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We present a theoretical study of the spatiotemporal antiresonance in a system of two diffusively coupled
chemical reactions, one of which is driven by an external periodic forcing. Although antiresonance is well known
in various physical systems, the phenomenon in coupled chemical reactions has largely been overlooked. Based
on the linearized dynamics around the steady state of the two-component coupled reaction-diffusion systems
we have derived the general analytical expressions for the amplitude-frequency response functions of the driven
and undriven components of the system. Our theoretical analysis is well corroborated by detailed numerical
simulations on coupled Gray-Scott reaction-diffusion systems exhibiting antiresonance dip in the amplitude-
frequency response curve as a result of destructive interference between the coupling and the periodic external
forcing imparting differential stability of the two subsystems. This leads to the emergence of spatiotemporal
patterns in an undriven subsystem, while the driven one settles down to a homogeneously stable steady state.

DOI: 10.1103/PhysRevE.101.052203

I. INTRODUCTION

The phenomenon of antiresonance has been a topic of
interest in physical and engineering sciences over the past
several decades. It is now well established that when any one
of the oscillators is driven by external periodic force in a
system of N number of coupled linear oscillators the response
of the particular oscillator being forced, for certain types
of coupling interaction, displays (N − 1) number of antires-
onance dips in the response amplitude-frequency spectrum
[1–3] along with maximum N number of resonance maxima
alternatively, depending on the values of the parameters [2,4].
Antiresonance has also been observed in nonlinear systems
[4,5] and proved to be useful when the system is expected to
deliver low signal output. Unlike resonance which depends
on all the components of the oscillators in the assembly
and on their coupling, the antiresonance solely depends on
the characteristics of the oscillator being driven and not the
other coupled oscillators [5]. Therefore, this has served as an
important tool for gaining information about the individual os-
cillators by driving them individually in a complex assembly
of systems which cannot easily be separated into their con-
stituent components [6]. Several variants of the phenomenon,
such as parametric antiresonance, stochastic antiresonance,
and coherence antiresonance, have been proposed over the
past few years [4]. Antiresonance has also been observed in
quantum oscillators [7,8], in cavity electrodynamics [9], in
a quintic oscillator [10], and in quantum dot [11] and been
exploited to demonstrate desynchronizing undesired oscilla-
tions [12], driving microelectronic motor [13], dynamic model
updating [14], and vibration control [15]. Further applica-
tions of antiresonance in wave traps in radio receivers [16],
electrical circuits [17], structural analysis [6,18], mechanical
engineering [19], chemotherapeutic protocols [20], etc. are
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reported. Recently, antiresonance has been used to study
excitable biological systems, such as Hodgkin-Huxley neuron
[21], in single-molecule thiophene junctions [22] and cav-
ity antiresonance spectroscopy of dipole coupled subradiant
arrays [23].

The aim of the present paper is a systematic study of
antiresonance in coupled reaction-diffusion systems. The ma-
jor motivation stems from the numerical and experimental
investigations on multilayer coupled systems since they pro-
vide prototypical examples in the biological world, particu-
larly, in neural, developmental, and ecological contexts [24]
under a far from equilibrium condition [25]. The research
on layered structures has become popular since the past
decade [26] in the context of Brusselator model [27], Gierer-
Meinhardt [28,29], three-component reaction-diffusion model
[30], and CDIMA and BZ reactions [24,31,32]. Simulations
using the coupled Oregonator model have revealed twin-
kling eye patterns, Turing spots arranged in a hexagonal
lattice, pinwheels in spots, and traveling waves in labyrinths
[33,34]. Studies on coupled layers have been also extended to
drug delivery studies [35] and networks of reaction-diffusion
systems [36].

Keeping in view of the aforesaid development of the cou-
pled layer dynamics of reaction-diffusion systems, we now
look for antiresonance when one of the systems is externally
driven [37]. To bring the issue into an appropriate perspective
we first note that since antiresonance arises as a result of de-
structive interference between coupling and the driving force,
the interference may in turn induce a difference in stability
of the two constituents of the coupled system. Our objective
here is to understand this interference-induced differential
instability of the spatiotemporal dynamics of the coupled
reaction-diffusion systems. In what follows we consider a
reaction-diffusion system in two layers which are transversely
coupled minimally and the system in one of the layers is
externally driven by a sinusoidal time-varying term. The
external drive may be a controlled light source [34,38] if one
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of the components is photosensitive [32,39] or a source term
for the substrate injection [40]. Our primary focus here is to
tune the frequency of the single external periodic drive to
control the interference between this forcing and coupling.
It has been shown that this destructive interference has a
direct bearing on the dynamical response of the coupled
system in two layers which is manifested in spatiotemporal
antiresonance. This is reflected in the formation of nonsta-
tionary patterns in the undriven layer, while the system in
the driven layer settles down to a homogeneous steady state.
Based on linear stability analysis we have derived the general
expressions for amplitude-frequency response functions for
the driven and undriven components of the system. An explicit
example using the Gray-Scott [41] reaction has been worked
out in detail to demonstrate the antiresonance dip in between
the two resonance maxima in the response curve for the
driven layer. Finally, full-scale numerical simulation on the
coupled dynamics has been performed to verify the theoretical
prediction on spatiotemporal antiresonance.

The layout of the paper is organized as follows. In Sec. II
we have presented a theoretical analysis of spatiotemporal
antiresonance in coupled reaction-diffusion systems on a gen-
eral footing. Using the Gray-Scott reaction-diffusion system
as an example we have shown that the linear analysis predicts
spatiotemporal antiresonance in Sec. III. Detailed numerical
simulations have been performed to demonstrate nonstation-
ary spatial patterns for the undriven layer, while the driven
layer reduces to a homogeneous steady state. The paper is
concluded in Sec. IV.

II. SPATIOTEMPORAL ANTIRESONANCE IN COUPLED
CHEMICAL REACTIONS: THEORETICAL

CONSIDERATIONS

In the first half of this section we show how the linearized
dynamics of the two transversely coupled chemical reaction-
diffusion systems around a homogeneous steady state can
be represented as two coupled physical oscillators in the
presence of an external periodic forcing. Subsequently the
expressions for the amplitude-frequency response functions of
two components are derived.

A. Linear analysis of transversely coupled reaction-diffusion
systems as coupled oscillators

We begin with two identical coupled layers, each with
two components, u(x, y) and v(x, y), of the reaction-diffusion
system in two dimensions (x, y) (denoted by r) as follows:

u̇1(r, t ) = F1(u1, v1) + Du∇2
r u1

+α(u2 − u1) + (2G0) sin(ωt ), (2.1)

v̇1(r, t ) = G1(u1, v1) + Dv∇2
r v1, (2.2)

u̇2(r, t ) = F2(u2, v2) + Du∇2
r u2 + α(u1 − u2), (2.3)

v̇2(r, t ) = G2(u2, v2) + Dv∇2
r v2, (2.4)

where the overdot expressions on the left hand side of the
equations describe the time derivative of the concentration
of the respective components; the functions Fi(ui, vi ) and

Gi(ui, vi ) (where i = 1 denotes the top layer and i = 2 denotes
the bottom layer or the second layer) describe their reaction
kinetics whose functional form depends on the specific chem-
ical reaction under consideration. As we consider the identical
layers the functional forms of F1 and F2 are the same; the same
is true for G1 and G2. The terms having Laplacian operator
(∇2

r = ∂2

∂x + ∂2

∂y ) describe the lateral diffusion of the compo-
nents along x and y directions and the terms involving the cou-
pling constant α, between the two layers, denote the vertical
(along z axis, the interlayer separation is negligibly small) or
transversal diffusion. ui(r, t ) and vi(r, t ) are the field variables
or the chemical concentrations at the spatial coordinate (x, y)
at time t . The external periodic forcing term can be thought of
as an intelligent modulator or a source term which periodically
supplies in and also extracts out the u1 component from the top
layer. Here 2G0 is the amplitude and ω is the frequency of the
external forcing. While u1 and u2 are transversely coupled, v1

and v2 are considered to be diffusively inactive along z axis.
This allows us to confine ourselves to a minimal coupling
scheme for the study of antiresonance. Du and Dv are the
diffusion constants of the components u and v, respectively.
We assumed that weak transverse coupling does not affect the
diffusion coefficients, so that Du(layer 1) = Du(layer 2) and
Dv (layer 1) = Dv(layer 2).

We now denote the uniform steady state (ss) of the
coupled system as (u1s, v1s, u2s, v2s) and apply perturbation
around this state which grows both spatially and temporally
in two dimensions. The perturbations ∂ ũi and ∂ ṽi are given
by

ui(r, t ) = uis + ∂ ũi(t, r), (2.5)

vi(r, t ) = vis + ∂ ṽi(t, r), (2.6)

where ∂ ũ(t, r) = ∫
ũq(t )ei−→q −→r dq and ∂ ṽ(t, r) =∫

ṽq(t )ei−→q −→r dq; |−→q | =
√

q2
x + q2

y . ũq(t ) and ṽq(t ) are the

amplitudes of the perturbation; qx and qy are the wave
numbers along x and y directions, respectively. For brevity,
we omit the q dependence in the subscript of the Fourier
wave amplitudes from now on. The linearized dynamics of
the two-component system then becomes

˙̃u1 = ( f ′
u1

− q2Du)ũ1 + fv1 ṽ1

+α(ũ2 − ũ1) + (2G0) sin(ωt ), (2.7)

˙̃v1 = gu1 ũ1 + (g′
v1

− q2Dv )ṽ1, (2.8)

˙̃u2 = ( f ′
u2

− q2Du)ũ2 + fv2 ṽ2 + α(ũ1 − ũ2), (2.9)

˙̃v2 = gu2 ũ2 + (g′
v2

− q2Dv )ṽ2, (2.10)

where

f ′
ui

= ∂Fi

∂ui

∣∣∣∣
ss

, fvi = ∂Fi

∂vi

∣∣∣∣
ss

, (2.11)

gui = ∂Gi

∂ui

∣∣∣∣
ss

, g′
vi

= ∂Gi

∂vi

∣∣∣∣
ss

. (2.12)
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Abbreviating ( f ′
ui

− q2Du) = fui and (g′
vi

− q2Dv ) = gvi (i = 1
or 2), Eqs. (2.7)–(2.10) become

˙̃u1 = fu1 ũ1 + fv1 ṽ1 + α(ũ2 − ũ1) + (2G0) sin(ωt ), (2.13)

˙̃v1 = gu1 ũ1 + gv1 ṽ1, (2.14)

˙̃u2 = fu2 ũ2 + fv2 ṽ2 + α(ũ1 − ũ2), (2.15)

˙̃v2 = gu2 ũ2 + gv2 ṽ2. (2.16)

Now differentiating both sides of Eq. (2.14) with respect to t
and using the expression for ˙̃u1 in the resulting equation, we
obtain

¨̃v1 − gv1
˙̃v1 − fv1 gu1 ṽ1 = (gu1 ũ1)( fu1 − α)

+ gu1αũ2 + (2G0) sin(ωt ). (2.17)

Elimination of ũ1 and ũ2 from Eq. (2.17) using Eq. (2.14) and
Eq. (2.16), followed by some rearrangement, yields

¨̃v1 − ( fu1 + gv1 − α) ˙̃v1 + ( fu1 gv1 − fv1 gu1 )ṽ1

− α

[
gv1 ṽ1 + gu1

gu2

˙̃v2 − gu1 gv2

gu2

ṽ2

]
= (2G0) sin(ωt ).

(2.18)

Similarly we obtain the equation of ¨̃v2 as follows:

¨̃v2 − ( fu2 + gv2 − α) ˙̃v2 + ( fu2 gv2 − fv2 gu2 )ṽ2

− α

[
gv2 ṽ2 + gu2

gu1

˙̃v1 − gu2 gv1

gu1

ṽ1

]
= 0. (2.19)

Now from the condition of stability of the uniform or homo-
geneous steady state we have the following relations:

( fui + gvi ) < 0, (2.20)

( fui gvi − fvi gui ) > 0. (2.21)

With the following definitions of the constant
coefficients: −( fui + gvi − α) = Ai > 0 (α > 0),
( fui gvi − fvi gui ) = ω2

i > 0 (i = 1 or 2), αgv1 = E1, αgv2 =
E2, α

gu1
gu2

= B1, α
gu2
gu1

= B2, α
gu1 gv2

gu2
= D1, and α

gu2 gv1
gu1

= D2.

we rewrite Eqs. (2.18) and (2.19) as follows:

¨̃v1 + A1 ˙̃v1 + ω2
1 ṽ1 − (B1 ˙̃v2 − D1ṽ2 + E1ṽ1)

= (2G0) sin(ωt ), (2.22)

¨̃v2 + A2 ˙̃v2 + ω2
2 ṽ2 − (B2 ˙̃v1 − D2ṽ1 + E2ṽ2) = 0. (2.23)

Equations (2.22) and (2.23) are the equations of two coupled
linear oscillators, where A1 and A2 are the damping con-
stants of the oscillators characterized by their phase space co-
ordinates (ṽ1, ˙̃v1) and (ṽ2, ˙̃v2), respectively; ω1 and ω2 are the
natural frequencies of the oscillators and B1(B2), D1(D2), and
E1(E2) inside the brackets include the coupling terms between
the two oscillators. The top layer oscillator is subjected to the
external periodic forcing of frequency ω. Thus the linearized
dynamics of the two-component two identical coupled layers
now takes the form of two coupled physical oscillators, which
constitute the conventional setup for studying antiresonance.

B. Spatiotemporal antiresonance:
Expressions for response amplitude

We begin with the following transformations to change the
real variables (ṽ1, ˙̃v1) and (ṽ2, ˙̃v2) into the complex variables
γ1 and γ2 and their conjugates γ ∗

1 and γ ∗
2 , respectively, as

follows:

γ1 = ω1ṽ1 + i ˙̃v1, γ ∗
1 = ω1ṽ1 − i ˙̃v1, (2.24)

γ2 = ω2ṽ2 + i ˙̃v2, γ ∗
2 = ω2ṽ2 − i ˙̃v2. (2.25)

In terms of the complex variables, Eqs. (2.22) and (2.23) can
be expressed as follows:

γ̇1 = − iω1γ1 − A1

2
(γ1 − γ ∗

1 )

+ B1

2
(γ2 − γ ∗

2 ) − iD1

2ω2
(γ2 + γ ∗

2 )

+ iE1

2ω1
(γ1 + γ ∗

1 ) + G0 × 2i sin(ωt ) (2.26)

and

γ̇2 = − iω2γ2 − A2

2
(γ2 − γ ∗

2 ) + B2

2
(γ1 − γ ∗

1 )

− iD2

2ω1
(γ1 + γ ∗

1 ) + iE2

2ω2
(γ2 + γ ∗

2 ). (2.27)

Equations (2.26) and (2.27) are then transformed to a frame
which is rotating at the driving frequency so that γi → γ̄ie−iωt .
This is followed by rotating wave approximation, i.e., we
neglect the fast counter-rotating terms which are proportional
to e2iωt and vanish on averaging over the time scale of our
interest. This yields

˙̄γ1 = (i�1 − A′
1)γ̄1 + (B′

1 − D′
1)γ̄2 −G0, (2.28)

˙̄γ2 = (i�2 − A′
2)γ̄2 + (B′

2 − D′
2)γ̄1, (2.29)

where �1 = (ω − ω1), �2 = (ω − ω2), A′
1 = ( A1

2 − iE1
2ω1

),

A′
2 = ( A2

2 − iE2
2ω2

), B′
1 = B1

2 , B′
2 = B2

2 , D′
1 = iD1

2ω2
, and D′

2 = iD2
2ω1

.

Here �i = (ω − ωi ) refers to detuning between the external
drive and the natural frequency ωi of the ith oscillator. Now,
in absence of damping, driving, or coupling, the solutions to
these equations can be written as

γ̄i(t ) = γ̄i(0)ei�it .

This represents a rotation in the complex γ̄i plane with the
angular frequency �i. The steady state solutions, γ̄is(s), for
Eqs. (2.28) and (2.29) can be found setting ˙̄γ1 = ˙̄γ2 = 0. This
condition leads to the complex response functions for the
oscillators as follows:

γ̄1s = G0(i�2 − A′
2)

[(i�1 − A′
1)(i�2 − A′

2)] − [(B′
1 − D′

1)(B′
2 − D′

2)]
,

(2.30)

γ̄2s = −G0(B′
2 − D′

2)

[(i�1 − A′
1)(i�2 − A′

2)] − [(B′
1 − D′

1)(B′
2 − D′

2)]
.

(2.31)
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Equations (2.30) and (2.31) are the central results of this
section. They essentially reflect the behavior of the response
amplitude of the components of the coupled reaction-diffusion
systems to the frequency of the external sinusoidal drive
acting on one component. Theoretical expressions have been
derived on the basis of linearization around homogeneous
steady states of the system. Two points are now in order.
First, it is expected that on varying the frequency of the drive
one may realize antiresonance dip at a frequency intermediate
between the two resonance maxima of the driven oscillator.
To this end we need to work out a specific model of reaction-
diffusion system. For the present purpose we have chosen the
Gray-Scott reaction [41], which has been the testing ground
for various theoretical schemes in nonlinear chemical dynam-
ics. Second, since antiresonance arises due to a destructive
interference between external drive and the coupling, it would
seem that the stability of the two subsystems differs signif-
icantly. In what follows we carry out a detailed numerical
simulation of the Gray-Scott system to demonstrate that this
differential behavior of stability is remarkably manifested in
spatiotemporal patterns in one of the subsystems, while the
other goes over to a homogeneous stable state.

III. APPLICATION: NUMERICAL SIMULATION

A. Gray-Scott reaction-diffusion system

The Gray-Scott model is a variant of the cubic autocat-
alytic model of glycolysis. Basically it considers the reaction
U + 2V → 3V,V → P in an open flow reactor where U is
continuously supplied and the product P is removed. The
first reaction represents an autocatalytic process in which
two molecules of species V through the interaction with one
molecule of species U produce 3V . The second reaction
represents the decay of V into the product P. For a closed sys-
tem, the irreversibility of the two processes would inevitably
transform all reactants into product. However, by constantly
feeding the reactor with a uniform supply of species U while
removing product and surplus reactants, the far from equilib-
rium condition can be maintained, allowing for a variety of
instabilities and nonlinear dynamic phenomena to unfold. By
using a gel reactor medium, convective currents are prevented.
The motivation behind choosing the Gray-Scott model is
twofold. First, such models are relevant in biological systems,
such as the skin of a developing embryo where the supply of
reactant could be from the bloodstream, or from cells in an
adjacent layer of tissue that continuously generate the needed
chemicals with the rates regulated by enzymes. Furthermore,
the Gray-Scott model is one of the simplest examples of a
stoichiometrically conserved autocatalysis reaction with cubic
nonlinearity, having a few parameters. This model reveals a
variety of spatial-temporal localized patterns such as stable
spots, traveling spots, a mixture of spots and stripes, growing
labyrinths, chaotic dynamics, and a continuous process of spot
birth through replication and spot death through overcrowd-
ing, etc. The second motivation stems from the experimental
relevance of the model, e.g., an autocatalytic ferrocyanide-
iodate-sulphite (FIS) reaction experiment [42] was performed
to exhibit spot self-replication, repeated growth, and annihi-
lation of spots. The chemical reaction kinetics of this FIS

reaction is qualitatively similar to that for a modified Gray-
Scott model.

After proper rescaling and inclusion of diffusion, the ki-
netic equations of the two-component two identical Gray-
Scott layer problem can be written as

∂u1

∂t
= −u1v

2
1 + s1(1 − u1) + Du∇2u1

+α(u2 − u1) + (2G0) sin(ωt ), (3.1a)

∂v1

∂t
= u1v

2
1 − (s1 + k1)v1 + Dv∇2v1, (3.1b)

∂u2

∂t
= −u2v

2
2 + s2(1 − u2) + Du∇2u2 + α(u1 − u2), (3.1c)

∂v2

∂t
= u2v

2
2 − (s2 + k2)v2 + Dv∇2v2, (3.1d)

where ui and vi represent the concentrations of species U and
V , in top (i = 1) and bottom (i = 2) layers. ki is an effective
rate constant for decay of V into P, and si is the supply
rate for the ith layer. The nonlinear terms uiv

2
i correspond to

cubic autocatalytic kinetics as explained earlier for the step
U + 2V → 3V . (s1, k1) and (s2, k2) are the system parameters
used to control the spatiotemporal dynamics. Du and Dv are
the diffusion constants for the two species. α is the coupling
constant.

We choose the homogeneous steady state
(u1s, v1s, u2s, v2s) = (1, 0, 1, 0) for the system, along with
two nonzero different sets of (si, ki ) for two different layers.
For the rest of the treatment the values of the parameters are
set as per Ref. [41] as s1 = 0.036, k1 = 0.064, s2 = 0.052,
k2 = 0.064, Du = 0.00002, Dv = 0.00001, Lx = 2.5, and
Ly = 2.5. The coupling constant and the amplitude of the
drive are fixed at α = 0.002 and G0 = 0.005, respectively.
It is pertinent to note that for the mentioned values of
(s1, k1) and (s2, k2) the spot and stripe patterns are produced,
respectively, in absence of coupling and external force. The
approximate values of wave vectors can be estimated from
the number of nodes of the patterns. For the present purpose
we have set nx = 15 and ny = 12. The choice of parameter set
[41], in conformity with the homogeneous steady state of the
system, assures us that ω2

i and Ai (i = 1, 2) remain positive.

B. Numerical simulation and spatiotemporal antiresonance

Having specified the parameter set for the Gray-Scott
reaction-diffusion system we now return to Eqs. (2.30) and
(2.31) for the analysis of theoretical expressions for response
amplitudes as a function of frequency of the external drive
obtained using linear stability analysis. In Figs. 1(a) and
1(b) we plot the imaginary part of the G0-scaled response
amplitude of the field variable v for the top layer and that
the bottom layer, respectively, as a function of frequency.
It follows from Fig. 1(a) that the response of the top layer
although directly driven is strongly suppressed, almost to zero
at around ω = 0.07 in between the two maxima on either
sides, whereas the bottom layer exhibits a moderate nonzero
response [Fig. 1(b)]. This particular dip in the response curve
corresponds to antiresonance for the driven component. The
antiresonance frequency implies that at this particular fre-
quency the oscillation of the top layer is completely destroyed,
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FIG. 1. Linear analysis of spatiotemporal antiresonance in Gray-Scott reaction-diffusion system. (a) The imaginary part of the G0-scaled
response function for v1 [Eq. (2.30)], where γ̄1s for the top layer is plotted against frequency ω of the periodic drive, and (b) the imaginary part
of the G0-scaled response function for v2 [Eq. (2.31)], where γ̄2s for the bottom layer is plotted against the frequency of the periodic drive for
the set of parameters as mentioned in the text. [Inset in (b) illustrates the relative magnitude of the two response functions.] Units are arbitrary.

whereas the bottom layer continues to oscillate on its own
without any dependence on the first layer.

In what follows in the rest of this section we go be-
yond linearization and look for the essential consequences
of the differential instability in the two layers of the cou-
pled Gray-Scott system using full numerical simulations of
Eqs. (3.1a)–(3.1d) in the presence of the external periodic
drive 2G0 sin(ωt ) on the top layer. The numerical integration
of the partial differential equations was done using the Euler
central difference scheme over (250×250) discrete grid points
in two dimensions for each of the two layers for each com-
ponent in the system for the set of parameters as mentioned
before. The spatial resolution for the space coordinate was
set as �x = �y = 0.01 for each case and depending on the
time scale of the sinusoidal drive the time increment dt was
chosen. For a long time period, say for ω = 10−8, dt was
chosen as 1.0, while for a relatively shorter time period, such
as for ω = 0.2, dt was set as 0.1. In all cases stability and
convergence were checked against the choice of time steps
of integration. Initially all the nodes of the grid were kept
at the steady state: (u1s, v1s, u2s, v2s) = (1, 0, 1, 0). This was
followed by a perturbation of a (20×20) mesh area at the
middle of the grids of both layers and finally by 1% random
noise to all the nodes (250×250) of both layers to break the
square symmetry. Numerical integration was carried out using
periodic boundary conditions, over around 107 time units. The
results are displayed in Figs. 2–5.

As per linear analysis the antiresonance appears at around
ω ≈ 0.07. We therefore begin our numerical simulation of the

coupled Gray-Scott system over a wide range of frequencies
centering at 0.07 from ω = 10−9 to ω = 1.0. When ω = 0
the coupled system exhibits spatiotemporal patterns for both
the layers. The region of antiresonance should lie approxi-
mately around ω ≈ 0.07. In this region the top driven layer
is expected to stop oscillating while the undriven bottom layer
continues to oscillate, making the upper layer homogeneous
and the bottom layer a nonstationary patterned state in the
long time limit. However, in the lower and higher frequency
regime on either side of the antiresonance region, both layers
should exhibit patterns with their usual oscillations. To high-
light the temporal oscillations in terms of field variables we
have specifically chosen the (125th×125th) node of the top
and bottom layers for v1 and v2, respectively. We now show
the spatiotemporal evolution of the top and bottom layers in
terms of v1 and v2 for four cases and we have divided them
into the following three regimes.

(i) Low frequency regime

The spatiotemporal evolution of the dynamics of the cou-
pled system is now displayed in Fig. 2 for ω = 10−8 up
to ∼1.5×107 time units. The top panel in Fig. 2(a) shows
the time evolution of the oscillations of the field variables
v1 (in solid-black line) and v2 (in red-dashed line) at the
(125th×125th) node. The middle panel in Figs. 2(b)–2(e)
and the bottom panel in Figs. 2(f)–2(i) shows the evolution
of the pattern of the top layer v1 and the bottom layer v2,
respectively, at t = 104, 105, 106, and 107 time units. Thus
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FIG. 2. Numerical simulation of the periodically driven coupled Gray-Scott reaction-diffusion system [Eq. (3.1)] for the parameter set
mentioned in the text and time increment dt = 1.0: low frequency regime, ω = 10−8. Top panel: (a) sustained oscillation of concentration
of v1 (shown by solid-black line) and concentration of v2 (shown by red-dashed line) at (125th×125th) node of the top and bottom layers,
respectively, plotted as function of time up to t = 1.5×107 time units.Middle panel: concentration profile of v1 in top layer at time units
(b) t = 104, (c) t = 105, (d) t = 106, and (e) t = 107, in x and y directions. Bottom panel: concentration profile of v2 in bottom layer at
time units (f) t = 104, (g) t = 105, (h) t = 106, and (i) t = 107, in x and y directions. Both layers exhibit nonstationary patterns. (Units
arbitrary.)

from Fig. 2 it is immediately apparent that both the reacting
components in top and bottom layers continue to oscillate
temporally and the mixing of the patterns is observed. We
have obtained qualitatively similar features for the frequency
ranging from as low as ω = 10−9 to ω =∼ 10−6. This region
refers to the left side of the antiresonance dip at ω = 0.07 in
Fig. 1, as predicted by the linear analysis.

(ii) Intermediate frequency regime; spatiotemporal antiresonance

The simulation is now extended to the intermediate fre-
quency domain. In Figs. 3 and 4, we have presented the results
of the spatiotemporal evolution for the driving frequency
ω = 10−5 and 0.08, respectively, keeping all other parameters
fixed. It is evident from the temporal profiles of the field
variables at the chosen node in Figs. 3(a) and 4(a) that, in the

top driven layer, v1 (shown using black-dot-dashed line) stops
oscillating within a very short time, while v2 in the bottom
undriven layer undergoes sustained oscillation. This is clearly
reflected in Figs. 3(b)–3(e) and 4(b)–4(e), which show that
after some spatiotemporal transients the system settles down
to a homogeneous steady state. As the frequency increases
from 10−5 to 0.08 the disappearance of the transient patterns
in the top layers becomes faster. The reaction components in
the bottom layers in Figs. 3(f)–3(i) and 4(f)–4(i) continue to
oscillate and generate patterns. The difference in stability of
the two layers thus induces spatiotemporal antiresonance in
the coupled system and the qualitative prediction obtained
from the linear analysis is corroborated. Interestingly, with
increasing frequency the temporal oscillation of the reaction
component in the bottom layer, v2, shows a low ampli-
tude high frequency oscillation modulating natural oscillation
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Bottom Layer:V2
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FIG. 3. Numerical simulation of periodically driven coupled Gray-Scott reaction-diffusion systems [Eq. (3.1)] for the parameter set
mentioned in the text and time increment dt = 1.0: intermediate frequency or antiresonance regime, ω = 10−5. Top panel: (a) collapse of
oscillation of concentration v1 (shown by dot-dashed-black line) to the steady state and sustained oscillation of concentration v2 (shown by
red-solid line) at the (125th×125th) node of the top and bottom layers, respectively, plotted as a function of time up to t = 107 time units.
Middle panel: concentration profile of v1 in top layer at time units (b) t = 5000, (c) t = 2×105, (d) t = 3.44×105, and (e) t = 3.50×105, in x
and y directions. The top layer settles down to a homogeneous steady state. Bottom panel: concentration profile of v2 in bottom layer at time
units (f) t = 104, (g) t = 105, (h) t = 106, and (i) t = 107, in x and y directions. The bottom layer exhibits spatiotemporal patterns. (Units
arbitrary.)

around the steady state as evident from the inset of the top
panel of Fig. 4(a).

Although the linear stability analysis predicts a sharp an-
tiresonance dip when the frequency of the external periodic
drive is varied, the spatiotemporal antiresonance as observed
in numerical simulation persists over a wider range of fre-
quencies, e.g., from ω =∼ 105 to ω =∼ 0.1. The observation
of antiresonance requires a critical adjustment of the coupling
and the frequency of external drive, while fine-tuning is
required for linear systems since the frequency of a linear
system does not depend on its amplitude of oscillation. In
full scale simulation of the nonlinear model, however, such
fine-tuning of frequency is not essential since the amplitude of
oscillation takes care of readjustment of frequency with cou-
pling and antiresonance appears over a range of frequency. An
immediate consequence is that the region of differential sta-
bility of the two subsystems gets widened. In order to reduce

the number of parameters and to have a clear guideline from
the linear analysis we have confined ourselves to a minimal
model of coupling. We mention, in passing, that going beyond
the minimal model by considering coupling between v1 and
v2 necessarily does not preclude the possibility of observation
of spatiotemporal antiresonance but correspondence to linear
analysis by casting the coupled reaction-diffusion systems
into a coupled oscillator problem turns out to be extremely
cumbersome.

(iii) High frequency regime

Figure 5 depicts the result of numerical simulation for
ω = 0.2. In this frequency range the reaction components in
both upper and bottom layers v1 and v2 execute sustained
oscillation in the long time limit as evident from Fig. 5(a).
Concurrently, both v1 and v2 exhibit spatiotemporal patterns
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FIG. 4. Same as in Fig. 3 but for ω = 0.08 and time increment dt = 0.1. Middle panel: concentration profile of v1 in top layer at time units
(b) t = 50, (c) t = 100, (d) t = 140, and (e) t = 160, in x and y directions. Inset in (a) shows the low amplitude high frequency oscillation of
the marked area shown with dotted-green box. (Units arbitrary.)

as shown in Figs. 5(b)–5(e) and 5(f)–5(i). In this high fre-
quency regime the coupling remains unaffected and external
drive induces oscillations and spatiotemporal patterns. We
have observed that for the range starting from ω =∼ 0.2 to
as high as ω = 1.0 one observes spatiotemporal patterns in
both layers.

IV. CONCLUSION

In this work we have carried out a theoretical investigation
of the spatiotemporal antiresonance in a two layer of trans-
versely coupled reaction-diffusion systems in the presence of
external periodic forcing to one of the constituents. It has been
shown that the linearized dynamics around the homogeneous
steady state can be cast into a coupled oscillator problem.

This allows us to derive the general analytical expressions
for amplitude-frequency response functions for each of the
subsystems within the rotating wave approximation. An ex-
plicit example with the Gray-Scott model has been worked
out to demonstrate a sharp fall of response amplitude of the
driven reaction-diffusion component at a particular driving
frequency, whereas the other component shows nonzero re-
sponse at the frequency. As the physical origin of antires-
onance lies on the destructive interference of coupling and
driving, it is imperative that this interference gives rise to
differential spatiotemporal instability in the two layers of the
coupled system. Our numerical simulation clearly reveals that
this instability results in nonstationary spatial patterns in the
undriven subsystem, while the driven subsystem goes over
to a quiescent state, i.e., a homogeneous stable state. We
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FIG. 5. Numerical simulation of periodically driven Gray-Scott reaction-diffusion systems [Eq. (3.1)] for the parameter set mentioned in
the text and time increment dt = 0.1: high frequency regime, ω = 0.2. Top panel: (a) sustained oscillation of concentration of v1 (shown
by solid-black line) and concentration of v2 (shown by red-dashed line) at (125th×125th) node of the top and bottom layers, respectively,
plotted as function of time up to 107 time units. Middle panel: concentration profile of v1 in top layer at time units (b) t = 104, (c) t =
105, (d) t = 106, and (e) t = 107, in x and y directions. Bottom panel: concentration profile of v2 in bottom layer at time units (f) t = 104,
(g) t = 105, (h) t = 106, and (i) t = 107, in x and y directions. Both layers exhibit nonstationary patterns. Inset in (a) shows the low amplitude
high frequency oscillation of the marked area shown with dotted-green box. (Units arbitrary.)

have considered a minimal model of transversal coupling,
which implies that diffusive motion of one component of
the reaction-diffusion system is much slower compared to
the other. Another requirement is the periodic driving of
one of the two components of the system. This can be im-
plemented by suitable adjustment of the substrate injection
rate into the chosen layer. Although the linear analysis pre-
dicts a sharp antiresonance dip in between two resonance
maxima, our full scale numerical simulation reveals a range
of frequencies for which the antiresonance is observed. We
believe that this spatiotemporal antiresonance as observed
here is generic for a class of coupled reaction-diffusion sys-
tems which can be suitably tuned to control coupling and

external drive to realize the phenomenon under appropriate
conditions.
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