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Rotational synchronization of camphor ribbons in different geometries
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We present experiments on multiple pinned self-propelled camphor ribbons, which is a rectangular piece of
paper with camphor infused in its matrix. Experiments were performed on three, four, and five ribbons placed
in linear and polygonal geometries. The pinned ribbons rotate on the surface of water, due to the surface tension
gradient introduced by the camphor layer in the neighborhood of the ribbon. This camphor layer leads to a
chemical coupling between the ribbons. In different geometries, the ribbons have been observed to rotationally
synchronize in all the possible configurations. A numerical model, emulating the interactions between the ribbons
as Yukawa interaction was studied, which was qualitatively able to reproduce the experimental findings.
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I. INTRODUCTION

Collective behavior of two or more coupled oscillators is
widely studied in different areas of science. This collective
behavior can give rise to interesting phenomena like pattern
formation [1–4], partially synchronized states [5], amplitude
death [6–8], mutual entrainment [9], phase flip [10], chimera
[11–13], clustering [13,14], swarming [15], etc. Besides these,
one of the key occurrences is the emergence of synchro-
nization [16], which is the rhythmical behavior of two or
more coupled oscillators. Synchronization has been reported
in a variety of chemical [17–21], physical [22,23], biological
[24,25], and ecological [26,27] systems. Moreover, the fin-
gerprint of synchronization has been found in large complex
networks [28]. The geometry and coupling mechanism of the
network plays an important role in determining the properties
of the observed phenomena [29]. Coupling and geometry
plays an important role not only in complex networks but
also in mechanical systems like the synchronized activity of
rotating pendula placed in different geometries [22].

In this paper, we have studied the rotational synchroniza-
tion of self-propelled [30] camphor ribbons placed in different
geometries. A camphor ribbon is a rectangular piece of paper
with camphor infused in it. The ribbon, when placed on the
surface of water, exhibits spontaneous motion. This motion
is caused by the surface tension gradients introduced by
the inhomogeneously distributed camphor layer around the
ribbon [31,32]. Van der Mensbrugghe explained this motion
in 1869 [31]. Since then, this system has been extensively
studied both experimentally and theoretically [32–35].

A camphor particle placed on the surface of water shows
translational, rotational, and intermittent motion [36]. Various
shapes of such particles, such as the shape of a comma,
or a crescent moon [32] or a disk [37] have been studied.
Frenkel et al. [38] and Koyano et al. [39] have studied a
single camphor rotor. A camphor engine has been realized

as a mini generator of electricity recently [40]. The cam-
phor layer of one camphor loaded particle interacts with
the camphor layer of another, which leads to the chemical
coupling between them [32,41]. This coupling leads to the
synchronization of the camphor particles. The translational
synchronization of camphor boats in circular, triangular, and
square-shaped channels has been studied in Refs. [42,43].
However, rotational synchronization of two camphor ribbons
has been reported only recently [41] in 2019, in which two
modes of the synchronization in coupled camphor ribbons
were observed. In one of the modes, both ribbons rotate in
the same direction (corotating synchronization) while in the
other mode both the ribbons rotate in opposite directions
(counter-rotating synchronization). Furthermore, it was ex-
perimentally observed that the counter-rotating mode of the
synchronization was more robust than the corotating one.

This paper deals with the collective dynamics of multiple
camphor ribbons placed in different geometries. Experiments
were performed on three, four, and five camphor ribbons.
The geometries under study were open (linear), polygonal
(triangle and square), and star. The different rotationally syn-
chronized configurations observed are reported. Furthermore,
the preference of the counter-rotating mode of synchrony over
the corotating mode, in experiments involving three coupled
rotators placed in a triangular geometry, was investigated.

A numerical model, considering ribbons as point particles
moving on a circle and mimicking the interactions between
them as a Yukawa-like potential [44] is also presented. The
present model is slightly different from the numerical model
for two camphor ribbons studied previously [41]. The model
has qualitatively verified our experimental findings.

The manuscript is divided into four sections: Introduction
(Sec. I), Experiments (Sec. II), Numerical Model (Sec. III),
and Summary and Discussion (Sec. IV). Furthermore, Sec. II
is divided into two subsections that describe the experimental
protocol and results. Similarly, Sec. III is divided into two
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FIG. 1. Schematic diagram of two corotating and counter-
rotating camphor ribbons. (a) Two black blobs show the same
direction of the rotation of the ribbons, while one black and other
red (crossed) blob represents the opposite direction of rotation of
ribbons. The corotating (black line) and counter-rotating (red line)
are represented with a + and − sign, respectively. In (b), L and H
correspond to the low and high surface tension. The arrows show the
direction of the rotation of the ribbons.

subsections describing the numerical model and the simula-
tion results.

II. EXPERIMENTS

Experiments were performed on multiple camphor ribbons
placed in different geometries. The number of ribbons studied
was 3,4, and 5. The three-camphor-ribbons setup was studied
on a linear and a triangular geometry, while the four ribbons
were studied on linear and square geometry. For the case of
five ribbons, only the star configuration has been studied.
The ribbons were placed on the surface of water and their
dynamics were recorded with a camera.

The two ribbons are said to be in corotating (counter-
rotating) configuaration, if both of them rotate in the same
(opposite) sense of rotation (see Fig. 1). If a pair of rotators
is synchronized in the corotating (counter-rotating) configu-
ration, then it will be considered to be sharing a corotating
(counter-rotating) bond. A bond will be denoted by a plus (+)
and a minus (−) sign for the corotating and counter-rotating
cases respectively, as shown in Fig. 1(a). Experiments on
two camphor ribbons had shown that the counter-rotating (−)
mode of synchronization was preferred over the corotating
(+) one [41]. It can be understood with the following intuitive
argument: Since the ribbons move in the direction of higher
surface tension, the direction of surface tension gradient is
fixed in the common region between the pivots for the case
of counter-rotating synchronization [Fig. 1(b)]. In contrast,
for the corotating scenario, there must be a gradient reversal
or switching at this common region [Fig. 1(b)] every time a
ribbon passes through it. This state of the continuous gradient
switching in a small spatial region, in our opinion, should be
less favorable than to maintain a static gradient in the case of
counter-rotating synchronized state.

In the present work, multiple ribbons placed in different
geometries will have several synchronized configurations. To
represent these configurations, we will adopt a convention
identical to the one used to describe Fig. 1(a) in the preceding
paragraph, albeit applied to multiple pairs of rotators that are
present in each configuration. We will refer to a configuration
in terms of the bonds (corotating vs. counter-rotating) that
are present in it. Since we are only interested in the type of

FIG. 2. Side view (left) and camera view (right) of the exper-
imental setup for three camphor ribbons placed on the surface of
water in a linear geometry. The general experimental setup, except
for the number of rotators, is same for all the other geometries and
the number of the camphor ribbons.

bond (co- vs. counter-rotating) between the pair of ribbons,
the direction of the rotation of a single ribbon in that bond,
is redundant in defining the configuration. The details of the
configurations present in a given geometry will be discussed
in the results section.

A. Protocol

The experiments were performed in a glass container of
dimensions 25 cm × 25 cm × 4 cm. The container is placed
inside a plexiglass enclosure to prevent air drafts from in-
terfering with the dynamics of the system. Figure 2 shows
the schematic diagram of the side and camera view of the
experimental setup for three ribbons placed on a line. The
general setup, except for the number of rotators, is the same
for all the other experiments. The glass container is filled
with 800 ml of water (MilliQ). The room temperature for
all the experiments is set between 24.2◦C and 24.8◦C. A
high-speed video camera (GoPro Hero-4, frame rate 120 Hz,
720p resolution) is installed inside the glass box to record the
rotators dynamics.

The desired number of camphor ribbons were prepared by
cutting rectangular ribbons of dimensions 2.2 cm × 0.5 cm
from a clean A4 size paper sheet. The ribbons were kept black
in color with a white circular region at one end to aid with the
motion tracking of the rotators. A hole was made with a needle
at the other end of each paper ribbon. A 1.21 M solution of
laboratory grade camphor in ethanol was poured onto each
ribbon. The ribbons were left in the poured solution for 60 s
and were then subsequently left to dry in the air for 600 s.
Finally, the ribbons were pivoted on a thin wire (blue wire in
the left panel of Fig. 2) and were placed on the surface of the
water to observe their rotational motion.

The pivots were brought together in the geometry under
study before putting the ribbons on the surface of the water.
The pivot-to-pivot distance between the nearest-neighboring
ribbons was kept constant at 3 cm in each geometry. The
first 360 s of data was removed as transients, and then the
data were recorded for the next 180 s. The recorded data
for each configuration were analyzed with a particle tracking
code in the MATLAB environment, written by Daniel Blair
and Eric Dufresne [45]. This code is based on the particle
tracking algorithms of Crocker and Grier [46]. The white dots
on the ribbons (see supplemental videos [47]) were tracked
using the above-mentioned codes. The positions of the tracked
dots are (xi, yi ), i = 1, 2,..., N where N is the total number of
ribbons in the experiment. For brevity, we will refer to the
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positions of these white dots as the positions of the ribbons
itself throughout the manuscript.

It should be noted that the initial direction of rotation of
the ribbons, i.e., clockwise or anticlockwise, is decided by
the initial fluctuations in the system. Hence, the initial con-
figuration in which the system will land is decided randomly.
However, one can perturb the system externally to get to a
desired configuration.

B. Results

To reiterate, the experiments were performed on three,
four, and five ribbons on different geometries. The ribbons
are found to synchronize in the geometries studied. The
various configurations found in experiments are presented in
the section.

1. Three ribbons

In this subsection, we will discuss the results of three
rotators in linear and triangular geometries respectively, and
the corresponding results are presented in Figs. 3 and 4. The
dynamics of the one representative configuration is shown for
both the geometries.

(a) In a line. The three ribbons placed in a line will
have two bonds [one bond for each pair (1,2) and (2,3) in
Fig. 2], and hence three configurations are possible as per
our bond convention. These configurations [Fig. 3(a)] are as
follows: configuration (1), where both bonds are corotating,
i.e., + +; configuration (2), where one bond is corotating
while the other is counter-rotating, i.e., + −; and configu-
ration (3), where both bonds are counter-rotating, i.e., − −.
Furthermore, we can achieve other one corotating and one
counter-rotating configuration, i.e., − +, on changing the
position of the bonds of + − configuration. However, as we
are defining the configurations with respect to the type of the
bonds present in it and not their positions, we will club both
these sister configurations (+ − and − +) as one (+ −). In
Fig. 3(b), the temporal evolution of (x1, x2, x3) and (y1, y2, y3)
positions of the rotators are plotted for a duration of 10 s. The
corresponding phase plots for [(x1, x2), (x2, x3), (x1, x3)] and
[(y1, y2), (y2, y3), (y1, y3)] are plotted in Fig. 3(c) from data
recorded for 180 s.

In the experiments, the ribbons have synchronized in all
three configurations. However, for the sake of conciseness, we
present the dynamics [Figs. 3(b) and 3(c)] for configuration
− −, and the corresponding video (1.mp4) is provided in
the Supplemental Material [47]. The time evolution of the
(x1, x2, x3) and (y1, y2, y3) positions [Fig. 3(b)] of the three
ribbons shows that the ribbons are synchronized. The phase
plots [Fig. 3(c)] clearly show that the x positions of all the
ribbon pairs are in-phase lag synchronized. However, the y
positions of the first and second ribbon pair (y1, y2) and the
second and the third ribbon pair (y2, y3) are out-of-phase lag
synchronized. This type of the synchronization is defined as
mirror synchronization [22].

(b) On a triangle. In contrast to the linear case, three
ribbons placed in a polygonal, i.e., triangular, geometry can
have three bonds. One can think of + + +, + + −, + −
−, and − − − as possible configurations, but the triangular
geometry rules out the possibility of the + + − and − − −

FIG. 3. For three camphor ribbons placed on a line, (a) shows the
schematic of the three possible configurations, i.e., + +, − −, and
+ −. The dynamics is shown for configuration − −. The magenta
(dotted), red (solid), and black (dashed) lines in (b) correspond to the
temporal evolution of the (x1, x2, x3) position (left) and (y1, y2, y3)
position (right) of the first (1), second (2), and third (3) camphor
ribbons, respectively. (c) The phase plots of x (left) and y (right)
positions of the camphor ribbons. Magenta (solid), red (circle), and
black (plus) represent phase plot of (x1, x2), (x2, x3), (x1, x3) (left)
and (y1, y2), (y2, y3), (y1, y3) (right), respectively. The solid green
and blue lines are of slopes 1 and −1, respectively. (x1, x2), (x2, x3),
(x1, x3), and (y1, y3) are in-phase lag synchronized (along line of
slope 1) while (y1, y2) and (y2, y3) are out-of-phase lag synchronized
(along the line of slope −1).

configurations because of the constraint of a closed geometry.
A closed triangular geometry allows for only two bonds to
be chosen independently, while the third one is dictated by
the choice of the two independent bonds. Hence, only two
configurations, namely all rotator pairs corotating synchro-
nized (+ + +) and one corotating and two counter-rotating
synchronized (+ − −), are possible and are also observed ex-
perimentally [Fig. 4(a)]. Furthermore, as explained above, +
− − will have two more sister configurations by changing the
positions of the bonds. These three sister configurations are
grouped together as the configuration + − −. In experiments,
all the configurations were found to rotationally synchronize.
However, the direct evidence of the synchronized motion of
rotators (Figs. 4(b) and 4(c)] is shown only for configuration
+ + +. The corresponding video (2.mp4) is provided in
the Supplemental Material [47]. In Fig. 4(b), the temporal
evolution of (x1, x2, x3) and (y1, y2, y3) position of each rotator
is plotted for a duration of 10 s. The corresponding phase plots
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FIG. 4. For three camphor ribbons placed on a triangle panel
(a) shows the schematic for the configurations +++ and + − −. The
plots in (b) and (c) correspond to the +++ configuration. The ma-
genta (dotted), red (solid) and black (dotted) lines in (b) correspond
to the temporal evolution of (x1, x2, x3) position (left) and (y1, y2, y3)
position (right) of the first (1), second (2), and third (3) camphor
ribbons, respectively. (c) The phase plots of x (left) and y (right)
positions of the camphor ribbons. Magenta (solid), red (circle), and
black (plus) represent phase plots of (x1, x2), (x2, x3), (x1, x3) (left
side) and (y1, y2), (y2, y3), (y1, y3) (right side), respectively. The solid
green is a line of slope 1. All the x and y positions of the ribbons are
in-phase synchronized (along the line of slope 1).

for [(x1, x2), (x2, x3), (x1, x3)] and [(y1, y2), (y2, y3), (y1, y3)]
are plotted in Fig. 4(c) from data recorded for 180 s. It
is evident that all three pairs of rotators are in-phase lag
synchronized (configuration + + +).

As explained earlier [Fig. 1(b)], two coupled camphor rib-
bons have an affinity toward being counter-rotating synchro-
nized than being corotating synchronized [41]. This motivated
us to study the presence of any preference toward a specific
synchronized configuration for multiple ribbons in a given
geometry. However, we chose to study only the triangular
geometry for this purpose. The choice of triangular geometry
over all the other geometries studied in the present work
can be justified with two reasons: First, it is a geometrically
frustrated configuration and, second, it has minimum number
of configurations (two) which reduces the requirement for
collection of a large dataset to observe a preferential trend
toward a specific synchronized configuration.

Twenty-five experiments starting from the same initial
conditions were performed on three ribbons placed in a tri-

FIG. 5. The schematic diagram of the configurations observed
in the experiments for four camphor ribbons placed in a linear
geometry. The configurations are + + +, + + −, + − −, and −
− −.

angular geometry. In all the experiments, after some transient
dynamics, ribbons synchronized in either + + + or + − −
configurations. Of these 25 experiments, the + − − config-
uration (or its sister configurations, i.e., − + − and − − +)
was observed 21 times while the + + + configuration was
observed only four times. This observation indicates that three
ribbons placed on a triangle prefer to be in the configuration
having more number of counter-rotating (−) bonds over the
one having all corotating (+) bonds. This finding is in line
with the experimental observation for two ribbons [41]. Fur-
thermore, the + − −, − + −, and − − + configurations
are reminiscent of classical spins placed on a frustrated trian-
gular geometry with antiferromagnetic interactions between
them [48].

2. Four ribbons

In this subsection, we study the various synchronization
states observed when four camphor ribbons are coupled to-
gether in different geometries. The setup and protocol for
these experiments are mentioned in Sec. IIA, the only change
being the number of rotators.

(a) On a line. Four ribbons placed in a line will have
three bonds and a total of four configurations. As mentioned
previously in the experimental section, they are + + +, + +
−, + − −, and − − − as shown in Fig. 5. There are three
sister configurations represented by + + − (+ + −, + − +,
− + +) and + − − (+ − −, − + −, − − +) by changing
the positions of the bonds. All the configurations mentioned
above were observed experimentally. The detailed proof of
the synchronization and the corresponding video (3.mp4) is
shown for the configuration + − − in the Supplemental
Material [47] (Fig. 2, Supplemental Material [49]).

(b) On a square. On placing four camphor ribbons on
a closed (square) geometry the number of bonds increase
to 4. But the closed nature of this geometry constrains the
independent choice of bonds to only three, the fourth one
being dependent on the other three bonds. This constraint
rules out the existence of configurations + + + − and + −
− −. Therefore, only the + + + +, + + − −, and − − − −
configurations are possible and observed experimentally. It is
again to be noted that the configuration + + − − represents
six sister configurations (+ + − −, − + + −, − − + +, +
− + −, − + − +, + − − +). These sister configurations
have the same type of bonds but differ by their individual
positions. The experiments yielded all the above-mentioned
synchronized configurations (Fig. 6). For the configuration
+ + − −, the phase plots and the corresponding video
(4.mp4) is provided in the Supplemental Material [47] (Fig.
3, Supplemental Material [49]).
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FIG. 6. The schematic diagram of the configurations observed
in the experiments for four camphor ribbons placed in a square
geometry. The configurations are + + + +, + + − −, and − −
− −.

3. Five ribbons

Finally, experiments performed by keeping five camphor
ribbons in a star-shaped geometry (Fig. 7 ) are presented in
this subsection. The setup and protocol for these experiments
is mentioned in Sec. IIA previously.

The degree of a node in network theory is defined as the
number of nodes to which it is connected. Similarly, in our
experiments, we can define the degree of a rotator as the
number of rotators to which it is strongly coupled, i.e., which
are present at a pivot to pivot distance 3 cm from it. A star
network topology (Fig. 7) for five rotators is interesting as the
degree of the central rotator (degree = 4) is four times that of
the peripheral rotators (degree = 1). This disparity in degrees
of the rotators is significantly larger when compared to the
previously studied topologies (line, triangle, square). Besides,
one can intuit that the environment of the central oscillator
would have a higher concentration of camphor since rotators
surround it on all four sides. These contrasting differences
between the previously presented geometries and the star
geometry merit its inclusion in this work. In this geometry,
ribbons can have five main configurations (Fig. 7), namely
+ + + +, + + + − (four sister configurations: + + +
−, + + − +, + − + +, − + + +), + + − − (six sister
configurations: + + − −, − + + −, − − + +, + − + −, −
+ − +, + − − +), + − − − (four sister configurations: +
− − −, − + − −, − − + −, − − − +), and − − − −. In
the experiments, the ribbons successfully synchronized in all
the configurations mentioned above. Therefore, we can infer
that a disparity in the degree of the rotators being coupled

FIG. 7. The schematic diagram of the configurations observed in
the experiments for five camphor ribbons placed in a star geometry.
The configurations are + + + +, + + + −, + + − −, + − − −,
and − − − −.

(central vs. peripheral) does not have a significant effect on
their possible modes of synchrony. The detailed dynamics
are presented for the configuration + + + − along with the
corresponding video (5.mp4) in the Supplemental Material
[47] (Fig. 4, Supplemental Material [49]).

III. NUMERICAL MODEL

To model the system, we have considered the camphor
ribbons as point particles of unit mass. The point particles are
placed on a unit circle. The center of their respective circles
can be considered as the pivot in the experiments. The position
of the pivot (center) depends on the geometry in which the
ribbons are placed. The following text gives the numerical
model and the results for the three interacting particles (linear
and triangular geometry). The equations used for the other
geometries can be found in the Appendix.

A. Linear geometry

Let (ri, θi) denote the position of the ith (i = 1, . . . , N ,
where N is the total number of particles) particle placed on a
linear geometry with respect to the origin (0,0). The position
of the center of the circle of the first and ith particle is (0,0)
and (il ,0), respectively, for a fixed distance l between nearest-
neighboring pivots. The experimentally observed repulsive
coupling [14] between the ribbons, is mimicked through a
repulsive Yukawa potential in the model. At any time t , for a
distance r(t ) between the point particles, the Yukawa potential
is V [r(t )] = e−Kr(t )

r(t ) , where K is inversely related to the range

and the force due to this potential is e−Kr(t )

r(t )2 [1 + Kr(t )]. The
radial component of the Yukawa force is assumed to be
balanced by the pivot constraint force. Therefore, only the
tangential component of the force acts on the particles and
determines their dynamics. For the ith point particle placed
on a line, tangential component of the force can be written as:

FT (t )i =
N∑

j=1, j �=i

e−Kri j (t )

r3
i j (t )

[1 + Kri j (t )][sin(θi − θ j )

+( j − i)lsin(θi)], (1)

where N is the total number of particles. The equations
governing the dynamics of the ith point particle having natural
frequency �i are as follows:

θ̇i(t ) = ωi(t ) i = 1, 2, . . . , N, (2)

ω̇i(t ) = FT (t )iri(t ) − C(ωi(t ) − �i ) i = 1, 2, . . . , N, (3)

where the second term in Eq. (3) for ω̇i quantifies the tendency
of the rotator to go to its autonomous frequency �i if there are
no other rotators.

B. Polygonal geometry

(a) On a triangle. Three point particles were placed in a
triangular geometry with the centers of their respective circles,
i.e., pivots at (0,0), ( l

2 ,
√

3
2 l ), and (l, 0), for the first, second,
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and third point particles. The tangential Yukawa force acting
on the particles in this geometry is given as follows:

F1 = e−kr12

r3
12

(1 + kr12)

[
sin(θ1 − θ2) + lsin

(
θ1 − π

3

)]

+ e−kr13

r3
13

(1 + kr13)[sin(θ1 − θ3) + lsinθ1], (4)

F2 = e−kr21

r3
21

(1 + kr21)

[
sin(θ2 − θ1) − lsin

(
θ2 − π

3

)]

+ e−kr23

r3
23

(1 + kr23)

[
sin(θ2 − θ3) + lsin

(
θ2 + π

3

)]
,

(5)

F3 = e−kr31

r3
31

(1 + kr31)
[
sin(θ3 − θ1) − lsinθ3]

+ e−kr32

r3
32

(1 + kr23)

[
sin(θ3 − θ2) − lsin

(
θ3 + π

3

)]
.

(6)

The corresponding equations for four interacting particles
placed in a square geometry and five interacting particles in
a star geometry are provided in the Appendix.

C. Numerical results

The equations as mentioned above were simulated using
a Runga-Kutta fourth-order method with a time step 10−4.
The first 1000 time units were discarded as transients, and
the evolution in the next 1000 time units was analyzed. The
value of ri for i = 1, . . . , N was set to be one unit. Considering
the fact that in the real experiments the force between the
ribbons does not diverge at small separations, we have put
a maximum bound [(Ftotal )max] on the magnitude of the total
force experienced by each particle [right-hand side of Eq.
(3)]. To account for the fact that in the experiments, all the
ribbons are not perfectly identical, a slight random mismatch
is introduced in the autonomous angular frequencies (�i)
of the point particles. The value of the initial phase θi was
chosen randomly. The initial value of ωi was kept equal to
their respective autonomous angular frequency �i. The sign
of the �i was chosen depending on the configuration in which
point particles were placed. However, the parameters l , K , C,
and [(Ftotal )max] were kept constant at a value 1.5, 1.5, 0.5,
and 0.3 units, respectively, throughout the simulations, for all
the geometries and their configurations. In a given geometry,
all the experimentally observed configurations have been re-
produced in the simulations. For the sake of consistency in
this paper, the proof of synchronization is presented for only
three particles (linear and triangular geometry). However,
the detailed dynamics of the four and the five particles is
presented in the Supplemental Material [49].

1. On a line

For three interacting particles on a line, the number of
possible configurations and their nomenclature is identical to
their experimental counterparts in Sec. IIB1. Experimental
results shown in Fig. 3 are qualitatively reproduced in Fig. 8,

FIG. 8. For the linear geometry, the x position xi = cos(θi ) and y
position yi = sin(θi ) for the ith point particle. The magenta (dotted),
red (solid), and black (dashed) lines in (a) correspond to the temporal
evolution of the x position (left) and y position (right) of the first,
second, and third point particles, respectively. (b) The phase plots
of x (left) and y (right) positions of the point particles for linear
geometry. Here the magenta, red, and black curves represent phase
plots of (x1, x2), (x2, x3), (x1, x3) (left side) and (y1, y2), (y2, y3), and
(y1, y3) (right side), respectively. The solid green and blue lines are
a line of slope 1 and −1, respectively. (x1, x2), (x2, x3), (x1, x3), and
(y1, y3) are in-phase lag synchronized (along line of slope 1) while
(y1, y2) and (y2, y3) are out-of-phase lag synchronized (along the line
of slope −1).

which shows the simulation results of the configuration − −
for three interacting particles placed linearly. We can achieve
other configurations in the simulations by changing the sign
of the autonomous frequencies �i (where i = 1, 2, 3). For
example, all positive �i will correspond to the configuration
+ + + in Fig. 3(a). The temporal behavior of the x position
[xi = cos(θi )] and the y position [yi = sin(θi )] are plotted in
Fig. 8(a). The x positions of all the particles (x1, x2, x3) and the
y positions of particles one and three (y1, y3) are synchronized
in-phase. However, the y positions of the nearest-neighbor
particles (y1 and y2; y2 and y3) are out-of-phase synchronized.

2. On a triangle

In the case of three interacting point particles placed on a
triangle, the possible synchronized configurations simulated
are identical to the experimentally observed configurations
in the same geometry. The simulation results are presented
for the configuration + + + in Fig. 9. The x [xi = cos(θi)]
position (left panel) and y [yi = sin(θi )] position (right panel)
of all the particles are in phase synchronized. The other
configuration of this geometry, i.e., + − + can be achieved
by changing the sign of �2 placed at pivot position ( l

2 ,
√

3
2 l ).

IV. SUMMARY AND DISCUSSION

In this work, experiments on multiple coupled camphor
ribbons were presented. The camphor ribbon, when placed
on the surface of water, forms a camphor layer around it.
This camphor layer leads to a decrease in the surface tension
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FIG. 9. For the triangular geometry, the x position xi = cos(θi )
and y position yi = sin(θi ) for the ith point particle. The magenta
(dotted), red (solid), and black (dotted) lines in (a) correspond to the
temporal evolution of the x position (left) and y position (right) of
the first, second, and third point particles, respectively. (b) Shows the
phase plots of x (left) and y (right) positions of the point particles for
the triangle. The magenta, red, and black curves represent phase plots
of (x1, x2), (x2, x3), (x1, x3) (left side) and (y1, y2), (y2, y3), (y1, y3)
(right side), respectively. All the x and y positions of the ribbons are
in-phase synchronized.

around the ribbon. The initial fluctuations in the distribution
of this camphor layer create spatial inhomogeneities in it,
which further lead to a net force acting on the ribbons. The
camphor layer around one ribbon interacts with the camphor
layer around the other ribbon, which leads to the chemical
coupling between them. Furthermore, the coupling between
the ribbons is repulsive in nature.

This coupling leads to synchronized rotational motion of
the camphor ribbons. The strength of the coupling between
the ribbons is distance dependent. Hence, the ribbons are ro-
tationally synchronized only when the pivot to pivot distance
between the adjacent ribbons is less than twice the length of
a single ribbon. Lag synchronization was observed in linear
and polygonal geometries for multiple (three, four, and five)

coupled camphor rotators. All the configurations which are
possible in a given geometry were observed experimentally.
In the linear geometry, for a fixed number of ribbons, the
number of the configurations observed is more than that of
the polygonal geometry.

Experiments on three ribbons kept on a triangular geom-
etry have shown that the configuration having the maximum
number of counter-rotating bonds (+ − −) is preferred over
the one having all corotating bonds (+ + +). The + −
− configuration represents three sister configurations where
the positions of the individual bonds change. These three
sister configurations were found to be equally probable among
themselves. This is reminiscent of the degeneracy of multiple
configurations of classical spins placed on a triangular lattice
and having antiferromagnetic interactions between them [48].

A simulation model considering the ribbons as point parti-
cles has been formulated. This model accounts for the repul-
sive coupling between the ribbons using a repulsive Yukawa
potential. This elementary choice of the Yukawa potential
gives the freedom to tune the distance-dependent coupling
observed in the experiments, with the parameter K of the
Yukawa potential. The point particle simulations were able to
reproduce the experimental findings qualitatively in different
geometries.

We believe that these tabletop experiments on self-
propelled rotators can find potential applications in the fields
of active matter. A self-propelled camphor rotator can be
compared with a classical spin. In the future, one can properly
study this analogy and can find the probability of occurrence
of the different configurations of camphor rotators and com-
pare them with the spin systems kept in similar geometries.
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APPENDIX

1. On a square

Four point particles were placed in a square geometry with the centers of their respective circles, i.e., pivots at (0,0), (l ,0),
(l, l), and (0,l) for the first, second, third, and fourth point particles. The tangential Yukawa force acting on the particles in this
geometry is given as follows:

F1 = e−kr12

r3
12

(1 + kr12)[sin(θ1 − θ2) + lsinθ1] + e−kr13

r3
13

(1 + kr13)[sin(θ1 − θ3) + l (sinθ1 − cosθ1)]

+ e−kr14

r3
14

(1 + kr14)[sin(θ1 − θ4) − lcosθ1], (A1)

F2 = e−kr21

r3
21

(1 + kr21)[sin(θ2 − θ1) − lsinθ2] + e−kr23

r3
23

(1 + kr23)[sin(θ2 − θ3) − lcosθ2]

+ e−kr24

r3
24

(1 + kr24)[sin(θ2 − θ4) − l (sinθ2 + cosθ2], (A2)
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F3 = e−kr31

r3
31

(1 + kr31)[sin(θ3 − θ1) + l (cosθ3 − sinθ3)] + e−kr32

r3
32

(1 + kr32)[sin(θ3 − θ2) + lcosθ3]

+ e−kr34

r3
34

(1 + kr34)[sin(θ3 − θ4) − lsinθ3], (A3)

F4 = e−kr41

r3
41

(1 + kr41)[sin(θ4 − θ1) + lcosθ4] + e−kr42

r3
42

(1 + kr42)[sin(θ4 − θ2) + l (sinθ4 + cosθ4)]

+ e−kr43

r3
43

(1 + kr43)[sin(θ4 − θ3) + lsinθ4]. (A4)

2. On a star

Five point particles were placed in a star geometry with the centers of their respective circles, i.e., pivots, at (0,0), (l ,0), (2l, 0),
(l, l), and (l,−l) for the first, second, third, fourth, and fifth point particles. The tangential Yukawa force acting on the particles
in this geometry is given as follows:

F1 = e−kr12

r3
12

(1 + kr12)[sin(θ1 − θ2) + lsinθ1] + e−kr13

r3
13

(1 + kr13)[sin(θ1 − θ3) + 2lsinθ1]

+ e−kr14

r3
14

(1 + kr14)[sin(θ1 − θ4) + l (sinθ1 + cosθ1)] + e−kr15

r3
15

(1 + kr15)[sin(θ1 − θ5) + l (sinθ1 − cosθ1)], (A5)

F2 = e−kr21

r3
21

(1 + kr21)[sin(θ2 − θ1) − lsinθ2] + e−kr23

r3
23

(1 + kr23)[sin(θ2 − θ3) + lsinθ2]

+ e−kr24

r3
24

(1 + kr24)[sin(θ2 − θ4) + lcosθ2] + e−kr25

r3
25

(1 + kr25)[sin(θ2 − θ5) − lcosθ2], (A6)

F3 = e−kr31

r3
31

(1 + kr31)[sin(θ3 − θ1) − 2lsinθ3] + e−kr32

r3
32

(1 + kr32)[sin(θ3 − θ2) − lsinθ3]

+ e−kr34

r3
34

(1 + kr34)[sin(θ3 − θ4) − l (sinθ3 − cosθ3)] + e−kr35

r3
35

(1 + kr35)[sin(θ3 − θ5) − l (sinθ3 + cosθ3)], (A7)

F4 = e−kr41

r3
41

(1 + kr41)[sin(θ4 − θ1) − l (sinθ4 + cosθ4)] + e−kr42

r3
42

(1 + kr42)[sin(θ4 − θ2) − lcosθ4]

+ e−kr43

r3
43

(1 + kr43)[sin(θ4 − θ3) + l (sinθ4 − cosθ4)] + e−kr45

r3
45

(1 + kr45)[sin(θ4 − θ5) − 2lcosθ4], (A8)

F5 = e−kr51

r3
51

(1 + kr51)[sin(θ5 − θ1) − l (sinθ5 − cosθ5)] + e−kr52

r3
52

(1 + kr52)[sin(θ5 − θ2) + lcosθ5]

+ e−kr53

r3
53

(1 + kr53)[sin(θ5 − θ3) + l (sinθ5 + cosθ5)] + e−kr54

r3
54

(1 + kr54)[sin(θ5 − θ4) + 2lcosθ5]. (A9)
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