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Stickiness in generic low-dimensional Hamiltonian systems: A recurrence-time statistics approach
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We analyze the structure and stickiness in the chaotic components of generic Hamiltonian systems with
divided phase space. Following the method proposed recently in Lozej and Robnik [Phys. Rev. E 98, 022220
(2018)], the sticky regions are identified using the statistics of recurrence times of a single chaotic orbit into
cells dividing the phase space into a grid. We perform extensive numerical studies of three example systems: the
Chirikov standard map, the family of Robnik billiards, and the family of lemon billiards. The filling of the cells is
compared to the random model of chaotic diffusion, introduced in Robnik et al. [J. Phys. A: Math. Gen. 30, L803
(1997)] for the description of transport in the phase spaces of ergodic systems. The model is based on the
assumption of completely uncorrelated cell visits because of the strongly chaotic dynamics of the orbit and the
distribution of recurrence times is exponential. In generic systems the stickiness induces correlations in the cell
visits. The distribution of recurrence times exhibits a separation of timescales because of the dynamical trapping.
We model the recurrence time distributions to cells inside sticky areas as a mixture of exponential distributions
with different decay times. We introduce the variable S, which is the ratio between the standard deviation and
the mean of the recurrence times as a measure of stickiness. We use S to globally assess the distributions of
recurrence times. We find that in the bulk of the chaotic sea S = 1, while S > 1 in areas of stickiness. We present
the results in the form of animated grayscale plots of the variable S in the largest chaotic component for the three
example systems, included as supplemental material to this paper.
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I. INTRODUCTION

In generic Hamiltonian systems the phase space is divided
into several invariant components, with regular motion on
some and chaotic motion on others [1]. These kinds of sys-
tems are usually called mixed type or systems with divided
phase space. The exact border between the chaotic sea(s) and
the regular components is hard to determine because of the
typically infinite hierarchy of islands of stability embedded
in the chaotic sea. The chaotic sea constitutes what is known
as a “fat fractal” [2]. In systems with dimension two or
lower invariant tori strictly separate the regular and chaotic
components. In higher dimensions an invariant torus cannot
strictly separate the phase space, making the analysis even
more complicated. Even in the two-dimensional (2D) case
very few systems where the border between the regular an
chaotic parts can be exactly determined are known. Examples
are the mushroom billiards introduced by Bunimovich [3] and
the peiecewise linear symplectic maps [4–7]. However, these
examples have the drawback of having only a small number of
specially constructed islands of stability, in contrast to typical
Hamiltonian systems, where an infinite island-around-island
structure is usually present. Recently, a way of approximat-
ing a generic system with divided phase was proposed [8]
in order to facilitate a more rigorous analysis. The generic
system is approximated by a sequence of systems with a finite
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number of islands that are subislands of the initial system. The
approach was demonstrated for a class of two-dimensional
billiards. The intricacies of transport in generic Hamiltonian
systems remain a long-standing open problem.

In systems with divided phase space, transport in the
chaotic component is strongly influenced by the various struc-
tures embedded in it. A recent review of the theory of transport
is given in Ref. [9]. These systems commonly exhibit the phe-
nomenon known as stickiness [10,11]. A good introduction to
the topic of stickiness is provided by Refs. [12] and [13]. It
is common for chaotic orbits to stick to islands of stability
for extended periods of time. This is due to the presence
of cantori, which are invariant cantor sets surrounding the
islands of stability that may remain after invariant curves are
broken by perturbation [14–16]. A chaotic orbit with an initial
condition near the last invariant curve of an island of stability
may become trapped in the region bounded by the cantorus
for an arbitrarily long time before finally exiting through
one of the holes in the cantorus into the larger chaotic sea
(see Refs. [12,17] for a detailed description). This produces
long periods of intermittent quasiregular motion in the chaotic
orbit and results in only weakly chaotic dynamics in the
chaotic component in the sense of slow (power-law) decay
of correlations [18] and power-law tails in recurrence time
distributions. The finite time dynamics of such systems thus
influences the long-time transport properties.

The prevalence and universality of algebraic decays in
recurrence time distributions has been a matter of intense
investigation over many years [7,19–29]. Most theoretical
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results are based on the Markov tree model [21,22,26–28],
which predicts a power-law asymptotic decay of the recur-
rence time distribution in generic Hamiltonian systems, taking
into account the hierarchical structure of the phase space.
Various numerical and theoretical studies report different val-
ues for the decay exponent ranging from 1 to 3 (a collection
of the results is given in Ref. [27]). A possible explanation
is that the transition to the asymptotic regime may take an
arbitrarily long time and is thus very hard to observe in
numerical experiments. The existence of power-law decays is
also very hard to prove numerically [30] as data over many
orders of magnitude is needed and fluctuations often obscured
by fluctuations. One must also stress, that a divided phase
space is not a prerequisite for stickiness and slow decay of
correlations. Stickiness may also be produced by zero measure
invariant sets like families of marginally unstable periodic
orbits (MUPO) that are present also in ergodic systems (see
Ref. [13] for a discussion). A famous example is the stadium
billiard [31] where two sticky sets of MUPO are present (the
so-called bouncing ball and boundary glancing orbits) that
produce power-law decay of correlations [32].

Stickiness may be characterized in terms of various ob-
servables. Some examples include escape times from a given
region in the phase space [8,12], finite time Lyapunov ex-
ponents [33], recurrence plots [34], recurrence time statistics
[7,29,35], and rotation number [36]. In a recent paper [37]
we analyzed the structure of the chaotic components of a
single-parameter family of billiards introduced in Ref. [38].
The phase space was divided into a grid of cells and dynamics
of the cell filling analyzed in terms of the so-called random
model of diffusion in chaotic components [39–41]. Stickiness
around islands of stability caused a slowing of the cell filling
compared to the expectation from the random model. The
statistics of cell recurrence times was studied and the standard
deviation of the recurrence time used to identify sticky areas
in the chaotic component. In this paper we use this approach
to analyze the stickiness in the largest chaotic component of
several examples of generic Hamiltonian systems. The three
systems considered in this paper are the Chirikov standard
map [42], the above-mentioned family of billiards, and the
family of lemon billiards [43].

The paper is organized as follows. In Sec. II we present the
method of analyzing the stickiness in the chaotic component
in terms of recurrence times on a grid of cells dividing the
phase space. We introduce the random model of diffusion
in chaotic components and discuss its implications on the
statistics of recurrence times. We discuss the relationships
between recurrence times escape times and transit times.
We introduce the hyperexponential distribution to model the
distributions of recurrence times in sticky areas. We introduce
the variable S that is the ratio between the standard deviations
and the mean of the recurrence times as a means of identifying
stickiness. In Sec. III we apply the method to the standard
map and calculate the size of the largest chaotic component
and analyze the stickiness of the various embedded structures
for a large range of parameter values. In Sec. IV we do the
same for two families of billiard systems, the Robnik billiards
and the lemon billiards. In Sec. V we discuss the results and
draw our conclusions. The supplemental material of this paper
contains animations of the phase spaces of the studied systems

[55]. The animations show in terms of the variable S how
the structure and stickiness of the largest chaotic component
changes as a function of the parameter.

II. THE RANDOM MODEL AND CELL
RECURRENCE TIMES

In this paper we use the moments of the distribution of
recurrence times to identify sticky areas in the chaotic com-
ponent, following the approach proposed in our recent paper
[37]. The approach is based on the random model of diffusion
in chaotic components, first introduced in Ref. [39] as a
model of transport in ergodic chaotic systems and extended
in Refs. [40,41] for systems with divided phase space and
systems with several weakly coupled ergodic subcomponents.
The main idea of our approach is to use a single chaotic orbit
to generate the recurrence time data. The benefit is that no
prior knowledge of the structure of the phase space is needed,
only a single initial condition for the chaotic orbit. The idea
of mapping the chaotic component by using a single chaotic
orbit was used already by Umberger and Farmer [2]. The
procedure is as follows. Let M be the phase space (surface
of section), f : M → M the mapping and μ the invariant
measure of our discrete dynamical system and μ(M ) = 1. We
divide M into a grid of L × L rectangular cells. We select a
single initial condition in the chaotic component and iterate
the orbit T times. At each iteration the orbit visits one of
the cells. We will refer to cells that are visited by the orbit
at least once as filled cells and those that are never visited
as empty cells. Eventually, the chaotic orbit will explore all
of the available phase space and the filled cells will cover
the chaotic component C. The empty cells belong to other
invariant components.

The random model assumes that in strongly chaotic sys-
tems the cell visits are completely uncorrelated, independent
from previous cell visits, they constitute a Poisson process.
With this assumption the proportion of filled cells χ at time T
(number of iterations) follows the exponential law

χ (T ) = χc

[
1 − exp

(
− T

Nc

)]
, (1)

where χc = μ(C) is the measure of the chaotic component
and Nc = χcL2 is the number of cells available to the chaotic
orbit. This exponential law was first derived only for ergodic
systems where χc = 1 and has been shown to excellently
describe real data (see Ref. [39] for details). In systems with
divided phase space the basic assumption of uncorrelated
cell visits does not hold in general. If the system exhibits
stickiness, then the cell visits within the sticky areas become
correlated. As we shall see in the numerical examples the cell
filling is slowed by stickiness. If there are no sticky areas, then
the cell filling is well described by Eq. (1) even in systems
with divided phase space.

To quantify the effects of stickiness we measure the recur-
rence times in each of the cells visited by the chaotic orbit. Let
A ⊂ M for instance one of the cells. The first recurrence time
to A for a point a ∈ A is defined as the number of iterations an
orbit needs to return to the same cell for the first time,

τA = min
t>0

{t : f t (a) ∈ A}. (2)
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We are interested in the probability distributions of recurrence
times

P( j) = μ({a ∈ A : τA(a) = j})

μ(A)
(3)

and its moments to the cells dividing the phase space. The
idea of using the mean recurrence time to probe the size of the
accessible area was first given by Meiss in Ref. [44] together
with several results concerning the relationships among the
transit, exit, and recurrence times. In ergodic components the
mean recurrence time is given by the Kac lemma [45] which
states

〈τA〉A = μ(Aacc)

μ(A)
, (4)

where the angled brackets denote the phase space average over
A and Aacc ⊂ M is the subset of the phase space accessible to
orbits starting from A. Taking one of the cells in the chaotic
component as A, its accessible set is the chaotic component
and the mean recurrence time to the cell is equal to Nc =
χcL2. In numerical experiments the measured mean recur-
rence times are distributed normally around the theoretical
mean because of finite sample size effects (see Ref. [37]
for details). Additionally, if we assume the premise of the
random model that the cell visits are completely uncorrelated
(a Poisson process), the probability that a cell is visited after
any number of iterations is equal, resulting in an exponential
probability density function of recurrence times

P(τ ) = 1

Nc
exp

(
− τ

Nc

)
, (5)

to each individual cell. This is the result we expect in sys-
tems with strong mixing properties [46]. A common way
of describing the recurrence time distributions is also in
terms of the survival function or complementary cumulative
distribution, i.e., the probability that the recurrence time is
greater than t , W (t ) = ∑

τ>t P(τ ) referred to as the Poincaré
recurrence time distribution by some authors [20,47]. In the
Poissonian case

W (t ) = exp

(
− t

Nc

)
. (6)

However, the assumption of uncorrelated cell visits does not
hold for areas of stickiness. If the cell is located inside an
area of stickiness, the orbit is likely to visit the same cell
again before escaping into the grater chaotic sea because of
the dynamical trapping. As a consequence the recurrences
when the orbit leaves the sticky area may happen on a vastly
different timescale then when it stays inside for the entire
period of recurrence. The strength of the trapping inside the
sticky area may be quantified by the escape time. Let us again
consider a subset A of the phase space. The exit set of A is the
set of all points that exit A after one iteration E = A \ f −1(A).
Similarly, the entry set is the set of all points that enter A in
one iteration I = A \ f (A). The union of the exit and entry
sets is called a turnstile. The escape time is the time needed
for an orbit starting in a ∈ A to leave

t esc
A = min

t>0
{t : f t (a) ∈ M \ A}. (7)

Analogously, the entry time is the time needed to enter the set
from outside

t ent
A = min

t>0
{t : f −t (a) ∈ M \ A}. (8)

Orbits starting in the exit set a ∈ E will escape after one
iteration t esc

E = 1 and t ent
I = 1. Similarly, orbits starting within

A but not in E will recur to A after one iteration meaning
the recurrence time is τA\E = 1. The time to transit an area is
t trans
A = t ent

A + t esc
A − 1. The recurrence time to A is essentially

the transit time of the accessible area Aacc. The above relations
as well as many other useful results are derived in Refs. [9,44].
Let us now consider the recurrence times to a cell embedded
inside a sticky area. The orbit starts from inside the cell and
must first escape through the exit set of the cell. Then the
orbit is trapped inside the sticky area for the duration of
the typical escape time. The orbit may visit the cell before
escaping. The rate at which this happens on average depends
on the measure of the sticky area and the measure of the entry
set of the cell. The orbit may also escape the sticky region
before returning to the cell. The escape times from sticky areas
are again related to the measures of the sticky area and its
exit set. The flux trough the bordering cantori may in some
cases be estimated analytically using transport theory [9,15].
The orbit then spends a typical transition time in the larger
chaotic sea. Depending on the structure of the phase space
the orbit may also visit other sticky areas each with its own
typical entry and escape times. After transitioning back to the
original sticky area the orbit may again return to the cell.
The typical timescales for the different possible transitions
may vary greatly. We may thus expect to see several typical
timescales in the recurrence time distributions to the cells
inside the sticky regions.

Probing the distribution of recurrence times can only be
feasibly done in a few selected cells. Our previous numerical
results [37] as well as those presented in this paper show
that the distributions of recurrence times do indeed follow the
exponential law (6) in the bulk of the chaotic sea, far away
from any islands. On the other hand the distributions in cells
located in the sticky areas exhibit a short-time peak followed
by an exponential tail. Similar results have been found by
Altmann et al. [35] in one-dimensional chaotic maps. We
propose to model the separation of timescales introduced by
the trapping inside sticky regions with a mixture of expo-
nential distributions with n different timescales (known also
as the hyperexponential distribution). We model the survival
function as

W (t ) =
n∑

i=1

pi exp

(
−λit

Nc

)
, (9)

where pi are the mixture coefficients and
∑n

i=1 pi = 1 and
λi are dimensionless parameters characterizing the relevant
timescales in terms of the mean recurrence time Nc. The mean
m and variance σ 2 of the distribution (9) are given by

m = Nc

n∑
i=1

pi

λi
, (10)

σ 2 = Nc
2

n∑
i=1

2

λi
2 pi − m2. (11)
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For a global understanding of the distributions of recur-
rence times their moments can be calculated for all cells
iteratively with each orbit visit. In cells where the distribution
of recurrence times is exponential (6), the standard deviation
is equal to its mean σ = Nc. Due to the Kac lemma the
mean recurrence time is m = Nc also in sticky cells, giving
the relation

∑n
i=1

pi

λi
= 1 for the parameters of distribution

(9). If the number of exponential components is n > 1, then
the standard deviation is increased σ > Nc [48]. The variable
S = σ/Nc (the coefficient of variation) is thus very useful
for identifying sticky cells. In areas of the chaotic compo-
nent with strong chaos and no stickiness S = 1, indicating
an exponential distribution of recurrence times, while S > 1
indicates stickiness. The larger the value of S the stronger the
stickiness. However, a comment must be made in regard to the
convergence of S at infinite times. In our model we only take
into account exponentially decaying distributions. Other types
of distributions may also be applicable. Of particular interest
are recurrence time distributions with algebraic decays. The
variable S would diverge if the distribution of recurrence times
exhibits sufficiently strong power-law tails. If asymptotically
the distribution decays as P(τ ) ∼ τ−γ , then the second mo-
ment diverges if γ < 3. In the numerical case this would mean
that the value of S would keep increasing with the number of
orbit iterations. This may limit the applicability of the variable
S in the infinite time limit, but would still provide valuable
information about the stickiness for finite times. We note that
when comparing results for the exponents with other papers
one must take care as some authors use P(τ ) and others W (t )
as the observed distribution.

III. RESULTS FOR THE STANDARD MAP

The Chirikov standard map [42] is one of the most well-
studied 2D area-preserving mappings and is applicable to
many areas of physics (for a review see Ref. [49]). The
mapping is given by

p′ = p + k sin(x), x′ = x + p′, (12)

where we consider the variables on a torus (x, p) ∈ [0, 2π ] ×
[0, 2π ], taking both variables mod 2π and the prime symbol
denoting the variables after one map iteration. The parameter
k controls the degree of chaos in the system. In Fig. 1 we
show how the overall size χc of the largest chaotic compo-
nent changes with the parameter value. This is calculated by
counting the number of filled cells after T = 1010 mappings.
The chaotic component is a “fat fractal” [2] making an ac-
curate estimate for its area difficult. In the infinite time limit
the filled cells cover the chaotic sea. Naturally, the cells on the
border of the chaotic sea must partially cover also the other
invariant components. Taking all of the area of the filled cells
as belonging to the chaotic component thus overestimates
its true area. In the worst case the border cells barely touch
the chaotic component and in reality barely contribute to the
real area of the chaotic sea and thus counting them as filled
overestimates the true area of the chaotic component. In the
numerical data we define a border cell as one that has at least
one empty neighbor. By this definition all features that are
smaller than one cell, like for instance tiny islands of stability,
are missed. The maximum error for the (lower bound of the

FIG. 1. The relative size of the largest chaotic component χc in
the standard map as a function of k. The grid size is L = 1000 and
the orbit was iterated T = 1010 times. The gray area shows the error
estimated from the number of cells bordering regular components
and is hardly visible. See the animation in the supplemental material
for the corresponding S plots [55].

area) is estimated by taking the border cells as empty. The
area changes relatively smoothly with the parameter value but
not monotonically, with many oscillations when the various
islands are destroyed.

Below the critical value k < kc invariant curves limit trans-
port in the p direction and the phase space features several
separate chaotic components of significant size. At the critical
value kc ≈ 0.9716 [50,51] the chaotic components merge into
a single one where the variable p can take all values. At
this value the so-called golden invariant circles are broken.
However, for k � kc cantori that remain after the last invariant
curve is destroyed may severely impede transport from one
part of the chaotic component to the other. This may very
clearly be seen in the cell filling curves χ (T ) using the
procedure described in Sec. II. In Fig. 2 we show the cell
filling for three values of k. The cell filling closely follows
the random model prediction at k = 10 where the phase space
is practically entirely filled by one chaotic component and no
islands are visible. In the other cases the cell filling is slowed
and distinct steplike features appear. The steps signify that the
orbit is confined in some area of phase space for some time
before eventually finding its way through one of the holes in
the cantorus. The increase in the number of visited cells is
therefore halted for the duration of the trapping. The size of
the steps gives an indication of the relative sizes of the areas
of phase space separated by the cantori. Similar large steps in
the cell filling at k � kc were found also by Meiss in Ref. [52]
because of the trapping of the orbits by the golden cantorus.

The areas of stickiness may be found by examining the
cell recurrence times in the chaotic component. In Fig. 3 we
show a color plot of S = σ/Nc on a grid of 1000 × 1000 cells
for the largest chaotic component of the standard mapping
at k = 1.0, right above the critical value. The values of σ

and Nc are determined numerically at T = 1010 mappings for
each visited cell. Similar results are obtained if the value for
the mean is calculated from the numerically determined χc
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FIG. 2. The proportion of filled cells (normalized by the propor-
tion of chaotic cells) with the number of standard map iterations
(normalized by the number of chaotic cells). The colored lines show
the cell filling curves for different values of the parameter k. Each
curve shows the cell filling for a a single chaotic orbit. The dashed
black curve shows the random model prediction. L = 1000.

using the formula Nc = χcL2 instead. The white areas belong
to other invariant components, mostly islands of stability.
Several large distinct areas of uniform values of S are visible.
They stratify the phase space in the p direction. In the largest
one (dark blue) S = 1.5, followed by S = 1.6 (light blue),
a thin layer with S = 2.4 and S = 3.8 in the second largest
(green). Areas of stickiness may also be seen around several of

FIG. 3. The decomposition of the phase space of the standard
map at k = 1 into subcomponents using the variable S. Due to
symmetry only half of the phase space is shown. The color changes
at selected values of S are indicated on the color bar. Components
not belonging to the largest chaotic sea are shown in white. Cantori
impede transport between the different subcomponents producing
different values of S in each. S is roughly uniform in each subcompo-
nent. The largest values of S (red) indicating the strongest stickiness
may be seen around many of the islands of stability.

the islands of stability with S > 5 (red) usually increasing in
several stages. Each change in color signifies a strong barrier
(cantorus with small holes) that is present between the two
adjacent areas. By examining the phase portrait for k right
below the critical value kc ≈ 0.9716 and comparing it to the
S plot at k = 1.0 we see that the border between the green
and yellow areas is very near the last spanning invariant curve
(the golden invariant circle) before its destruction (not shown).
The cantorus left in its place at k = 1.0 causes the trapping
of the orbit in one area or the other. The value of S may be
used to quantify the relative strength of the stickiness when
comparing the different sticky areas.

In Fig. 4 we show grayscale plots of S = σ/Nc on a grid
of 1000 × 1000 cells. In the following we shall refer to this
type of plot as an S plot. In Fig. 4(a) we show again the plot
for the largest chaotic component of the standard mapping
for k = 1.0. In Fig. 4(b) the S plot at k = 1.1 is shown.
Comparing the two we see that the phase space at k = 1.1
is no longer stratified in the p direction. The holes in the
cantori have grown large enough as to no longer impede
the transport and most of the chaotic component is covered
by cells with S = 1, indicating a nearly perfect exponential
distribution of recurrence times. The largest sticky area, with
S = 5 in this case is formed around the large island around the
stable stationary point x = π , p = 0. This is responsible for
the small step in the cell filling for k = 1.1 as seen in Fig. 2.
Thin sticky areas may also be seen around many of the small
islands.

The survival functions of recurrence times in three selected
cells are presented in the lower panels of Fig. 4. The positions
of the cells in the phase space are shown as labeled (colored
in online version) dots in Figs. 4(a) and 4(b). In Fig. 4(c) we
show the survival function at k = 1 in the three distinct areas
with different values of S described above. The first cell (blue)
is located in the large subcomponent with S = 1.5. The second
in the thin layer with S = 2.4. The third cell (red) is located in
the upper subcomponent S = 3.8. The three survival functions
are shown also in the log-log plot in Fig. 4(d). The survival
functions can effectively be modeled using the hyperexpo-
nential distribution (9). The fitting procedure is done using
a version of Prony’s method [53] and goes as follows. At
large enough values of t only the exponential with the slowest
decay rate significantly contributes to the survival function.
We select a cutoff point at some large enough value t1 and
consider only the tail of the survival function. We fit the tail
with a single exponential function f1(t ) = p1 exp (− λ1t

Nc
). We

then subtract f1 from the data to eliminate this contribution.
We repeat the process until the desired number of timescales
is reached. We used up to four exponential functions to fit
the data. The parameters are given in Table I. Using the
distribution parameters in formulas (10) and (11) we obtain
results consistent with the values of S taken from the S plots.
In Table I and the the log-log plots on Fig. 4(d) we may clearly
see that the timescales of recurrences are significantly sepa-
rated in the sticky cells. The short-time recurrences must be
associated with orbits that do not leave the sticky area before
revisiting the cell. The other timescales are probably related
with the orbit sticking to other substructures and transitions
between them through the chaotic sea. To be able to determine
the parameters analytically a thorough understanding of the
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FIG. 4. The S plots of the largest chaotic component in the standard map at T = 1010, L = 1000 for (a) k = 1 and (b) k = 1.1. Due to
symmetry only half of the phase space is shown (x, p) ∈ [0, 2π ] × [0, π ]. The color bar shows the corresponding value of S. Darker areas
indicate stickiness. White areas belong to separate invariant components. The survival functions of recurrence times for three cells are shown
the lower panels for k = 1 in the log-lin plot (c) and log-log plot (d) and for k = 1.1 in the log-lin plot (e). The recurrence time is given in units
of the mean. The black dashed curves show the fitted hyperexponential distributions (9). The positions of the cells are shown as a dot of the
corresponding color (online version) and number. The cell coordinates are 1: (0.1,0.1), 2: (0.31,1.94), and 3: (0.09,0.2.45). The distributions in
the k = 1.1 case are all exponential and overlap with a decay rate of 1/Nc. The distribution data are generated from more than 105 recurrences
to each cell at T = 1011, L = 1000.

structure of the sticky sets and the associated turnstiles would
be needed and is in general very difficult. At k = 1.1 the
survival functions in all three cells are exponential [Fig. 4(e)]
with decay rate 1/Nc.

The numerical stability of the value of S in the three cells is
analyzed in Fig. 5. In Fig. 5(a) we show the S plot at k = 1.0,
L = 2000, and T = 1010. Comparing this with the plot at
L = 1000 in Fig. 4(a) we see the results are qualitatively the
same but the values of S are lower in sticky cells than they
were at L = 1000. Cells with greater stickiness still exhibit
higher values of S. In nonsticky cells S = 1 regardless of the
grid size. In Figs. 5(b) and 5(c) we plot the value of S as a
function of the number of iterations for two orbits one with the
initial condition (x, p) = (0, 1, 0.1) and the other (0.11,0.11).
We compare the results for the two orbits at different grid

TABLE I. Table of parameter values for the hyperexponetial
distributions fitted to the survival functions for L = 1000 presented
in Figs. 4(c) and 4(d) and Fig. 6(b).

Cell 1

λi 0.380 1.55 53.0 n/a
pi 0.18 0.80 0.02 0

Cell 2
λi 0.326 2.01 105 1210
pi 0.29 0.04 0.59 0.10

Cell 3
λi 0.112 3.69 10.2 142
pi 0.09 0.46 0.40 0.036

sizes. Figure 5(b) shows the results at L = 1000 and Fig. 5(c)
at L = 2000. After a transient regime the value of S stabilizes
and both orbits give similar results. The transient is more

FIG. 5. (a) The S plot of the largest chaotic component in the
standard map at k = 1 at L = 2000 and T = 1010. Panels (b) and
(c) show S as a function of T in three cells. The positions of the
cells are indicated in panel (a) and are the same as in Fig. 4. (b) L =
1000 and (c) L = 2000, T = 1010. The circles show the results for
the orbit starting at (0.1,0.1) and the crosses at (0.11,0.11). The same
two orbits are shown in both panels.
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(a) (b)

(c) (d)

FIG. 6. Survival functions for three cells at coordinates 1 (blue):
(0.1,0.1), 2 (green): (0.31,1.94), and 3 (red): (0.09,0.2.45) for (a) L =
500, (b) L = 1000, and (c) L = 2000. The black dashed curves show
the fitted hyperexponential distributions (9). (d) S as a function of
grid size in the three cells. Blue circles show cell 1, green crosses
cell 2, and red triangles cell 3.

pronounced in cell 3 and the fluctuations are larger as the
orbits need to cross the strong barriers of the golden cantori
to reach this region. The distributions of recurrence times are
therefore quite stable after the transient regime.

Because of the fractal nature of the chaotic sea, decreasing
the cell size at any scale resolves more of the underlying
structure of the phase space. Typically, new islands will appear
with additional sticky substructures. In Fig. 6 we show the sur-
vival functions in the three cells at different grid sizes (a) L =
500, (b) L = 1000, and (c) L = 2000. The parameters of the
fitted corresponding hyperexponential distributions are given
in Table I for L = 1000, Table II for L = 500, and Table III
for L = 500. The survival functions are not independent of
the grid size. While the general shape can be described using
the hyperexponential distribution the parameters change when
making the cell smaller essentially sampling the distribution

TABLE II. Table of parameter values for the hyperexponetial
distributions fitted to the survival functions for L = 500 presented
in Fig. 6(a).

Cell 1

λi 0.111 1.38 32.7 n/a
pi 0.03 0.92 0.05 0

Cell 2
λi 0.100 11.9 95.8 544
pi 0.10 0.09 0.59 0.22

Cell 3
λi 0.0355 1.94 8.12 162
pi 0.03 0.18 0.71 0.07

TABLE III. Table of parameter values for the hyperexponetial
distributions fitted to the survival functions for L = 2000 presented
in Fig. 6(c).

Cell 1

λi 0.791 2.23 53.1 n/a
pi 0.67 0.32 0.01 0

Cell 2
λi 0.609 1.2 162 1480
pi 0.56 0.09 0.30 0.05

Cell 3
λi 0.349 6.97 89.2 n/a
pi 0.32 0.64 0.35 0

in a subcell of the larger cell. The timescales represented in
the survival functions of the smaller cells are generally of
the same order of magnitude as in the larger cell occasionally
varying up to a factor of 10 (compare the values of λi each cell
at different cell sizes in the tables). The mixing coefficients
may, however, change significantly when the cell size is
changed. Usually one or two of the exponential functions are
dominant with the others contributing only a few percentages
to the mixture. The scaling of S with regard to the grid size
is depicted on Fig. 5(e). The scaling is not algebraic but is
still monotonous and the hierarchy of stickiness is maintained
(regions with larger S at some grid size have larger values of
S at different grid sizes as well).

In Ref. [52] Meiss uses the density of orbit visits to
show how orbits tend to accumulate around sticky objects
for extended periods of time. The paper includes a color plot
similar to the S plots. In our experience using the variable S
instead of the density gives more stable results both in terms
of taking different initial conditions as well as in terms of the
number of iterations. The results when using densities can
also be somewhat asymmetric for long times (the densities
near the sticky islands at positive p are not the same as those
around the equivalent islands at negative p), whereas the S
plots produce very symmetric results (as can be seen in the
animations contained in the supplemental material [55]). The
characteristic times in the standard map, including recurrence
times, have recently been analyzed by Harsoula et al. [54],
where they observed similar distributions of recurrence times
to small boxes. They have found exponential distributions in
the large chaotic component before and after the critical value
of k and distributions with long power-law tails in the small
chaotic components that are separated below the critical value.
The difference in their approach is that they select multiple
initial conditions inside the box, which may contain also
regular initial conditions. In our approach no “contamination”
of the results due to the presence of regular trajectories may
occur.

The supplemental material [55] of this paper includes an
animation of the S plots as the value of the nonlinearity
parameter changes from k = 0.5 to k = 11 in steps of dk =
0.0025. For each parameter value S is computed for each cell
in the 1000 × 1000 grid, with T = 1010 and the results are
compiled into an animation. In the animation we can observe
how the various invariant curves are destroyed, leaving behind
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cantori producing sticky areas around islands of stability. The
stickiness is most pronounced (the value of S is largest) right
after the destruction of the invariant curve as the holes in the
cantorus are very small and, consequently, the flux through
it is small as well. When the chaotic orbit penetrates the
area bounded by the cantorus it is trapped between it and
the next invariant curve that survived the perturbation. As the
nonlinearity parameter is increased the holes in the cantorus
grow larger, the flux increases, until eventually the cantorus
loses its ability to impede transport and the sticky area disap-
pears. In the beginning of the animation (k < kc) we see the
successive breaking of the invariant tori. In fact it is still very
hard to pinpoint the exact point at which the torus breaks as
the orbit may need a very large number of iterations to find its
way through one of the holes of the cantorus. If the number
of numerical iterations is shorter we may sometimes miss
the exact point of the breaking of the torus. The occasional
flickering (a portion of the chaotic component disappears for
a few frames of the animation) of the outer most areas (in
the p direction) of the chaotic component is a consequence
of this effect. We also see an overall increase of S even in
the middle of the chaotic sea at the points where chaotic
components of significant sizes merge with the large chaotic
sea, either when a spanning invariant curve, like the golden
invariant circle or one of the large islands breaks apart. This
is very noticeable at small values of k because the overall
relative size of the chaotic sea is small and comparable with
the sizes of the other chaotic components before the merger.
The times for the transitions between the different weakly
coupled areas may be very large. At k = 0.9725 the time
an orbit needs for the transition into the upper part of the
phase space may be larger than 1010 iterations. In Ref. [16]
the authors give formula for the average transit time trough the
golden cantorus T ∼ 25(k − kc)−3.01, which gives an estimate
of T = 3.7 × 1010 at k = 0.9725. The same scaling law holds
for any so called boundary circle.

IV. RESULTS FOR BILLIARD SYSTEMS

The other example we provide in this paper are two fami-
lies of dynamical billiards. A billiard is a dynamical system
which consists of a free moving particle confined inside a
closed domain B in Euclidean space referred to as the billiard
table. The billiard tables presented in this paper will all be
two-dimensional B ⊂ R2. The particle moves freely inside
the billiard table in straight lines and is specularly reflected
when hitting the edge of the table, meaning the angle of
reflection is equal to the angle of incidence. The dynamics
can be described as a mapping φ that gives the position on the
boundary and the velocity of the particle at each successive
collision. As the energy of the particle is conserved the speed
can be fixed to v = 1 without loss of generality. The phase
space can be described by the Poincaré-Birkhoff coordinates
(s, p), where s is the arc length of the billiard boundary and
the conjugated momentum is the sine of the reflection angle
of the particle p = sin α. The phase space is thus a cylinder
(s, p) ∈ [0, L] × (−1, 1), where we take s to be periodic
with a period equal to the total length of the billiard boundary
L. The dynamics is given by a sequence of points generated

FIG. 7. The relative size of the largest chaotic component χc in
the Robnik billiards as a function of λ. The grid size is L = 1000 and
the orbit was iterated T = 1010 times. The gray area shows the error
estimated from the number of cells bordering regular components.
See the animation in the supplemental material for the corresponding
S plots [55].

by the area preserving mapping (s, p) → φ(s, p) that maps
one collision to the next [56].

A. The Robnik billiards

We first present the results for the family of billiards in-
troduced by Robnik in Ref. [38] given as a smooth conformal
mapping z → z + λz2 of the unit disk |z| = 1 in the complex
plane. In the real plane the boundary of the billiards may be
given as the following curve in polar coordinates

r(ϕ) = 1 + 2λ cos (ϕ), (13)

where ϕ ∈ [0, 2π ] is the polar angle and λ ∈ [0, 0.5] is the
deformation parameter. We choose the point ϕ = 0 as the
origin for the arc-length coordinate s. The family of billiards
has been well studied both in the classical and quantum do-
main [37,38,57,58]. At λ = 0 the boundary is a circle giving
an integrable billiard. The other extreme case λ = 0.5 is the
cardioid billiard which was proven to be an ergodic K-system
by Markarian [59]. In between the phase space is generally
divided into chaotic components and regular components.
Up to λ = 0.25 regular spanning invariant curves, known
as Lazutkin tori exist because of the convex shape and the
smoothness of the billiard [60]. Small islands may remain up
until λ = 0.5 but take up only a tiny fraction of the phase
space. In Fig. 7 we show how the relative size of the largest
chaotic component changes with the value of λ. The curve is
qualitatively similar to the one for the standard map but with
less pronounced oscillations. The error has been estimated
in the same way as with the standard map described in the
previous section.

The supplemental material [55] of this paper includes an
animation of the S plots of the largest chaotic component
starting at λ = 0.1 up to λ = 0.33 in steps of dλ = 0.0025
on a grid of 1000 × 1000 cells taking T = 1010 iterations. In
the animation we see the successive breaking of the invariant
tori that separate the largest chaotic component (forming
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FIG. 8. The proportion of filled cells (normalized by the propor-
tion of chaotic cells) with the number Robnik billiard map iterations
(normalized by the number of chaotic cells). The colored lines show
the cell filling curves for different values of the parameter λ. Each
curve shows the cell filling for a a single chaotic orbit. The dashed
black curve shows the random model prediction. L = 1000.

around the unstable period-2 orbit) and the smaller chaotic
components around the higher-order unstable periodic orbits,
following the typical KAM-like scenario. Again, as in the
standard map example, we see multiple cantori affecting the
transport in the p direction with S increasing in several layers
toward the edge of the chaotic component. We may also find
cases where stickiness around the islands is dominant.

In Fig. 8 the cell filling graphs for two λ are shown together
with the random model prediction. At λ = 0.19 the numerical
curve coincides with the model while in the λ = 0.153 case
the numerical cell filling is slower. The steps in the curve
are very shallow indicating the trapping areas are relatively
small compared to the whole extent of the chaotic component.
The trapping times are also very long. The final extent of the
chaotic component is filled only after T ≈ 400 Nc. The S plots
corresponding to the two parameter values are portrayed in
Fig. 9. In Fig. 9(a) at λ = 0.153 we see strongly sticky areas
around several KAM islands as well as near the Lazutkin tori.
In Fig. 9(b) at λ = 0.19 we still see some regular islands of

FIG. 10. The S plot of the chaotic component in the vicinity of
the islands of stability around the stable period-3 orbit in the Robnik
billiard at (a) λ = 0.152, (b) λ = 0.153, (c) λ = 0.154, (c) λ =
0.155. The color bar indicates the corresponding values of S.

significant size but there are no noticeable strongly sticky
areas (there might be a very thin slightly sticky area around
the largest regular islands). The recurrence time distributions
are exponential virtually everywhere in the chaotic component
and the motion is uncorrelated. The basic assumption in
the random model is thus largely satisfied which explains
agreement of the numerical cell filling with the model.

In Fig. 10 we show an example of an island, which
surrounds the stable period-3 orbit, breaking because of the
perturbation. We show the S plot of the same area (s/L, p) ∈
[0.4, 0.6] × [0.43, 0628] [half of the island can be seen also
in Fig. 9(a)] at increasing values of the parameter. In Fig. 9(a)
λ = 0.152 the island is still intact and surrounded by a thin
sticky layer and the typical structure of ever smaller islands
around islands of higher order resonances. In Fig. 9(b) λ =
0.153 the island has broken into a five island structure. The
area between the islands is filled by the chaotic component
and is very sticky because of the cantorus left behind the
recently destroyed invariant curve. In Fig. 9(c) λ = 0.154
the area between the islands is already far less sticky as the

FIG. 9. The S plots of the largest chaotic component in the Robnik billiards at (a) λ = 0.153 and (b) λ = 0.19. Due to symmetry only
a quarter of the phase space is shown (s, p) ∈ [0, L/2] × [0, 1]. The color bar shows the corresponding value of S. Darker areas indicate
stickiness. White areas belong to separate invariant components.
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holes in the cantorus have grown larger. We see thin layers of
greater stickiness around the four flanking islands. In Fig. 9(d)
λ = 0.155 the stickiness is almost gone, with only traces
remaining. In all four images we can observe tiny islands
of stability around the main islands. Some of the islands are
smaller than the resolution of the cell grid. If the cell is not
entirely filled by the chaotic component, then the probability
of hitting the cell is smaller. This changes the distribution
of recurrence times to the cell and as a consequence S. The
S plot is thus also a good way of detecting tiny islands of
stability.

B. The lemon billiards

Finally, we present the results in the family of billiards
known as the lemon billiards introduced by Heller and Tomso-
vic in Ref. [43] and further studied together with some gen-
eralizations in the classical and quantum domain by many
authors [61–65]. The lemon billiard tables are formed by
the intersection of two circles of equal radius (we set R = 1
without loss of generality) with the distance between their
centers 2B being less than their diameters B ∈ (0, 1). The
billiard boundary in the real plane may be given by the
following implicit equations:

(x + B)2 + y2 = 1, x > 0,

(x − B)2 + y2 = 1, x < 0. (14)

We choose the point (x, y) = (0, −√
1 − B2) as the origin for

the arc-length coordinate s. In contrast to the Robnik billiards
the boundary of the lemon billiards is never smooth as a kink
is formed where the two circular arcs meet. Because of this
there are no Lazutkin tori. The period-2 orbit connecting the
points at the middle of the two circular arcs, (1 − B, 0) and
(−1 + B, 0), is stable for all values of B with the exception
of B = 0.5 where it is only marginally stable. In this case this
orbit is part of a whole one-dimensional family of MUPO.
It is easy to see that at B = 0.5 any orbit starting from the
middle of the circle will hit the other circle perpendicularly
and retrace its path, because the centers of one circle exactly
overlaps the arc of the other. The phase space of the lemon
billiards is thus of the mixed type for all values of B with the
possible exception of B = 0.5, where it might be ergodic. Our
numerical results were not able to verify this as a tiny island,
that the chaotic orbit was unable to penetrate, remained even
for 1011 iterations. In Fig. 11 we show how the area of the
largest chaotic component χc changes with the value of B.
The curve bears no resemblance with the previous examples
exhibiting extremely non monotonic behavior. Because of the
small overall size and the large proportion of cells bordering
regular components the error of the estimate is very large for
B < 0.1.

An animation of the S plots of the largest chaotic com-
ponent for the lemon billiards is included in the supple-
mental material [55]. The parameter changes from B = 0.01
to B = 0.99975 in steps of dB = 0.00025. The grid size is
1000 × 1000 cells and we take T = 1010 iterations. At B =
0.01 the billiard shape is very close to a circle. Only initial
conditions that hit the boundary close to the kink where the
two circles meet generate chaotic motion. This results in a

FIG. 11. The relative size of the largest chaotic component χc in
the lemon billiards as a function of B. The grid size is L = 1000 and
the orbit was iterated T = 1010 times. The gray area shows the error
estimated from the number of cells bordering regular components.
See the animation in the supplemental material for the corresponding
S plots [55].

very regular weblike structure of the chaotic component and
the embedded KAM islands. The structure can be related to
initial conditions that hit the kink after 1, 2, 3,. . . , iterations.
When B is increased, more and more of the periodic orbits lose
stability (although there is a tendency for them to restabilize)
sometimes leaving behind interesting sticky structures. The
structure of the chaotic components changes radically with the
value of B and many interesting special cases may be found—
we present a selection of them in Fig. 12. In Fig. 12(a) we
see the S plot at B = 0.24025. Only a few islands of stability
may be seen none of which exhibit any stickiness, with S = 1
in all cells belonging to the chaotic sea. At B = 0.31875,

FIG. 12. The S plots of the largest chaotic component in the
lemon billiards at (a) B = 0.24025, (b) B = 0.31875, (c) B = 0.5,
and (d) B = 0.6. Due to symmetry only a quarter of the phase
space is shown (s, p) ∈ [0, L/2] × [0, 1]. The color bar shows the
corresponding value of S. Darker areas indicate stickiness. White
areas belong to separate invariant components.
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FIG. 13. The proportion of filled cells (normalized by the propor-
tion of chaotic cells) with the number lemon billiard map iterations
(normalized by the number of chaotic cells). The colored lines show
the cell filling curves for different values of the parameter B. Each
curve shows the cell filling for a a single chaotic orbit. The dashed
black curve shows the random model prediction. L = 1000.

Fig. 12(b), the major islands of stability around the stable
period-2 orbit are not sticky, while the the island structures
around the stable period-4 orbit are. In Fig. 12(c) we show the
special case B = 0.5 where the sticky family of MUPOs can
be observed. The value of S increases roughly exponentially
in the sticky area as we get closer to the MUPO in the starlike
structure. An exponential increase of stickiness as one gets
closer to the sticky object has been described by Contopoulos
and Harsoula in terms of escape times in Ref. [12]. Similar
starlike structures have been observed by Chen et al. [64] in
ergodic generalizations of the lemon billiards. A tiny island
is still visible in the middle but we expect this to also be
filled if the orbit is iterated for long enough. For B > 0.5 the
period-2 orbit is again stable and an island is formed around
it. In Fig. 12(d) we show the S plot at B = 0.6. Only one
island of stability is visible and it is not sticky. Many other
interesting examples may be found in the animation in the
supplemental material [55]. The examples with finitely many
islands of stability may prove interesting for more rigorous
analytical treatment. In Fig. 13 the corresponding cell filling
graphs are shown. We see that the cell filling is influenced
by the sticky islands B = 0.31875. In the other three cases
the cell filling is close to the random model prediction. We
see that nonsticky islands even of substantial sizes like in the
cases of B = 0.6 and B = 0.24025 do not induce correlation
in the cell visits. The MUPOs in the B = 0.5 case also have
an almost negligible effect even though we see stickiness in
the S plot. This might be because the sticky area is very small
compared to the size of the chaotic sea.

One of the largest sticky areas in this billiard family
may be found at B = 0.78125. The size of sticky area is
approximately 0.2χc. In Fig. 14 we show [Fig. 14(a)] the cell
filling for two different orbits, the first started with an initial
condition outside the sticky area and the second inside the
sticky area, as well as the corresponding S plot [Fig. 14(b)].
The S plot is the same for both initial conditions. Outside the

FIG. 14. The cell filling in the lemon billiard at B = 0.78125.
(a) The proportion of filled cells (normalized by the proportion of
chaotic cells) with the number of iterations for two chaotic orbits,
one starting inside the sticky island (red) and the other outside
(blue). (b) The S plot corresponding to the blue orbit (the other orbit
produces practically the same result). The initial conditions of the
two orbits are shown by two boxes of the same color as the cell filling
curve; L = 1000.

sticky area S = 1.8 which is above the expected S = 1 for the
exponential distribution of recurrence times. This is similar
to the result in the standard map slightly above the critical
value of the nonlinearity parameter. Inside the sticky area the
value of S quickly increases and then plateaus at about S = 12.
The increase is roughly exponential but is hard to determine
exactly as the border of the sticky area is riddled by islands
of stability. The orbit starting from outside the sticky area
(blue) needs a little less than T = 35Nc iterations to penetrate
inside while the orbit starting from the inside (red) needs a
little less than T = 10Nc to escape. The escape time is thus
much shorter than the entry time to the sticky area. The shape
of the steps in the two cell filling curves are reminiscent of
two periods of exponential filling of the type given by Eq. (1).
With some simplification the system could be described with
a two component random model in the manner of Ref. [41].

V. CONCLUSIONS AND DISCUSSION

In this paper we presented a method for analyzing stick-
iness in chaotic components of Hamiltonian systems with
divided phase space. The method is based on the examination
of recurrence times of a long chaotic orbit into small cells
dividing the phase space. The variable, S which is the ratio
between the standard deviation and the mean of recurrence
times, is used to assess the distributions of recurrence times
in the chaotic component. Where S = 1 the distribution is
exponential and the recurrences are effectively random. In
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sticky areas a separation of timescales between recurrences
occurs due to the dynamical trapping and S > 1.

We applied the method to three example systems: the
standard map, the Robnik billiards, and the lemon billiards.
The main conclusions are as follows: The random model of
diffusion in chaotic components describes the filling of the
cells well in systems with divided phase space, even when
the regular components are of significant size if there is no
stickiness. Where sticky objects are present the cell filling
is slowed by the cantori causing the stickiness. In the vast
majority of cases S = 1 in the bulk of the chaotic sea, meaning
the recurrences are completely uncorrelated. The distributions
of recurrence times in these areas are exponential. S rapidly
increases in areas of stickiness in the vicinity of sticky objects.
These can be zero measure objects like sticky marginally
unstable periodic orbits or more extensive object like sticky
islands. The distributions of recurrence times in sticky areas
may effectively be modeled using the hyperexponential dis-
tribution. When particularly strong cantori are present in the
system that separate large areas of the chaotic component the
value of S is slightly increased even in the bulk of the chaotic
sea, for instance right after the destruction of a spanning
invariant torus. The two examples given in the paper where
this is most visible is the standard map at k = 1 and the lemon
billiard at B = 0.78125. The latter example also shows that the
time to escape a sticky region is shorter than the time needed
to enter the sticky region. The S plots provide an excellent
overview and allow us to follow the changes in the structure
of the chaotic sea as we change the parameter. In this way
we may identify the positions of sticky objects as well as the
extent and relative strength of the stickiness. The shape of
the sticky areas bordered by cantori can be seen very clearly.
Furthermore, the even tiny islands of stability that are smaller
than the cells can be traced, as they still affect the recurrence
time distributions. The method may therefore also be useful
in providing numerical evidence of ergodicity. The statistic S
is stable with regards to the initial condition of the chaotic
orbit and the number of iterations after a transient regime.
However, S is not stable with regard to the grid size, which
is a significant drawback. The scaling of S is not algebraic but
still monotonous and the S plots at different grid sizes give
qualitatively identical results.

As mentioned in the Introduction there has been a long-
standing debate about the presence and universality of alge-
braic decay of recurrence time distributions in Hamiltonian
systems with divided phase space. Our method only distin-

guishes an exponential distribution from any other distribu-
tion. This might be a hyperexponential distribution as was
the case in all the examples found in this paper or any other
distribution including those with power-law tails. However,
detecting distributions with algebraic decay exponents γ < 3
is possible with our method, as the standard deviations for
such distributions diverges. If the value of S keeps increasing
with the number of iterations, then this would be a very
clear indication of such an algebraic decay. It would also be
interesting to study the recurrences in specific sticky areas
as a unified domain. The S plots may be used to determine
the borders of the sticky area of interest and then the escape
times or recurrence times to the specified domain can be
studied. One of the interesting open questions is also how to
quantitatively assess the effects of stickiness on the transport
inside the chaotic component, especially in cases where the
phase space is bounded like in billiard systems where the
usual arguments using the decay of correlations [19] have to
be modified [27]. The sticky areas may slow down transport at
finite times considerably, leading to anomalous diffusion [66].
As recently shown for the standard map [67] the transition to
the asymptotic regime may be extremely long.

We used the S plots to identify several interesting cases
in the lemon billiard with apparently finitely many islands
of stability and no stickiness as well as cases with extreme
stickiness. Such special cases might lend themselves to more
rigorous mathematical analysis paving the way to a more
general understanding of the transport in mixed-type systems
in the generic case, which is a long-standing open problem.
The special cases in the lemon billiards may also prove
interesting for analysis in the quantum domain as the spectral
statistics and localization of eigenstates in the semiclassical
limit are closely linked to the transport properties of the
classical system [68]. Research of the effects of stickiness on
the localization of quantum eigenstates is currently underway.
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