for the soliton velocity in a rarefied
KdV soliton gas obtained in [10]. Similarly, the carrier phase
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velocities in the ideal gas are determined by the leading-order
term 5(n) = 3o(n) in (47), while the correction due to weak
interactions in a rarefied gas yields

§(n) ~ 30(n) +/

A, wWlEo(n) — so()lu(ldpl. (52)
l"+

[Note that, unlike in (51), the integral term in (52) involves
the difference between the phase and group velocities of a free
breather or soliton.]

In the ideal gas limit, the interaction terms in the complex
nonlinear dispersion relations (25) for breather gas are sub-
dominant, leading to

ii(n)—io(Mu(m)= —Ro(n), v(n) —iocmv(n)=2nRo(n).

(53)

Taking the real and imaginary parts of (53), we recover the
expressions (38) and (39) for the group velocity so(n) and (48)
and (49) for the carrier phase velocity 3y in the ideal breather
gas (soliton gas in the limit o — 0) as expected. We also
observe that the ratio

v(n) —io (M) _
u(n) — io (nu(n)
is the same for breather and soliton gas in this regime.

We note that the discrete (2N-gap solution) counterpart
of (54),

(54)

2i1n3;|
@0
T

= s

F + ZREL,

suggests the following wave-number—frequency scaling:
ki ~w; ~1In~" 8], (56)

which is generally different from the one given by Eq. (24)
(1D) and (35) (2D), as it does not involve N. In particular,
the wave-number—frequency scaling (56), together with su-
perexponential spectral scaling (22), covers the case of the
transition from the 2N-gap solution to the N-soliton solution
for N fixed.

B. Soliton and breather condensates

It has already been mentioned that the inequality o () > 0
in Eq. (50) imposes a fundamental constraint on the density
of states u(n). As discussed in Sec. IIT A, the critical value
o (1) = 0 corresponds to the subexponential spectral scaling
(21). One can see from the nonlinear dispersion relations
(28) and (29) that in this case the gas properties are fully
determined by the interaction (integral) terms, while the in-
formation about the individual quasiparticles (described by
the secular terms) is completely lost. By analogy with Bose-
Einstein condensation, we shall call the breather (soliton) gas
at 0 = 0 the breather (soliton) condensate. From (50) we
obtain the criticality condition

/ A, wu(w)ldu] =1, (57)
]"+

which is the limiting case of the constraint (40). For a given
interaction kernel A(n, n) [Eq. (38) for breather gas and
Eq. (39) for soliton gas], Eq. (57) represents an integral

equation (the Fredholm integral equation of the first kind) for
the critical density of states u = u.(n).

Equation (57) admits a lucid physical interpretation. In-
deed, introducing the total density of states in the condensate,
De = fr+ u.(u)|d |, we rewrite (57) as

(A =p; !, (58)

where (---) denotes averaging over the spectral measure
,oc‘luc(n). Equation (58) then implies that in a soliton
(breather) condensate the average position shift due to colli-
sions is equal to the average distance between quasiparticles.

If the spectral locus curve I' belongs to a vertical line (a
bound-state gas), Eq. (57) with the soliton gas interaction ker-
nel (39) can be solved explicitly using the inversion formula
for the Hilbert transform. Another explicit solution for the
density of states in soliton condensate can be obtained for
the special case when the curve I' represents a circle or a
circular arc in the complex plane. Below we consider these
two important examples.

1. Example 1. Bound-state soliton condensate

Let 6o = 0 (soliton gas case) and I' = [—iq, ig] for some
g > 0, which we shall call the soliton condensate intensity.
Then v(n) = 0 solves (33). The remaining equation (32) with
o =0and n € I" can be rewritten as

iq
/ In | — nlu(p)idp = Imn, (59

iq
where we assume an odd (anti-Schwarz symmetric) extension
of u(w) onto [—iq, 0]. Indeed,

n—=n _ _
In | =——lu(p) = —[In|p = nu() +In|f — nlu(i)l,
(60)
where we have assumed that u(fi) = —u(u) for all u €

[0, ig]. Introducing new variables & = Imn, y = Imu, we
obtain

q
- / In & — ylaG)dy = &, 61)

q

where #1(y) = u(iy). Differentiating (61), we obtain

. T a(y)d
ntlale) = [ S0 1, )
—q y _g
where H[ii] denotes the finite Hilbert transform (FHT) of
it over [—q, q] [58]. Inverting the FHT, H subject to an
additional constraint H[#](0) = O (see, e.g., [59]), we obtain

the density of states for the bound-state soliton condensate
= ——2—. e (-ig.ig)
uln) = s 1 —1g,1q).

7n?+q?

One can observe that the density of states (63) of the bound-
state soliton condensate coincides with the appropriately nor-
malized semiclassical distribution of the discrete ZS spectrum
for a rectangular barrier, obtained as a derivative of the cor-
responding Weyl’s law following from the Bohr-Sommerfeld
quantization rule for the ZS operator (see [27,31] and refer-
ences therein).

(63)
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We now use Eqs. (34) to evaluate the bound-state soliton
condensate carrier wave parameters i, U. Since arg i = % and

n—un
arg — — 7 xy(n) = —m, (64)

where x denotes the characteristic function and u, n € [0, iq],
we calculate

(n) = 2Re(n?),

where we used the fact that the integral term in (34) is zero due
to v(n) = 0 when n € [—iq, iq]. The carrier phase velocity in
the bound-state soliton condensate is then

o) _  Re(n?)
u(n) q
To evaluate the speed of a trial soliton with n ¢ [—ig, iq]

propagating through the bound-state soliton condensate, we
substitute (63) in (44) and arrive at

u(n) = =24, (65)

5(n) = . (66)

—4ImnRen 67)

S(I’]) = ndp

Imn — %Re qu In(p — T))\/TM2

Applying integration by parts and evaluating residues, we
obtain

(68)

It is interesting to compare the group velocity (68) of the trial
soliton propagating though a soliton condensate of intensity g
with the group velocity ¢, of the TW breather with the same
soliton eigenvalue 1 and the same background intensity ¢ [see
Eqg. (5)]. One can see that, although the expressions for these
two velocities are different, they exhibit the same asymptotic
behavior up to the second-order terms: s(n) = —4 Ren(1 —
d?/2) + 0(d*), where d = q/Imn < 1 and Ren = O(1).

Concluding this important example, we note that the very
recent numerical study [19] has shown that statistical charac-
teristics (the probability density function, the Fourier power
spectrum, and the autocorrelation function) of the bound-state
soliton gas modeled by an n-soliton solution with n > 1
and the “Weyl” density of states (63) agree with remarkable
accuracy with the counterpart characteristics of the stationary
integrable turbulence describing the asymptotic, long-time
behavior of the spontaneous modulational instability (i.e.,
the modulational instability of a plane wave of intensity
q perturbed by a small noise) studied numerically [2] and
experimentally [60].

2. Example 2. Non-bound-state “circular” soliton condensate

We now present an example of a soliton condensate that is
not a bound state, i.e., a dynamic soliton condensate. Consider
the spectral locus curve I' in the form of an arc of the circle
|n] = p > 0 connecting, counterclockwise, the points 7; and
ny of ', where |n| = p.

To solve Eq. (57) in this case we introduce the change of
variables . = pe'?, n = pe’®. Then (57) becomes

& |sin 2
0 In
0 si

2
in E40
n=3

1(0)d6 = —psin &, (69)

where 1(0) = u(pe?), n = pe’s'. We now differentiate both
sides in & to obtain

LM i@, p

— S dg=-%

TJ, 4—P 4
where we introduced the new variables p = cos&, ¢ = cos 9,
and notations b = cos &, and f(p) = ii(cos™" p). The integral
on the left-hand part of Eq. (70) represents the FHT H[f](p)
of the function f over [b, 1]; see [58,59]. To ensure uniqueness
of the FHT inversion in (70) we impose a constraint f(1) = 0,
which is equivalent to a physically natural condition #(0) = 0.
Onmitting the calculations, we present the result

(= Dl+5Y)
f@)= TR (p)

R (p)= v ({1 = p)p—D),

assuming the positive value of the radical. Note that f(p) >
0 for p € [b, 1). Thus, we obtain the density of states in the
circular soliton condensate

1 1 —cosé& 1-b

— | —————|cos& + ——

'\ cos& —cosé 2
1 /Re 1-b —Re

_ L (Ren Inl n (72)
7\ Inl 2 Ren — Ren,

Equation (33) with o = 0 for v(n) for this condensate is
solved in a similar fashion. As a result, the soliton group
velocity s(n) = v(n)/u(n) is obtained in the form

, (70)

’

(71)

u(n)

(0)) 1-b _ o412
cos'” & + 5= cosé 3

s = -8
() P cost 1 IF
__8(Ren)* +4(1 = b)nIRen — (b + 1)*Inl 73
Ren + 52y
In particular, for I being a circle, i.e., b = —1, we have
Imn Ren Imn
um)=——, v(n)=-8———, s(n)=—8Ren.
TP TP
(74)

The latter expression means that the soliton speed within
the “circular” soliton condensate is exactly twice the speed
so(n) = —4Ren of the free soliton with the same spec-
tral parameter 1. The opposite limit » — 1~ (a small cir-

cular arc rllear the origin with cosé& — 17) yields s(n) &~
Coif;f ~ —4 Ren, which is consistent with the speed of
free (noninteracting) fundamental soliton (6).
Using Egs. (72) and (73) for u(n), v(n) = u(n)s(n), the
wave number (1) and frequency 9(n) of the carrier wave in
the “circular” condensate can be evaluated from Eqgs. (34).

C. From ideal soliton gas to soliton condensate

The explicit results for soliton condensates obtained in
the previous subsection can be readily generalized to some
“genuine” (noncondensate) soliton gases, enabling one to
span a continuum of states of increasing density between an
ideal soliton gas and a soliton condensate. We shall obtain
the corresponding results for the bound-state soliton gas and
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the dynamic circular soliton gas following Examples 1 and 2
above.

We use the bound-state soliton condensate solution (63) of
the integral Eq. (59) [Eq. (32) with o = 0] to derive a partic-
ular solution to the full Eq. (32) with o # 0. Let u = u.(n)
be the “Weyl” distribution (63) and assume that o (n)u.(n) =
mImn for some m > 0. Then u(n) = u.(n)/(m+ 1) is the
solution of Eq. (32) with o () = mm+/n* + ¢*. One can see
that in the limit m — 0T one has u — u, i.e., the soliton gas
approaches the state of condensate [cf. Eq. (63)], whereas in
the limit m — 400 it approaches the state of ideal gas with
u(n) — 0%, 0(n) = +00, uoc — mTuc\/n*+ ¢*> = —in.

We now derive the speed of a trial soliton with spectral
parameter 1, moving through the bound-state soliton gas on
[—iq, iq]. We substitute the density of states u = u./(m + 1)
in the trial soliton speed formula Eq. (44) to obtain [cf.
Egs. (67) and (68)]

—4TImn Ren
s(n) = 1 iq pudp
Imn — o Re fiiq In(p — r/)m

—41ImnRen (75)
I Imy — S Imy/n? + @2
where, as earlier, we have used integration by parts and
residues to obtain the final expression.

In particular, for a “trial” soliton propagating through a
bound-state soliton condensate (m = 0) we recover Eq. (68).
In the opposite limit m — 400 (a trial soliton propagating
through an ideal soliton gas) we recover the free soliton speed
—4Ren.

Similar to the condensate case, we use (30) and (31) to
evaluate i, ¥ to obtain [cf. (65)]

2q
m+1’
When m — oo (ideal gas) we have ii = 0, () = 2Re(n?),
in full agreement with the parameters of an isolated
soliton (6).

The extension of the circular condensate results to the full
range of regimes proceeds in the similar way. For simplicity,
we only present the results for the circular soliton gas when
the spectral locus curve I' is a complete circle |n| = p. To
study the range of regimes between an ideal soliton gas and
the corresponding soliton condensate, we take the “seed”
condensate solution u, = Imn/m p [Eq. (72) with b = —1] for
the density of states and choose o in the integral equation
(32) so that o (n)uc(n) = mImn, where m > 0. Now, invoking
the same arguments that we used for the description of the
bound-state soliton gas, we obtain the density of states and
the group velocity in the circular gas as

ii(n) = — i(n) = 2Re(n?). (76)

Imn Ren Imn
um) = ——, v =-8—F——,
Tp(m+1) Tp(2m+1)
m+ 1
= —8R . 77
s(n) N (77)

As expected, Eq. (77) shows the growing density of states
u for the circular soliton gas as m varies from m — 400 (ideal
gas) to m = 0 (condensate). In this range of m, the speed s(1)
of the tracer soliton interpolates between the speed of a free

soliton —4 Ren at m = oo and the condensate speed (74) at
m = 0.

Let us now use (30) to calculate #, ¥ for the circular gas.
Using elementary geometry, we obtain

n—pu
arg —— —mwx,(uw) =u—m, (78)
n—pn

where x, denotes the characteristic function of the arc (1, n)
of our circle. Then

—p
u—n —3p
/ [arg,u_ﬁ—zargﬂ—ﬂxn(ﬂ)]u(ﬂﬂdM: m——l—l’
P
(79)
so that
3p
in) — —Rey — P
i(n) en— - 1
6 2
B(n) = 2Re(n)® + —2 (80)
2m+ 1

where the integral for ¥ was calculated similarly to (79). One
can now obtain the phase speed

cos(2argn) + %ﬂ
3 7

m+1

81

S(n) =-2
() P cos(argn) +

which exhibits the expected limit —2 l;i’:;
pare with the phase speed of free soliton (6). In the condensate

regime, (81) yields

as m — o0, com-

cos(2argn) + 3

. (82)
cos(argn) + 3

5(m)=-2p

VIII. KINETIC EQUATIONS FOR BREATHER
AND SOLITON GAS

A. General construction

So far we have assumed that the spectral characteristics
u(n), v(n), i(n), and v(n) of a breather or soliton gas do
not depend on x, 7. We call such breather or soliton gases
uniform, or homogeneous, gases. For a nonhomogeneous
breather or soliton gas, we introduce u = u(n,x,t), v =
v(n,x,t), i =i(n,x,t), D = 0(n, x,t) assuming that varia-
tions of the gas’ parameters occur on much larger spatiotem-
poral scales Ax, At than the typical scales Ax ~ At = O(1)
of the oscillations corresponding to individual solitons or
breathers.

To derive evolution equations for a breather or soliton
gas, we go back to the original, discrete wave number and
frequency components k;(et), w;(e), k j(et), and @;(a) of the
finite-gap potential, defined in terms of the fixed branch points
o of the Riemann surface R of (4). Let us now consider a
slowly modulated finite-gap potential, so that @« = «(x, #). The
equations describing the evolution of the « = a(x, t)—the
so-called Whitham modulation equations [29]—for the fNLS
equation have been derived in [61] for n = 1 and in [33] for
an arbitrary genus n. The resulting system of 2n quasilinear
modulation equations for the branch points o;(x, ) has an
infinite number of conservation laws, which include a finite
subset of n “wave conservation” laws (2), which we write in
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terms of the special wave-number—frequency set satisfying the
nonlinear dispersion relations (15),

Okj(a) = dywj(ee), j=1,...,N, (83)

dkj(@) = d,&;(), j=1,....N (84)

(as earlier, we assume even genus n = 2N). We fix the ex-
ceptional band yy, which is consistent with the Whitham
equations as the branch points «; are the analogs of Riemann
invariants [33].

We now apply the thermodynamic wave-number—
frequency scaling (24) to the conservation equations (83) and
(84). Let Ky = Y 0L, kj, Wy = Y11, wj, where 1 <M < N.
For convenience we shall be using a 1D spectral configuration
while the result will remain valid for 2D. Invoking the 1D
scaling (24), we obtain

M . n
K=y ) / CGeGoldul = KO, (85)

j=1 Moo

where we made a replacement 7y — n in the continuous
limit. Now, using (27) we see that '(n) = u(n), where the
prime denotes differentiation along I'". Thus, K(n) has the
meaning of the integrated density of states in a breather or
soliton gas. Similarly, we have

L v(n;) "
W= -y / V(g (w)ldpl = V), (86)

i=1 ~

so that V'(n) = —v(n). Now, the thermodynamic limit of
(83) yields the continuity equation for the density of states
u(n, x,t),

du + 0,(us) =0, 87)

where u = u(n, x,t), s = v(n, x, t)/u(n, x, t), and the depen-
dence s[u] is given by the equation of state (37). One can see
from (87) that the breather or soliton group velocity s(7, x, t)
has the meaning of the transport velocity of the corresponding
gas. Equation (87), together with the equation of state (37),
form the kinetic equation for a breather gas [using Eq. (48)]
or soliton gas [using Eq. (49)].

Similarly, for the carrier wave components we have
lzj — 2i(n, x,t), ®; — —20(n, x,t) =iy, x,)3(n, x,t) in
the thermodynamic limit, and Eqs. (84) transform into a single
equation for the carrier wave number ii:

0,1 4 0, (@15) = 0, (88)

where the phase velocity § also plays the role of the transport
velocity for the carrier wave number, and the dependencies
it[u], 5[u] are given by (30) and (47). Together with the carrier
wave nonlinear dispersion relations (30), Eq. (88) yields a
“satellite” kinetic equation for the carrier wave, reflecting
the dual, “wave-particle” nature of breathers and solitons.
We stress that the previous works on soliton gas kinetic
equations (see, e.g., [14,15,55] and references therein) have
been concerned only with the “particle” equation (87).

One may note that the application of the thermodynamic
limit to the Whitham modulation equations is in apparent
conflict with the original premise of the Whitham theory [29],

which is based on the scale separation, in which spatiotem-
poral modulation scales are large compared to multiperiodic
wavelengths and periods. We note, however, that the soliton
limit of the Whitham equations, while being formally incon-
sistent with the original assumptions of the modulation theory,
is well known to yield an accurate description of the dynamics
of individual solitons and soliton trains in a variety of prob-
lems, including the dispersive shock wave theory [62] and the
recently introduced theory of soliton-mean flow interactions
[63,64] confirmed by both direct numerical simulations and
physical experiments. In fact, Whitham in his book showed
how to describe solitary wave trains by an appropriate limit of
the modulation system; see [29], Chap. 16.16.

B. Multicomponent hydrodynamic reductions

The kinetic equations (87) and (37) can be reduced to a
system of quasilinear PDEs if one takes advantage of the
multicomponent §-function ansatz (41) for the density of
states u, where one now assumes that the “densities” w; and
the speeds s) of the gas components are slow functions of
x, t. As we mentioned in Sec. V, there are certain constraints
on the admissible values of w;; we shall assume that these
constraints are satisfied.

The resulting system for w;(x, 1), s (x,7), j = 1,..., M,
has the form of a system of hydrodynamic conservation laws

W)+ wis) =0, j=1,....M (89)
with the closure conditions given by the multicomponent
equation of state Eq. (42).

The hydrodynamic-type system (89) and (42) was exten-
sively studied in [55], where it was shown that it represents a
hyperbolic integrable linearly degenerate system for any M €
N. Thus, all the previously obtained general mathematical
results for finite-component KdV-type soliton gases [55] can
be readily extended to the case of fNLS soliton and breather
gases. In particular, as was shown in [14,55] for M = 2, the
system (89) and (42) reduces to

)y 526D =0, P +5D6®) =0 (90)
with the relations between s> and w'-? given by Eq. (43).

System (90) represents the diagonal form of the so-called
Chaplygin gas equations, the system of isentropic gas dy-
namics with the equation of state p = —A/p, where p is a
pressure, p is the gas density, and A > 0 is a constant. It occurs
in certain theories of cosmology (see, e.g., [65]) and is also
equivalent to the 1D Born-Infeld equation [29,66] arising in
nonlinear electromagnetic field theory.

We note that hyperbolicity of the hydrodynamic system
(89) and (42) might look surprising in the context of the fNLS
equation as the fNLS-Whitham system is known to be elliptic
for a generic set of modulation parameters and for any genus
[33]. The apparent paradox is resolved by noticing that the
fNLS-Whitham system exhibits real eigenvalues (character-
istic speeds) in the soliton limit. For example, for the genus
1 case, the two pairs of complex-conjugate eigenvalues of
the modulation matrix degenerate into a single, quadruply
degenerate real eigenvalue, corresponding to the velocity of
the fundamental soliton; see, e.g., [67].
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Due to the availability of conservation laws (89), one can
solve a general Riemann problem for a multicomponent-
component breather gas described by (89) and (42). As is
known, a weak solution to the Riemann problem for a system
of hydrodynamic conservation laws (89) generally consists of
M + 1 disparate constant states separated by M propagating
discontinuities or rarefaction waves (one of each family),
where the jumps of w’ and s across the discontinuities are
determined from the Rankine-Hugoniot conditions [68]. Lin-
ear degeneracy of the system (89) and (42) implies that there
are no rarefaction waves, and the shocks are contact discon-
tinuities with the speeds coinciding with the speeds of the
relevant components [69]. Importantly, contact discontinuities
do not require regularization via higher-order mechanisms
such as dispersion or dissipation. Following the KdV and
fNLS soliton gas results [14,57], we present here the solution
to a Riemann problem for a two-component fNLS breather
gas.

We consider system (89) and (43) for M =2 and the
“shock tube” type initial conditions

wi(x,0) =wj, wa(x,00=0, x<0,

©n
wa(x,0) = wi, wi(x,0)=0,

x>0,

where w, wg > 0 are some constants. We shall also assume
that sél) > séz) > 0 so that the gases undergo an “overtaking”
collision resulting in the formation of an expanding “inter-
action” region ¢t < x < ct, where both components are
present. Note that, unlike in the classical gas-dynamics shock
tube problem, the initial velocity of the breather gases is not
zero but is fully determined, via Eq. (43), by the density
distribution (91).

The weak solution for w; and w, has a piecewise constant
form:

1

W, X < ct,

_ 1 - +

wi(x, 1) = Jw,, cTt < x < c't,
0, x > ctt,

(92)

0, X < ct,

wy(x, 1) = { w2, ct < x < c't,
w3, x > c't.

Here ¢~ and c* are the velocities of the left and right
discontinuity, respectively, and w!, w? and s, s> are the
densities and velocities of the breather gas components in
the interaction region x € [c™t, c¢*t]. The velocities s and
s are expressed in terms of w!, w? by relations (43). The

interaction region densities w!, w? and the contact disconti-

nuities’ velocities ¢* are found from the Rankine-Hugoniot
conditions:
—c [wy —wi] + [w(l)sél) —wistP] =0, 03
—eo—w] + [0-wis®] =0, P
—c+[w3. — O] + [wls(l) — 0] =0,
2 2 2.2) 2.2 O
—ct[w? —wg] + [wis® — wisy’] =0,

resulting in

wé(l - Az]U)é)

¢ 1— Aleglwéwz’
2 w(z)(l — A]zw(l))
wr= 0 (95)
1-— A]zAzlew
(1) (2) 1
o=@ _ (s0” — 50 ) Aoy
0 1 - (AIZU)LI- + AleLZ-)’
1) (2) 2
D (50 = 55") Aarwg
= s+ 1 5 6)
1—- (Alzwc + A21w6)
In conclusion, we note that, being an integrable

hydrodynamic-type system, Egs. (89) and (42) are amenable
to the generalized hodograph transform, enabling in principle
the construction of all nonconstant smooth solutions [34,70].
Indeed, a number of nontrivial exact solutions (such as sim-
ilarity and quasiperiodic solutions) were obtained in [55].
Their physical interpretation in terms of the fNLS breather
and soliton gas is an interesting outstanding problem.

IX. SUMMARY AND OUTLOOK

In this paper, we have constructed nonlinear spectral theory
of breather and soliton gases in the fNLS equation. This was
done by considering a special, infinite-genus thermodynamic
limit of finite-gap potentials and of the associated nonlinear
modulation equations.

The core result of the paper is the system of nonlinear
dispersion relations (25) and (26) for the spectral parameters
of breather gas: the density of states u(n) and its temporal
counterpart v(n), as well as the wave number () and the
frequency ¥(n) of the carrier wave. These nonlinear disper-
sion relations yield the integral equation of state [Eqs. (37)
and (38)] connecting the velocity s(n) of the quasiparticles
(breathers) in the gas with the gas’ spectral density of states
u(n). The respective relations for soliton gas are obtained
collapsing the “exceptional” spectral band corresponding to
the background Stokes mode in the breather gas.

The equation of state (37), together with the transport equa-
tion (87) for the slowly varying density of states u(n, x, ),
forms the kinetic equation for breather gas. Combining this
equation with the “satellite” kinetic equations (88) and (47)
for the carrier wave parameters ii(n, x,t) and 35(n, x, 1), we
obtained a full set of equations characterizing the macroscopic
spectral dynamics in a spatially nonhomogeneous breather
gas. These include the kinetic equation for soliton gas [14],
as a particular case. Our consideration also includes the
bound-state (nonpropagating) breather and soliton gases not
considered previously. One of the immediate implications of
our analysis is the prediction of the critical state of breather
(soliton) gases, which we term breather (soliton) condensate,
and whose properties are fully determined by the interactions
between the quasiparticles in the gas, while the individual
characterization of these quasiparticles is suppressed. The
criticality condition (57) yields the density of states u.(n)
in the condensate, and we present two notable examples in
which this critical density of states can be found explicitly: the
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bound-state soliton condensate and the so-called “circular”
soliton condensate with the spectrum located on a circumfer-
ence in the complex plane.

We now outline some important directions of future physi-
cal and mathematical research suggested by our work.

(i) Statistical characterization of the nonlinear random
wave field ¥ (x, t) in breather and soliton gases: namely, the
determination of the probability density function P(|y]),
the power spectrum, the correlation function, etc.—in terms
of the the spectral density of states u(#n). This is a subject of
ongoing research, and the results will be published elsewhere.

(ii) Realization of breather and soliton gases in numerical
simulations and laboratory experiments and verification of the
predictions of the spectral theory developed here. While the
numerical realization of the KdV soliton gas has been reported
in a number of works (see, e.g., [57,71]), the challenge of
the modeling of a fNLS soliton gas has been successfully
addressed only recently in [19,20], where dense statistical
ensembles of N-soliton solutions with large N and random,
uniformly distributed phases of the so-called norming con-
stants were constructed numerically based on a specific im-
plementation of the dressing method. We note that the above
papers employ periodic boundary conditions for the numerical
realization of N-soliton solutions, i.e., they essentially realize
the finite-gap solutions of genus 2N approximating N-soliton
solutions. In particular, the numerical simulations in [19] have
shown that the bound-state soliton condensate described by
the “Weyl” distribution of the density of states (63) repre-
sents an accurate model for the developed, nonlinear stage
of spontaneous (noise-induced) modulational instability of a
plane wave [2,60]. We can add that our preliminary numerical
simulations of fNLS soliton gas dynamics show a very good
agreement with the results obtained in this paper, in particular
with the solution (93) and (94) of the “shock-tube” problem
in Sec. VIIIB and with the formula (68) for the velocity
of a trial soliton propagating through the bound-state soliton
condensate. These results will be reported in a separate paper.

(iii) Yet another promising line of research, where the
developed theory can find applications, is related to the rogue
wave formation (see, e.g., [20] for recent numerical obser-
vations of rogue waves in soliton gas). The relative roles of
solitons and breathers in the rogue wave statistics of integrable
turbulence have been discussed in [72] based on the numerical
implementation of the traditional IST method. The finite-gap
theory has proved a powerful tool for the description of rogue
waves (see, e.g., [24,46,73,74] and references therein), and the
application of the spectral theory of soliton and breather gases,
in particular of solutions to the kinetic equation, could be the
next important step in this direction.

(iv) The subject of this paper is closely related to the study
of the semiclassical limit of the fNLS equation for a class
of generic potentials with large “solitonic content” of ~1/e
solitons, where € < 1 is a small dispersion parameter. Indeed,
the NLS evolution of such potentials is known to typically
lead to the appearance of coherent structures of increasing
complexity that can be locally approximated by genus n
finite-gap solutions, with » increasing in time (see [31,67,75—
78] and references therein). Our preliminary considerations
indicate that for sufficiently large ¢ (and consequently large
n), the semiclassical spectrum of these solutions fits into

one of the thermodynamic scaling requirements described in
this paper. Taking into account the effective randomization
of phases, the large ¢t evolution of semiclassical solutions
is expected to provide the dynamical realization of soliton
gas construction described in this paper. Indeed, some fea-
tures of the soliton gas development from an initial rectan-
gular barrier (box) potential predicted by the semiclassical
analysis in [67] have been recently observed in an optics
experiment [79].

(v) Related to the previous comment, we mention the
possibility of an alternative construction of a soliton gas via an
appropriate limit as n — 00 of n-soliton solutions (rather than
n-gap potentials) of the fNLS equation. Indeed, as we already
mentioned, this is the way (n-solitons for large n) the dense
soliton gas has been realized numerically in [19,20]. In this
connection, an extension to the fNLS equation of the theory
of the so-called primitive potentials originally developed in
the context of the KdV equation [80] could prove useful
(see [81] for a recent study, where a particular infinite-soliton
solution of the KdV equation was constructed in the form of
a primitive potential). Additionally, the Lax-Levermore type
approach to the semiclassical limit of N-soliton solutions of
the fNLS equation (see [82] and references therein) could
provide a complementary tool for the soliton gas description,
with possible extension to breather gas.

(vi) This work is concerned with the properties of soli-
ton and breather gases in the focusing NLS equation. A
similar theory can be constructed for the defocusing NLS
(ANLS) equation. The kinetic equation for a gas of dark
(gray) solitons would necessarily require the presence of
a nonzero background, and the corresponding spectral the-
ory would represent a ‘“bidirectional” counterpart of the
KdV soliton gas theory due to the spectrum of the self-
adjoint ZS operator associated with the dNLS equation
being located on the real line. Kinetic theory of bidi-
rectional soliton gases is the subject of a separate work
[83].

(vii) The effects of small perturbations (e.g., dissipation,
higher-order nonlinearity and dispersion, or a trapping poten-
tial) on the dynamics of “integrable” soliton gases are of great
interest for applications. In particular, the properties of a rar-
efied gas of dark solitons in quasi-1D repulsive Bose-Einstein
condensates (BECs) in a harmonic trapping potential were
considered in [84], whereas the methods of the experimental
realization of soliton gas in trapped BECs were discussed in
[85]. Additionally, the dark soliton gas type structures have
been observed in the laminar-turbulent transitions in fiber
laser [86]. The examples of relevant mathematical models
include the higher-order NLS equations (deep water waves,
nonlinear optics) and the Gross-Pitaevskii equation (BECs).

One of the most physically pertinent questions arising in
connection with soliton gas dynamics in perturbed systems
is that of thermalization and the associated equipartition of
energy. This topic is currently under active investigation in
the context of propagation of weakly nonlinear random waves
in perturbed integrable systems (see, e.g., [87] and references
therein). On the other hand, it is known that soliton gases in
nonintegrable systems can exhibit a peculiar “soliton attrac-
tor” scenario observed numerically in [88]. The development
of an analytical approach to the description of soliton or
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breather gas in the perturbed fNLS equation via the tools of
nonlinear spectral theory represents a major challenge.

(viii) Finally, we mention the intriguing connections of
the spectral dynamics of soliton and breather gases with the
generalized hydrodynamics of many-body quantum integrable
systems, which turn out to be governed by the kinetic equa-
tions of the type (87) and (37) [15-17]. Establishing a bridge
between these two topical areas is yet another promising
avenue for future cross-disciplinary research.

Concluding, we expect that our work will stimulate further
theoretical and experimental studies of soliton and breather
gases in various physical contexts, including nonlinear optics,
water waves, and superfluids, as well as in connection with
quantum integrable systems.
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APPENDIX: MATHEMATICAL UNDERPINNINGS

We now outline the rationale behind the derivation of
Egs. (7), (8), and (18) using the Riemann-Hilbert problem
approach to finite-gap theory [73,89].

1. Riemann-Hilbert problem

We start with the construction of the real normalized
quasimomentum dp and quasienergy dg differentials for the
Riemann surface R. Let f(z) be a polynomial with real
coefficients. Consider the Riemann-Hilbert problem (RHP)
for the function g(z):

(1) It is analytic in C with the exception of the jump
discontinuity on all the bands y; and all the gaps c;.

(ii) It satisfies the jump conditions

8+(2)+8-(2)

and

= f(@)+Wony;, |j|=0,1,...,N,

8+(2)—g-(x)=Q; on ¢, |jl=1,...,N, (A1)

on the bands and gaps, where Wy =0, W; =W_;, Q; =
Q_;, and the real constants W;, Q;, j=1,..., N, are to be
determined.

(iii) It is analytic at z = oo

Here g1 (z) denote the limiting values of g(z) on the ori-
ented (see Fig. 3) bands y; and gaps c;. By the Sokhotsky-
Plemelj formula, the solution to this RHP is given by

_R@| [ LF@)+Wde
8@) = 27i I%:O y, (& —2)RL()

Qs
A2
+Z . T~ 2RQ) (A2

lj1=1

FIG. 3. Spectrum geometry for the breather gas construction.
The spectral bands (solid lines) lie on the Schwarz-symmetric con-
tour I in the complex plane z € C. The cycles A; and C; surround
the bands y; and gaps c¢; (dotted lines) respectively. The contours on
the second sheet of R are shown by dashed lines.

Since g(z) must be analytic at infinity, the constants W;, Q;
must satisfy the linear system

¢"dg fc"ldc
+
U;l 7§ R(@) ||Zl R()

N m
Z_Z [ df’ (A3)

=L RG)
where m =0, 1,...,2N — 1, obtained from (A2) by expand-
ing é in powers of % as z — oo. Here C; denotes the

negatively oriented loop around the gap c;, [jl|=1,...,N;
see Fig. 3.

2. Wave numbers and frequencies

The system (A3) for 2N real unknowns W;, Q; has a
unique solution [76] provided that all the branch points o of
the Riemann surface R are distinct. Thus (A2) indeed defines
g(2). Note that dg is a meromorphic differential on R with
the only pole at z = 0o, on the second sheet of R. Then
dh = 2dg — df is a meromorphic differential on R with the
poles at z = 00; » on both sheets of R and with the periods

7§ dh = +2(2,_, — Q)),
As;
(Ad)
$ =200, - Wy,
Cu; '

ljl=1,...,N, where Qo = Wy, = 0. Thus, the differential
dh = d(2g — f)is asecond kind of real normalized meromor-
phic differential with the asymptotics dh ~ —df asz — oo on
the main sheet. Since such differentials are uniquely defined
by the polynomial f [90], we obtain the real normalized
quasimomentum d p and quasienergy dq differentials on R by
choosing f(z) = —zand f(z) = —2z2, respectively. Introduc-
ing now

ki =2 —Q-1), k;=2W,;, |jl=1,...,N (A5)
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for dp,dq with f(z) = —z and the same expressions for
wj, ®; with f(z) = —2z%, we obtain (7) and (8). The signs
of the integrals in (7) and (8) will be opposite if we replace j
by —j.

Let us now deform the contours y; and c; of the jump
conditions (Al) into 2N + 1 vertical jump contours v; =
[@;,a;l, j=1,...,2N + 1. In particular, y; is deformed into
v1, the jumps on c4y after the deformation become distributed
between v; and voy. 1, etc.; see [76], Sec. 8, for details. Then
we obtain a new RHP with vertical jump contours v;, but it
is satisfied by the same function g(z) [to be more precise,
by the corresponding analytic continuation of g(z)]. If we
would choose the new (deformed) A-cycles to be the loops
around each vertical contour v, j =2,...,2N + 1, then the
meromorphic differential dh would have all A-cycles equal
to zero, i.e., it would be A-cycles normalized. The wave
numbers and frequencies for the fNLS are defined in [33,35]
as B periods of the A-cycles’ normalized quasimomentum d p
and quasienergy dgq differentials on the Riemann surface of
the radical R(z) from (4) with vertical branch cuts v;. Any two
sets of A and B cycles of the same Riemann surface are integer
linear combinations of each other (see, e.g., [91]). As any
integer combination of wave numbers (frequencies) is also a
wave number (frequency), we arrive at the statement that A-
and B-cycles of d p, dq, defined by (9), are wave numbers and
frequencies, respectively.

3. Nonlinear dispersion relations for finite-gap potentials

The system (A3) is the starting point for the derivation of
the nonlinear dispersion relations (18). First of all, introducing
the constants Uy € R by

Q,:ZU-, I=1,...,N, (A6)
j=1
we get
J - J )
e RO A2 s R©)
m=0,...,2N — 1, (A7)

and thus (A3) is reduced to

N N
crdg cndg
2 W 72 R T LU ?é RQ@)

Lj1=1 ljl=1
_ i f@)imdg AS)
= RG)

Taking now linear combinations of Egs. (A8), according to
(16) and (17) we obtain

N
Wty Umyg Pi©ds _ _% FRF;()dE (A9)
mi=1 Bn 4

R(¢) R(¢)

where 7 is a large clockwise oriented contour containing all
yj. Substituting ¢ and 222 for f(¢), in view of (AS), we
obtain (18). Since W; = W_;, Q; = Q_;, see (Al), we can
combine the integrals over the loops B,,,, B_,, into one integral

over contour B,, =B,, +B_,,, m =1, ..., N, and consider
the system (A9) only for j = 1,...,N.

4. Thermodynamic limit of nonlinear dispersion relations

In the thermodynamic limit, the leading-order behavior of
the coefficients of the linear system (15) is given by

?g Pi§)ds _ 1 [m Ro(n)Ro(1hm) + 1,10 — 85
B, R() it [ Ro(mj)Ro(Tim) + 1jiim — 85
n 7:]m —n;

Nm — Nj
when m # j and 5£

B,

—1 :|+h(m—j)+0(N28§)
Pi(§)dg
R(¢)

21n5;|
;2nojl

+ O(1), (A10)

where j,m=1,...,N and h denotes the Heaviside func-
tion h(§) = (1 + sign&). Note that —L In H + h(m — j)
varies smoothly as 7,, traverses the contour I'* bypassing
n; € I'" from the left (positive) side of I'*. The choice of the
branch of each logarithm in the first equation in (A10) should
be the same for both the numerator and the denominator.

Substituting these estimates together with (24) into the
system (15) and replacing the Riemann sum with the corre-
sponding integral, we obtain (25) and (26).
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