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We study the dynamics of a particle in a fluid from a generalized Langevin equation (GLE) with a frictional
exponential memory kernel and hydrodynamic interactions. By using Laplace analysis we obtain the analytical
expressions for the velocity autocorrelation function (VACF) and mean square displacement (MSD) of the
particle. Our results show that, in the strictly asymptotic time limit, the dynamics of the particle correspond
to a particle ruled by a GLE with a Dirac delta friction memory kernel and hydrodynamic interactions. However,
at intermediate times the dynamical behavior is qualitatively different due to the presence of a characteristic
time in the frictional exponential memory kernel. Remarkably, the VACF exhibits oscillations and negative
correlation regimes which are reminiscent of features already observed in pioneering works of molecular
dynamics simulations. Moreover, ripples in the MSD appear as an emerging behavior associated with the
mentioned regimes.

DOI: 10.1103/PhysRevE.101.052140

I. INTRODUCTION

In the first half of the twentieth century it was widely
believed that the velocity autocorrelation function (VACF) had
an exponential decay, as predicted by the stochastic theory.
However, in the late 1960s the first computational simulations
of molecular dynamics showed a slow characteristic decay,
i.e., long-time tails of the VACF [1,2]. The numerical calcu-
lations, for a hard-core potential, established that the VACF
has an asymptotic algebraic decay ∼ t−3/2 [3]. This algebraic
decay was obtained from different theoretical approaches
[4–9]. Experimental evidence supports this asymptotic behav-
ior [10–15].

In addition to long-time tails, there are other dynamical
features of the VACF observed in the early numerical exper-
iments. Alder and Wrainwright [16] found negative temporal
intervals of the VACF in molecular dynamics simulations for
high densities of hard spheres [2,16]. Also Rahman showed
negative correlations and an oscillatory behavior for the VACF
in simulations of molecules of liquid argon interacting with a
Lennard-Jones potential [1]. More recently, negative tails have
been detected in supercooled liquid argon [17], supercooled
liquid water [18], and hydrogen fluoride [19]. Oscillations
have been observed in high-density amorphous ice [20]. Some
features of the VACF such as oscillations and negative corre-
lations have been studied from several theoretical approaches
[21–23].

Also, the VACF and the mean square displacement (MSD)
of a particle in a fluid have been studied in the theoreti-
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cal frame of the generalized Langevin equation (GLE) with
Basset and Stokes forces [24,25]. This framework has been
applied in experimental research [26,27].

In particular, Mainardi and collaborators [28–30] modeled
the movement of a particle in an incompressible viscous fluid.
They used the classic viscous drag of the Stokes force, and
incorporated the Basset force to take into account the retarding
effects and the added mass. In the framework of a fractional
Langevin equation they show that their model reproduces
the asymptotic behavior of the VACF proportional to t−3/2,
and the linear temporal behavior of the MSD for long times
corresponding to the normal diffusion. In addition, they found
the analytical expression of the VACF as a combination of two
Mittag-Leffler functions of order 1/2. From this result they
proved that the VACF is a monotonic decreasing function.
Therefore they can obtain neither oscillations nor negative
correlations of the VACF. Recently Grebenkov and Vahavi
[24] considered a GLE in order to describe thermal motion of
a tracer in a viscoelastic medium with Basset force and Stokes
force. As frictional memory kernel of the Stokes force they
used a power law ∼ t−α that recovers Mainardi’s model for
the particular case of a free particle with α = 1, corresponding
to normal diffusion.

An analytically solvable model of GLE with generalized
Stokes force and hydrodynamic interactions that reproduces
normal diffusion for long times, positive algebraic decay of
the VACF ∼ t−3/2, oscillations, and negative correlations of
the VACF is still missing in literature.

In this sense we propose a GLE model for a free Brow-
nian particle with hydrodynamic interactions and frictional
exponential memory kernel. We show that this model can
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reproduce positive asymptotic decay of the VACF ∼ t−3/2

and the typical linear behavior of the MSD at sufficiently
long times, i.e., normal diffusion. We obtain the analytical
expressions of the VACF and MSD in terms of a finite sum
of Mittag-Leffler functions, that allows us to do a complete
theoretical analysis for all times. From a straightforward
implementation we obtain oscillations and negative temporal
intervals of the VACF and ripples in the MSD for certain
values of the parameters involved.

This paper is organized as follows. In Sec. II we present
a model for a free particle with a frictional memory kernel
and hydrodynamic interactions. We also obtain the formal
expressions of the VACF and the MSD since they are the
magnitudes often reported in experimental papers; further-
more they characterize the dynamics of the particle. In Sec. III
we obtain the analytical expressions of the VACF and MSD
for the case of a free particle with an exponential frictional
memory kernel and hydrodynamic interactions. Sec. IV is
devoted to the analysis of the temporal behaviors of the VACF
and the MSD. Finally, the conclusions are presented in Sec. V.
In the Appendix we deal with some technical aspects related
to the mathematical expressions of the VACF.

II. MODEL AND FORMAL EXPRESSIONS OF THE VACF
AND THE MSD

Following Refs. [24,26,28–30] we consider a phenomeno-
logical model based on a GLE. The application of Newton’s
second law to a spherical particle of radius a and mass m
produces

mv̇(t ) = FS (t ) + FB(t ) + F (t ), (1)

where m = 4
3πa3ρp, with ρp the density of the particle. FB(t )

is the Basset force that takes into account hydrodynamic in-
teractions of a spherical particle of radius a with surrounding
fluid [31]:

FB(t ) = −m f

2
v̇(t ) − 6a2√πρ f η

∫ t

−∞
dt ′ v̇(t ′)

(t − t ′)
1
2

, (2)

where m f = 4
3πa3ρ f , and ρ f and η are the fluid density and

viscosity respectively. The first term of Eq. (2) is related to
the force due to the displaced mass of the fluid by the particle.
The second term accounts for the retarded force due to the
motion of the viscous unsteady flow around the sphere [32].
FS (t ) is the generalized Stokes force with a friction memory
kernel �s(t ), which is usually used for modeling viscoelastic
properties from the environment:

FS (t ) = −
∫ t

−∞
dt ′�s(t − t ′)v(t ′). (3)

The random force F (t ) is a zero-centered and stationary
Gaussian. Based on Refs. [28–30,33], Eq. (1) can be written
as a generalized Langevin equation,

v̇(t ) +
∫ t

−∞
dt ′γ (t − t ′)v(t ′) = F (t )

M
, (4)

where

M = m + m f

2
= m

(
1 + r

2

)
(5)

is the effective mass, and we have introduced the dimen-
sionless parameter r = ρ f /ρp. On the other hand, γ (t ) is the
effective memory kernel,

γ (t ) = γs

τ
e−t/τ 	(t ) − γh

t−3/2

2
√

π
	(t ), (6)

where 	(t ) is the Heaviside step function.
The exponential term in the right side of Eq. (6) corre-

sponds to the memory kernel in the Stokes force in our model,
i.e., �s(t )/M = γs

τ
e−t/τ 	(t ), where τ is the characteristic

memory time of the friction interaction and γs is the friction
coefficient for unit mass:

γs = 6πaη

M
= 9

(2 + r)

(
η

ρp a2

)
. (7)

The parameter γh introduced in the second term of Eq. (6),
given by

γh = 6πa2

M
√

ρ f η = 9 r1/2

(2 + r)

√
η

ρp a2
, (8)

characterizes the hydrodynamic interactions [24,26].
It is important to note from Eq. (8) that when r � 1,

γh ≈ 0, which corresponds to a heavy particle in comparison
with the fluid (i.e., ρp � ρ f ). In this limit case the hydrody-
namic interactions can be ignored and Eq. (1) corresponds to
a GLE for a free particle without Basset force. On the other
hand, the effects of the hydrodynamic interactions are more
relevant when r � 1, which corresponds to a light particle in
comparison with the fluid (i.e., ρp � ρ f ) [28].

Finally, we note that the random force F (t ) is connected
with the effective memory kernel via the second fluctuation-
dissipation theorem [34,35],

〈F (t )F (t ′)〉 = kBT M γ (|t − t ′|), (9)

where kB is the Boltzmann constant and T is the absolute
temperature of the environment.

The calculations to follow are simplified by noting that
Eq. (4) can be rewritten as [33,34,36]

v̇(t ) +
∫ t

0
dt ′γ (t − t ′)v(t ′) = f (t )

M
, (10)

where the random force f (t ) in Eq. (10) is given by

f (t ) = F (t ) − M
∫ 0

−∞
dt ′γ (t − t ′)v(t ′). (11)

From Eqs. (4), (9), (10), and (11) the random force f (t ) gets
[33] the following properties:

〈v(0) f (t )〉 = 0, (12)

〈 f (0) f (t )〉 = kBT M γ (|t |). (13)

That is, the random force f (t ) does not correlate with v(0)
and obeys the second fluctuation dissipation theorem [34].

As is widely known, the velocity autocorrelation function
contains fundamental dynamical information. In a normalized
form, we write the VACF as

Cv (t ) = 〈v(0)v(t )〉
〈v2(0)〉 , (14)
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where 〈v2(0)〉 = kBT/M. We multiply Eq. (10) by v(0) to
perform an ensemble average 〈 〉, and by using Eqs. (12) and
(14), we obtain

Ċv (t ) +
∫ t

0
dt ′γ (t − t ′)Cv (t ′) = 0. (15)

Taking the Laplace transform of Eq. (15), we get

Ĉv (s) = 1

s + γ̂ (s)
, (16)

where γ̂ (s) is the Laplace transform of the effective memory
kernel. The preceding equation is the first fluctuation dissipa-
tion theorem in the Laplace domain [28].

The MSD of a particle starting at the origin at t0 = 0 is
given by [28]

〈x2(t )〉 = 2 〈v2(0)〉
∫ t

0
dt1

∫ t1

0
dt ′Cv (t ′). (17)

From Eqs. (17) and (16) one can show that the Laplace
transform of the MSD reads

̂〈x2(s)〉
2〈v2(0)〉 = Ĉv (s)

s2
= s−2

s + γ̂ (s)
. (18)

Finally, note that Eq. (18) in the time domain reads

Cv (t ) = 1

2〈v2(0)〉
d2〈x2(t )〉

dt2
. (19)

In the next section, we give explicit analytical expressions for
the VACF and the MSD.

III. ANALYTICAL EXPRESSIONS OF THE VACF
AND THE MSD

The Laplace transform of effective friction kernel given in
Eq. (6) reads

γ̂ (s) = γs

1 + sτ
+ γhs1/2. (20)

By inserting Eq. (20) in Eq. (16) we obtain the Laplace
expression for Cv (t ), which reads

Ĉv (s) = 1 + sτ

τ s2 + γhτ s3/2 + s + γhs1/2 + γs
. (21)

It is worth noticing that, for τ = 0, the Laplace inversion of
Eq. (21) corresponds to the VACF obtained by Mainardi et al.
[28], and for γh = 0 (without hydrodynamics interactions) it
corresponds to the VACF of a free particle interacting with an
exponential frictional memory kernel [37]. Equation (21) can
be written as

Ĉv (s) = (1 + sτ )Ĝ(s), (22)

where G(t ) is the Laplace inverse of

Ĝ(s) = 1

τ s2 + γhτ s3/2 + s + γhs1/2 + γs
. (23)

Therefore

Cv (t ) = G(t ) + τ G′(t ). (24)

We rewrite Eq. (23) as
τ

Ĝ(s)
≡ τ 2s2 + γhτ

2s3/2 + sτ + γhτ s1/2 + γsτ. (25)

Following an approach similar to that given in Ref. [24],
we introduce the variable z = (sτ )1/2, making Eq. (25) a
polynomial in z of degree 4:

τ

Ĝ(s)
≡ P(z) = z4 + γ ∗

h z3 + z2 + γ ∗
h z + γ ∗

s . (26)

In this equation we have introduced the dimensionless param-
eters

γ ∗
h = γhτ

1/2, (27)

γ ∗
s = γsτ (28)

The polynomial P(z) defined in Eq. (26) has four complex
roots z j , which can be obtained analytically by using the
Ferrari formula [38]. Assuming that all roots are different (in
the Appendix we show all possible cases), we write

1

P(z)
=

4∏
j=1

1

z − z j
=

4∑
j=1

Aj

z − z j
, (29)

where the coefficients Aj are

Aj = 1

[P′(z)]z=z j

=
4∏

k = j

1

z j − zk
. (30)

Now, we consider the following Laplace transform∫ ∞

0
dt e−st tβ−1 Eα,β (ctα ) = 1

sβ−α (sα − c)
, (31)

where Eα,β (y) is the generalized Mittag-Lefler function [39]
defined by the series expansion

Eα,β (y) =
∞∑
j=0

y j

�(α j + β )
, α > 0, β > 0, (32)

Introducing z = (sτ )1/2 in Eq. (29) and making use of
Eq. (31), we obtain

G(t ) =
4∑

j=1

Aj (t/τ )−
1
2 E 1

2 , 1
2
[z j (t/τ )

1
2 ]. (33)

Using the identity

d

dt
[Eα (ctα )] = c tα−1 Eα,α (ctα ), (34)

where Eα (y) = Eα,1(y) is the one-parameter Mittag-Leffler
function [40], we can write

G(t ) =
4∑

j=1

Aj

z j
τ

d

dt
[E 1

2
[z j (t/τ )

1
2 ]]. (35)

Taking into account the expression for the Mittag-Leffler
derivative,

d

dt

[
E 1

2

[
z j (t/τ )

1
2
]] = τ−1/2t−1/2z j

�(1/2)
+ z j

2

τ
E 1

2
[z j (t/τ )

1
2 ],

(36)
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we get

G(t ) =
4∑

j=1

Aj
τ 1/2t−1/2

�(1/2)
+

4∑
j=1

Aj z jE 1
2

[
z j (t/τ )

1
2
]
. (37)

Considering the sum rules for coefficients and roots of a
polynomial [41],

4∑
j=1

Aj (z j )
m = 0, m = 0, 1, 2, (38)

and taking m = 0, we obtain

G(t ) =
4∑

j=1

Aj z j E 1
2
[z j (t/τ )

1
2 ]. (39)

Deriving Eq. (39), and using Eqs. (36) and (38), we arrive at

τ G′(t ) =
4∑

j=1

Aj z j
3 E 1

2

[
z j (t/τ )

1
2
]
. (40)

Replacing Eqs. (39) and (40) in Eq. (24), we get the following
expression of Cv (t ):

Cv (t ) =
4∑

j=1

Aj (z j + z j
3) E 1

2
[z j (t/τ )

1
2 ]. (41)

In particular, applying the formula from [41]

4∑
j=1

Aj (z j )
3 = 1, (42)

one can see that Cv (0) = 1, as we expected.
Using the identity [39]

∂

∂t

[
tβ−1 Eα,β (ctα )

] = tβ−2 Eα,β−1(ctα ) (43)

and Eq. (17), we can integrate the analytical expression of
Cv (t ), given by Eq. (41), to obtain the analytical expression
for 〈x2(t )〉:

〈x2(t )〉
2τ 2〈v2(0)〉 =

4∑
j=1

Aj (z j + z j
3)(t/τ )2E 1

2 ,3

[
z j (t/τ )

1
2
]
. (44)

The correlation functions given in Eqs. (41) and (44), which
are expressed as a sum of four Mittag-Leffler functions of
one and two parameters respectively, can be easily plotted.
In the next section we make use of this fact to explore the
temporal behavior of the correlation functions. In this sense it
is important to introduce two dimensionless parameters. From
Eqs. (27) and (28) we can obtain the following dimensionless
parameter δ, related to the ratio of densities r = ρ f /ρp:

δ = γ ∗
h

2

γ ∗
s

= 9 r

2 + r
, (45)

where we used Eqs. (8) and (7). From Eq. (45) we can
see that 0 < δ < 9; the limit cases correspond to r = 0 and
r = ∞ respectively [28,29].

Also we can get another independent dimensionless scale
number:

R = δ

γ ∗
s

= a2

ντ
, (46)

where we have used Eqs. (7), (28), and (45). Also we have
introduced the kinematic viscosity of the fluid given by
ν = η/ρ f . Then Eq. (20) can be rewritten as

γ̂ (s) = γ̂1(s)(1 +
√

R z (1 + z2)). (47)

where γ̂1(s) is the first term of the right-hand side of Eq. (20),
given by

γ̂1(s) = γs

1 + sτ
. (48)

From Eq. (47) we note that

lim
R→0

γ̂ (s) = γ̂1(s). (49)

This limit case corresponds to a free particle interacting with
an exponential frictional memory kernel.

Also after some algebra, Eq. (20) can be rewritten as

γ̂ (s) = γ̂2(s)

⎛
⎝1 + ( √

R z
1+√

R z

)
z2

1 + z2

⎞
⎠, (50)

where γ̂2(s) is given by

γ̂2(s) = γs + γhs1/2, (51)

which corresponds to Eq. (20) for τ = 0, and is the Laplace
transform of the effective memory kernel used by Mainardi
et al. [28]. From Eq. (50) we see that

lim
R→∞

γ̂ (s) = γ̂2(s). (52)

Therefore in this limit case the results presented in Ref. [28]
are expected to be reobtained.

IV. TEMPORAL BEHAVIORS OF THE VACF AND THE MSD

The analytical expressions (41) and (44) are the main
results of this work. In the following, we will analyze the time
behaviors of the VACF and the MSD for different regimes.
The short-time behaviors of these functions can be obtained
by introducing the series expansion (32) in Eqs. (41) and (44).
Then, in the short-time limit t → 0 we get

〈x2(t )〉
2〈v2(0)〉 ≈ t2

2
− 8γh

15
√

π
t

5
2 , (53)

Cv (t ) ≈ 1 − 2γh√
π

t
1
2 (54)

where we have used Eqs. (38) and (42) and the result [41]

4∑
j=1

Aj (z j )
4 = −γhτ

1/2. (55)

The leading term of the expansion of MSD in Eq. (53) shows
that the particle undergoes ballistic diffusion when the time is
very small. The second term comes from the influence of the
Basset force and it is independent of τ and γs. Therefore, the
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expansion is the same as that obtained for the case where the
friction memory kernel in the Stokes force is modeled by a
white noise. The expression (53), to this order, is consistent
with the analytical result from the VACF obtained by [24]
with a friction memory kernel decaying as a power law (white
noise corresponding to α = 1). The expansion (54) for the
VACF shows that it has a concave initial curvature due to the
influence of the Basset force, and, as occurs with the MSD,
the temporal behavior of the VACF is independent of τ and γs

in the short-time limit.
Now, we obtain the temporal asymptotic behaviors of

the VACF and the MSD at very long times, i.e., t → ∞.

Using Eqs. (18) and (21), and the thermic initial condition
〈v2(0)〉 = kBT

M , we obtain

̂〈x2(s)〉
2 kBT

M

= s−2(sτ + 1)

τ s2 + γhτ s3/2 + s + γhs1/2 + γs
. (56)

For s → 0 we get

̂〈x2(s)〉
2 kBT

M

≈ s−2

γhs1/2 + γs
≈ s−2

γs

(
1 − γh

γs
s1/2

)
. (57)

By Tauberian theorems [42] we derive the asymptotic expres-
sion of the mean square displacement for t → ∞,

〈x2(t )〉 ≈ 2
kBT

M

t

γs
− 2

kBT

M

γh

γs
2

2 t
1
2√
π

(58)

that can be written as

〈x2(t )〉 ≈ 2 D t − 4 D
γh

γs

t
1
2√
π

, (59)

where D = kBT
Mγs

is the diffusion coefficient. In the long-time
limit, the MSD exhibits a linear behavior which corresponds
to normal diffusion, i.e., 〈x2(t )〉 ≈ 2 D t . However, the Basset
force, responsible for the algebraic decay of the velocity
autocorrelation function, produces a retarding effect (∝ t

1
2 )

before the temporal linear behavior is established [28,30].
On the other hand, based on the relationship between

the VACF and the MSD given in Eq. (19), we derived the
asymptotic expression of 〈x2(t )〉 given in Eq. (59) and we
found that the asymptotic behavior of Cv (t ) for t → ∞ is

Cv (t ) ≈ γh

γs
2

t− 3
2

2
√

π
. (60)

As we point out in the Introduction, the long-time asymp-
totic behavior on the VACF (∝ t− 3

2 ) expressed by Eq. (60)
was early observed by Alder and Wainwright in computer
simulations [3] and it was also theoretically derived from
different approaches. Our asymptotic expression for the VACF
is in complete agreement with those equations obtained by
Mainardi and collaborators [28,30]. However, as we will see,
at intermediate times, from the main expressions Eqs. (41)
and (44), the VACF and MSD respectively have significant
qualitative and quantitative differences with those models.

The selection of γs
∗ and γh

∗ defines the dynamic charac-
teristics of the system, since the ratio of densities between

particle and fluid is set through δ [Eq. (45)] and also the scale
number R [Eq. (46)] sets a relation between the kinematic
viscosity, the size of the particle, and the Stokes memory
characteristic time τ .

Taking into account the limit cases presented at the end
of Sec. III, we have inspected the analytical expressions
obtained for the VACF and MSD given by Eqs. (41) and (44)
respectively, for different values of the parameters γ ∗

h and γ ∗
s .

In what follows, we present some results obtained from the
calculation of the VACF and MSD given by Eqs. (41) and (44)
respectively. In Fig.(1) we plot the VACF (41) as a function of
t/τ for three sets of values of the dimensionless parameters
γ ∗

h and γ ∗
s .

The upper panel Fig. 1(a) displays the VACF for γ ∗
h = 2

and γ ∗
s = 1; in this case, we obtain a positive monotonic decay

for all times. In Fig. 1(b), corresponding to γ ∗
h = 0.5 and

γ ∗
s = 0.7472, we can see that the VACF exhibits a different

behavior with respect to the previous set of values shown in
Fig. 1(a). The VACF remains positive as in Fig. 1(a) but it
reaches a zero value. The inset in Fig. 1(b) is a magnification
of the zone where the VACF takes its root, and shows that
the curve remains positive without crossing the axes. A more
complex dynamic behavior is obtained for γ ∗

h = 0.1 and
γ ∗

s = 5, as we see in the lower panel Fig. 1(c). The VACF
exhibits oscillations and multiple zero crossings, showing
transitions between positive and negative correlations of the
velocity. As we expected, the oscillations of the VACF at-
tenuate and converge to zero with time. Note that the VACF
has positive concavity at short times, according to Eq. (54).
That is clearly seen in Fig. 1(a) and 1(b) but it would need
a magnification at very short times in Fig. 1(c). Finally, in a
schematic sense, the VACF in Fig. 1(b) can be understood as a
limiting case between a strictly positive nonmonotonic decay
and a nonmonotonic decay with zero crossings.

The MSD given by Eq. (44) is shown in Fig. 2 as a function
of t/τ for the same set of parameters γ ∗

h and γ ∗
s , corre-

sponding to the cases already shown for the VACF in Fig. 1.
Figure 2(a) shows that the MSD of a particle, for γ ∗

h = 2 and
γ ∗

s = 1, starts with a quadratic time dependency, in agreement
with Eq. (53), which represents ballistic diffusion. Then, as
expected, for sufficiently long times the MSD reaches a linear
behavior which is typical of normal diffusion. We obtain a
similar behavior for γ ∗

h = 0.5 and γ ∗
s = 0.7472 as we see in

Fig. 2(b). But a different result occurs at intermediate times
for γ ∗

h = 0.1 and γ ∗
s = 5, as shown in Fig. 2(c). A clear

rippling appears at intermediate times in the MSD. These
ripples correspond to the VACF presenting oscillations in
Fig. 1(c), while Fig. 2(a) is associated with the VACF in
Fig. 1(a) that has no oscillations. We know that the zero of the
VACF in Fig. 1(b) does not have appreciable consequences on
the MSD, as we see in Fig. 2(b).

Actually, the behaviors of MSD and VACF displayed in the
results are related through Eq. (19). The concavity of the MSD
is determined by the VACF sign; indeed the ripples observed
in the plot of MSD are a consequence of sign changes on the
VACF. The ripples observed in the plot of MSD, Fig. 2(c), are
a consequence of sign changes of the VACF in Fig. 1(c). In
addition, no ripple appears when the VACF has no change of
sign, as shown in Figs. 1(a) and 1(b), where both cases have
Cv (t ) � 0 for all times.

052140-5



VIÑALES, CAMUYRANO, AND PAISSAN PHYSICAL REVIEW E 101, 052140 (2020)

FIG. 1. Velocity autocorrelation function, Cv (t ), given by
Eq. (41) as a function of t/τ , for different values of the dimension-
less parameters γ ∗

h and γ ∗
s . Three types of behavior are exhibited:

(a) monotonical decay for γ ∗
h = 2 and γ ∗

s = 1, (b) nonmonotonical
decay limit with a zero but without zero crossings for γ ∗

h = 0.5
and γ ∗

s = 0.7472, (c) nonmonotonical decay with zero crossings for
γ ∗

h = 0.1 and γ ∗
s = 5.

FIG. 2. Mean square displacement, MSD, given by Eq. (44) as
a function of t/τ . For the same set of values presented in Fig. 1
we have (a) monotonical and concave up curve for γ ∗

h = 2 and
γ ∗

s = 1, (b) monotonical and concave up curve for γ ∗
h = 0.5 and

γ ∗
s = 0.7472, (c) monotonical behavior showing ripples at interme-

diate times for γ ∗
h = 0.1 and γ ∗

s = 5.
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It is worth noting that the presence of ripples in the MSD
have not been observed in the model presented by Mainardi
et al. [30].

V. SUMMARY AND CONCLUSIONS

In this work we present a GLE model for a free particle
interacting with the environment trough the Stokes and Basset
forces. As the Stokes memory kernel we use an exponential
function. We derive the analytical expressions for the VACF
and the MSD. Our results, at short and long times, are con-
sistent with those analytically obtained in previous models
[24,30]. It is at intermediate times, in the transient state, where
the model makes its main contribution. From the analytical
expression of the VACF we obtain an oscillatory behavior
and negative correlations for certain sets of parameters. These
dynamical features resemble those that were observed from
pioneering papers of molecular simulation.

On the other hand, the model presented by Mainardi and
collaborators in [28], for a free particle interacting with a
Stokes and Basset forces, uses a Dirac delta function as Stokes
memory kernel [28–30]. They showed that the VACF is a de-
creasing function, completely monotonic and positive, tending
to zero from above when t → ∞. As a consequence, the cor-
responding expression for the VACF from that model provides
neither negative correlations nor oscillations. Our results for
the VACF show oscillations and negative correlations due to
the fact that we introduce an exponential function as Stokes
memory kernel in substitution of the Dirac’s delta function.
In this sense our model can be considered as an extension
or generalization of their model. We explain the emerging
features such as negative correlations and oscillations due to
the introduction of a characteristic time through the exponen-
tial friction kernel. In this way, the present model catches
characteristic physical aspects that have been observed on
the VACF since the first simulations of molecular dynamics
[1,2,16].

As we have shown in Eq. (49), the hydrodynamic interac-
tions can be neglected when R → 0, in this case the VACF
corresponds to a free particle driven by an exponential noise.
In this situation it is well known [37] that only three types of
temporal behavior are obtained for the VACF: underdamped
behavior for γs

∗ > 1/4, overdamped behavior for γs
∗ < 1/4,

and critical behavior for γs
∗ = 1/4. From this analysis, we

note that the oscillatory behavior obtained in Fig. 1(c) is
in agreement with the expected result, since for this case
R = 0.0004 � 1 and γs

∗ = 5 > 1/4, that corresponds to the
underdamped behavior. One way to understand the physical
meaning of the limit R → 0 is to take the limit δ → 0 in
Eq. (46). In accordance with Eq. (45), δ → 0 is a consequence
of r → 0, which corresponds to a heavy particle in compari-
son with the fluid (i.e., ρp � ρ f ).

On the other hand when R → ∞ [Eq. (52)] we get the
VACF obtained by Mainardi et al. [28]. Therefore for this
limit case we expect a monotonic behavior for the VACF.
Since 0 < δ < 9, the limit R → ∞ only can be obtained when
γs

∗ → 0, and it can be achieved for τ → 0, which correspond
to the model presented by Mainardi et al. [30]. They report
a MSD without ripples [which is qualitatively similar to our
result in Fig. 2(a)], and they show that it corresponds to an
effective superdiffusion at intermediate times before reaching

the normal diffusion regime. In contrast, our model does
show ripples at intermediate times before the normal diffusion
is established at long times, which suggests an alternation
between effective superdiffusive and subdiffusive processes
before reaching a regime of normal diffusion. Finally, let us
note that the ripples in the MSD are a manifestation of the
appearance of negative correlation of the velocity.

APPENDIX: ANALYSIS OF P(z)

From Eq. (26) we introduce

P0(z) = P(z) − e = z4 + bz3 + z2 + bz = z(z + b)(1 + z2),

(A1)

where e = γ ∗
s and b = γ ∗

h , both positive numbers.
The roots of polynomial function P0(z) can be calcu-

lated immediately since it is easily factorized with two real
roots z1 = 0 and z2 = −b and two complex roots z3 = i and
z4 = −i.

It is easy to see that P0(z) and P(z) share the minimum
position zmin since the difference between them is only a
constant; zmin is located between the real roots, that is, within
the interval (−b, 0), and can be obtained from

0 = dP0(z)

dz
= 4z3 + 3bz2 + 2z + b

We are interested only in the real root of this cubic polyno-
mial, which is

zmin(b) = −b

4

+
3
[
4
√

b4 − 1
3 b2 + 32

27 − b(b2 + 4)
]2/3 + 3b2 − 8

12
[
4
√

b4 − 1
3 b2 + 32

27 − b(b2 + 4)
]1/3

.

(A2)

The type of roots of the polynomial function P(z) are going
to be determined by the minimum value of P(z) given by
P(zmin(b)) = P0(zmin(b)) + e. Then there are three different
situations:

(1) If P(zmin(b)) > 0 or e > −P0(zmin(b)), there are no real
roots, therefore there are two pairs of complex conjugate roots
(four different complex roots)

0zminb
z

P0 zmin

P0 z

FIG. 3. Illustrative plot of P0(z) = P(z) − e that always presents
two real roots: it has a root at zero and the other one at the negative
number −b.
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0.2 0.4 0.6 0.8 1 b

0.05

0.1

0.15

0.2

0.25

0.3

e
4 complex roots
Region

1 double real root
2 complex roots

2 real roots
2 complex roots
Region

FIG. 4. Classification map in the e vs b parameter space for the
type of roots of the polynomial function P(z). The upper region
corresponds to two complex roots and their complex conjugate. The
lower region corresponds to two real roots, a complex root, and the
corresponding complex conjugate. The solid line corresponds to a
double real root, a complex root, and the corresponding complex
conjugate one.

(2) If P(zmin(b)) = 0 or e = −P0(zmin(b)), there are a dou-
ble real negative root and two complex conjugate ones.

(3) If P(zmin(b)) < 0 or e < −P0(zmin(b)), there are two
different real negative roots and two complex conjugate roots.

Figure 4 shows two main regions for the set of parameters
e and b. The upper region corresponds to P(z) with four differ-
ent roots (two different complex roots and the corresponding
complex conjugate ones). The lower region corresponds to
P(z) with also four different roots (two different real roots, a
complex root, and the complex conjugate one). The solid line
that separates the two regions corresponds to P(z) with a dou-
ble real root, a complex root and the complex conjugate one.

Now we are going to prove that the polynomial function
(26) cannot have two double complex roots. Since the poly-

nomial function Eq. (26) has real and positive coefficients, if
it has a complex root zz then its conjugate z̄z is also a root.
Taking the conjugate of the polynomial function (26), we get

P̄(z) = z̄4 + bz̄3 + z̄2 + bz̄ + e = P(z̄). (A3)

Then if zz is a root of Eq. (26), P(zz ) = 0, using Eq. (A3) also
z̄z is a root of Eq. (26), P(z̄z ) = 0. If it has two double complex
roots z1 and z2, then they have to be complex conjugate, z2 =
z̄1. Then Eq. (26) can be written

P(z) = (z − z1)2(z − z̄1)2, (A4)

and it follows that

P(z) = z4 − 4 Re (z1)z3 + 2(2[Re (z1)]2 + |z1|2)z2

− 4 Re (z1)|z1|2z + |z1|4. (A5)

Comparing with Eq. (26) we obtain

b = −4 Re (z1) = −4 Re (z1)|z1|2, (A6)

1 = 2 (2[Re (z1)]2 + |z1|2). (A7)

From Eq. (A6) we obtain |z1| = 1; replacing the result in
Eq. (A7) we obtain

[Re (z1)]2 = − 1
4 , (A8)

which is an absurd result. Then Eq. (26) cannot have two
double complex roots.

Finally it is straightforward to show that the polynomial
cannot have a quadruple real root or two double complex
roots.
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