
PHYSICAL REVIEW E 101, 052139 (2020)

Viscous-viscoelastic correspondence principle for Brownian motion
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Motivated by the classical expressions of the mean-square displacement and the velocity autocorrelation
function of Brownian particles either suspended in a Newtonian viscous fluid or trapped in a harmonic potential,
we show that for all timescales the mean-square displacement of Brownian microspheres with mass m and
radius R suspended in any linear, isotropic viscoelastic material is identical to the creep compliance of a linear
mechanical network that is a parallel connection of the linear viscoelastic material with an inerter with distributed
inertance mR = m

6πR . The synthesis of this mechanical network leads to the statement of a viscous-viscoelastic
correspondence principle for Brownian motion which simplifies appreciably the calculations of the mean-square
displacement and the velocity autocorrelation function of Brownian particles suspended in viscoelastic materials
where inertia effects are non-negligible at longer timescales. The viscous-viscoelastic correspondence principle
established in this paper by introducing the concept of the inerter is equivalent to the viscous-viscoelastic analogy
adopted by Mason and Weitz [T. G. Mason and D. A. Weitz, Phys. Rev. Lett. 74, 1250 (1995)].

DOI: 10.1103/PhysRevE.101.052139

I. INTRODUCTION

In microrheology, the macroscopic frequency and time-
response functions of linear viscoelastic materials are ex-
tracted by monitoring the thermally driven Brownian motion
of probe microspheres suspended within the viscoelastic ma-
terial and subjected to random forces. The thermal fluctua-
tions of the suspended probe particles have been monitored
either with diffusing wave spectroscopy [1–5] or with laser
interferometry [6–10] with nanometer spatial resolution and
submicrosecond temporal resolution. In their seminal paper,
Mason and Weitz [1] derived an expression that relates the
complex dynamic modulus Gve(s) of the viscoelastic mate-
rial surrounding the probe microspheres with the Laplace
transform of the mean-square displacement 〈�2(s)〉 of the
suspended microspheres with mass m and radius R. While the
original Mason and Weitz [1] expression includes an inertia
term, it was noted that it is negligible in the applications of
interest except at very high frequencies. Accordingly, subse-
quent publications [3,8,11–13] neglected the inertia term ms2

and concentrated on the relation in the frequency domain

Gve(s) = NKBT

3πRs〈�2(s)〉 , (1)

where s is the Laplace variable, N ∈ {1, 2, 3} is the number of
spatial dimensions, KB is Boltzmann’s constant, and T is the
equilibrium temperature. By noting that the Laplace transform
of the creep compliance Jve(t ) (strain history due to a unit
step stress) is L{Jve(t )} = ∫ ∞

0 Jve(t )e−st dt = 1
sGve(s) , Xu and

co-workers [4,5] presented the relation in the time domain

〈�r2(t )〉 = NKBT

3πR
Jve(t ) (2)
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which relates the mean-square displacement 〈�2(t )〉 of the
suspended Brownian particles with the creep compliance
Jve(t ) of the viscoelastic material within which the Brow-
nian particles are suspended. Palmer et al. [4] and in a
subsequent paper Xu et al. [5] acknowledged that Eq. (2)
neglects inertia effects and indicated that for the limiting
case of Brownian motion of microspheres in a Newtonian
fluid with viscosity η, Eq. (2) predicts the classical Einstein
[14] result 〈�r2(t )〉 = NKBT

3πR
1
η
t , since the creep compliance

of the Newtonian viscous fluid is Jve(t ) = 1
η
t [15]. Clearly,

Eq. (2) yields the classical Einstein [14] result, valid for
longer timescales, because the inertia term ms2 in the original
Mason-Weitz [1] equation was neglected. At short timescales
[9,10,16], when t < m

6πRη
= τ , the Brownian motion of sus-

pended particles is influenced by the inertia of the particle
and the surrounding fluid and Einstein’s “long-term” result
was extended for the entire time regime by Uhlenbeck and
Ornstein [17]

〈�r2(t )〉 = NKBT

3πR

1

η
[t − τ (1 − e−t/τ )], (3)

where τ = m
6πRη

is the dissipation timescale of the perpetual
fluctuation-dissipation process.

The quantity in square brackets on the right-hand side of
Eq. (3) which accounts for inertia effects is a time-response
function that is different from the creep compliance of the
surrounding Newtonian viscous fluid Jve(t ) = 1

η
t . In the fol-

lowing section we show that the creep compliance J (t ) =
1
η
[t − τ (1 − e−t/τ )] is the creep compliance (retardation func-

tion) of a linear network where a dashpot with viscosity η is
connected in parallel with an inerter with distributed inertance
mR = m

6πR .
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FIG. 1. Inertoviscous fluid which is a parallel connection of an
inerter with distributed inertance mR with units [M][L]−1 and a
dashpot with viscosity η with units [M][L]−1[T]−1. In analogy with
the traditional schematic of a dashpot that is a hydraulic piston,
the distributed inerter is depicted schematically with a rack-pinion-
flywheel system [26].

II. INERTOVISCOUS FLUID

The equation of motion of Brownian microspheres with
radius R and mass m, suspended in a Newtonian viscous
fluid with viscosity η when subjected to the random forces
fR(t ) that originate from the collisions of the fluid molecules
on the Brownian particles (microspheres) is described by the
Langevin equation [18–20]

m
dv(t )

dt
= −ζv(t ) + fR(t ), (4)

where v(t ) = dr(t )
dt is the particle velocity and ζv(t ) is a vis-

cous drag force proportional to the velocity of the Brownian
particle. For a memoryless viscous fluid with viscosity η, the
drag coefficient is given by the Stokes law ζ = 6πRη [21].
Upon dividing with the mass m of the particle, Eq. (4) assumes
the form

dv(t )

dt
+ 1

τ
v(t ) = fR(t )

m
, (5)

where τ = m
6πRη

. The random excitation fR(t ) has a zero
average value over time 〈 fR(t )〉 = 0, while for the memory-
less viscous fluid that only dissipates energy, the correlation
function contracts to a Dirac delta function [22]

〈 fR(t1) fR(t2)〉 = Aδ(t1 − t2), (6)

with A a constant that expresses the strength of the random
forces.

Given the random nature of the excitation force fR(t ), the
Langevin equation (5) can be integrated in terms of ensemble
averages in association with Eq. (6) and the mean-square dis-
placement of particles suspended in a viscous fluid is offered
by Eq. (3) [17,23]. The synthesis of the proposed macroscopic
mechanical network is suggested from the left-hand side of
the Langevin equation (5), which consists of an inertia term
and a viscous term acting in parallel to balance the random
force fR(t ). Accordingly, we examine the frequency and time-
response functions of the inertoviscous fluid shown in Fig. 1

which is a parallel connection of a dashpot with viscosity η,
with an inerter with distributed inertance mR [24,25].

An inerter is a linear mechanical element for which, at
the force-displacement level, the output force is proportional
only to the relative acceleration of its end nodes (terminals)
[24–27] and complements the set of the three elementary me-
chanical elements, the other two elements being the traditional
elastic spring and the viscous dashpot. In a force-current–
velocity-voltage analogy, the inerter is the mechanical analog
of the electric capacitor and its constant of proportionality is
the inertance with units of mass [M]. For instance, a driving
spinning top (with a steep lead angle) is a physical realization
of an inerter, since the driving force is only proportional to
the relative acceleration of its terminals. At the stress-strain
level, the constant of proportionality of the inerter shown
schematically in Fig. 1 is the distributed inertance mR with
units [M][L]−1 (i.e., Pa s2).

Given the parallel connection of the dashpot and the inerter
shown in Fig. 1, the constitutive law of the inertoviscous fluid
is

τ (t ) = η
dγ (t )

dt
+ mR

d2γ (t )

dt2
. (7)

The Laplace transform of Eq. (7) gives

τ (s) = G(s)γ (s) = (ηs + mRs2)γ (s), (8)

where G(s) = ηs + mRs2 is the complex dynamic modulus.
The complex dynamic compliance of the inertoviscous fluid
given by Eq. (7) is

J (s) = 1

G(s)
= 1

ηs + mRs2
= 1

η

(
1

s
− 1

s + 1
τ

)
, (9)

where τ = mR
η

is the dissipation time, which is the timescale
needed for the kinetic energy stored in the inerter with dis-
tributed inertance mR to be dissipated by the dashpot with
viscosity η. For the inertoviscous fluid described by Eq. (7)
and the Brownian-particle–Newtonian-fluid system described
by the Langevin equation (5) to have the same dissipation time
τ = mR

η
= m

6πRη
, the distributed inertance of the inerter needs

to assume the value mR = m
6πR .

The Laplace transform of the creep compliance J (t ) is the
complex creep function C(s) = L{J (t )} = ∫ ∞

0 J (t )e−st dt =
J (s)

s [4,28,29]. Upon dividing Eq. (9) by the Laplace variable
s we obtain

C(s) = J (s)

s
= 1

η

[
1

s2
− 1

s
(
s + 1

τ

)
]

= 1

η

[
1

s2
− τ

(
1

s
− 1

s + 1
τ

)]
. (10)

The inverse Laplace transform of Eq. (10) offers the creep
compliance of the inertoviscous fluid

J (t ) = L−1{C(s)} = 1

η
[t − τ (1 − e−t/τ )]. (11)

By comparing the results of Eqs. (3) and (11), the mean-
square displacement 〈�r2(t )〉 of Brownian microspheres with
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radius R suspended in a memoryless viscous fluid with viscos-
ity η is given by

〈�r2(t )〉 = NKBT

3πR
J (t ). (12)

The creep compliance J (t ) appearing on the right-hand side
of Eq. (12) is not the creep compliance Jve(t ) = 1

η
t of the

viscous fluid within which the microspheres are suspended
as is approximated by Eq. (2) proposed in [4,5]; rather it is
the creep compliance of the inertoviscous fluid schematically
shown in Fig. 1 and expressed by Eq. (11). The inerter
connected in parallel with the viscous dashpot accounts for the
inertia effects on the Brownian-microsphere–Newtonian-fluid
system which prevail at short timescales [16,17,23]. As time
increases, Eq. (12) reduces to Eq. (2), leading to the classical
result 〈�r2(t )〉 = NKBT

3πR
1
η
t derived by Einstein [14], which

involves only the viscosity of the surrounding Newtonian
fluid.

III. BROWNIAN MOTION OF A PARTICLE IN A
HARMONIC TRAP

The Brownian motion of a particle in a harmonic trap
when excited by a random force fR(t ) has been studied by

Uhlenbeck and co-workers [17,23]. The equation of motion
of a microsphere with mass m in a harmonic trap with viscous
damping subjected to a random excitation force fR(t ) is

m
d2r(t )

dt2
+ ζ

dr(t )

dt
+ kr(t ) = fR(t ), (13)

where r(t ) is the particle displacement, ζ dr(t )
dt is a viscous drag

force, and kr(t ) is a linear restoring force proportional to the
displacement of the Brownian particle r(t ). Upon dividing by
the mass of the particle m, Eq. (13) gives

d2r(t )

dt2
+ 1

τ

dr(t )

dt
+ ω2

0r(t ) = fR(t )

m
, (14)

where τ = m
ζ

= m
6πRη

is the dissipation time and ω0 =
√

k
m

is the undamped natural angular frequency of the trapped
particle. For ω0τ > 1

2 the system described by Eq. (14) is
underdamped, for ω0τ = 1

2 the system is critically damped,
and for ω0τ < 1

2 the system is overdamped.
The mean-square displacement of a Brownian particle in

a harmonic trap has been evaluated by Wang and Uhlenbeck
[23] after computing the velocity autocorrelation function of
the random process described by Eq. (14). For the under-
damped case (ω0τ > 1

2 )

〈�r2(t )〉 = 2NKBT

mω2
0

[
1 − e−t/2τ

(
cos(ωDt ) + 1

2ωDτ
sin(ωDt )

)]
, (15)

where N ∈ {1, 2, 3} is the number of spatial dimensions, KB is
the Boltzmann constant, T is the equilibrium temperature of

the medium-particle system, and ωD = ω0

√
1−( 1

2ω0τ
)2 is the

damped angular frequency of the trapped particle.
The quantity in large square brackets on the right-hand side

of Eq. (15) is a time-response function and by following the
reasoning that introduced the inertoviscous fluid in Sec. II,
we are in search of a solidlike mechanical network whose
creep compliance J (t ) is of the form of the right-hand side
of Eq. (15). Again, the synthesis of the linear mechanical
network is suggested from the left-hand side of the Langevin
equation (14), which consists of an inertia term, a viscous
term, and a restoring term acting in parallel to balance the ran-
dom excitation fR(t ). Accordingly, we examine the frequency
and time-response functions of the inertoviscoelastic solid
shown in Fig. 2 which is a parallel connection of a spring with
elastic shear modulus G, a dashpot with viscosity η, and an
inerter with distributed inertance mR [25]. Given the parallel
connection of the three elementary mechanical idealizations
shown in Fig. 2, the constitutive law of the inertoviscoelastic
solid is

τ (t ) = Gγ (t ) + η
dγ (t )

dt
+ mR

d2γ (t )

dt2
. (16)

The Laplace transform of Eq. (16) is

τ (s) = G(s)γ (s) = (G + ηs + mRs2)γ (s), (17)

where G(s) = G + ηs + mRs2 is the complex dynamic modu-
lus, while the complex dynamic compliance is

J (s) = 1

G(s)
= 1

G + ηs + mRs2

= 1

mR

1(
s + 1

2τ

)2 + ω2
R − (

1
2τ

)2 , (18)
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FIG. 2. Inertoviscoelastic solid which is a parallel connection of
an inerter with distributed inertance mR, a dashpot with viscosity η,
and a linear spring with elastic shear modulus G.
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where again τ = mR
η

= m
6πRη

is the dissipation time and ωR =√
G

mR
is the undamped rotational angular frequency of the iner-

toviscoelastic solid. For the inertoviscoelastic solid described
by Eq. (16) and the Brownian particle in a harmonic trap
described by the Langevin equation (13) to have the same un-

damped natural frequency ωR =
√

G
mR

=
√

k
m = ω0, the shear

modulus needs to assume the value G = mR
m k. Given that

mR = m
6πR , the elastic shear modulus of the inertoviscoelastic

solid described by Eq. (16) is G = k
6πR , where k is the spring

constant of the harmonic trap appearing in Eq. (13).

The Laplace transform of the creep compliance J (t ) is
the complex creep function C(s) = ∫ ∞

0 J (t )e−st dt = J (s)
s and

Eq. (18) yields

C(s) = J (s)

s
= L{J (t )}

= 1

mR

1

s

1(
s + 1

2τ

)2 + ω2
R − (

1
2τ

)2 . (19)

The inverse Laplace transform of Eq. (19) offers the creep
compliance (retardation function) of the inertoviscoelastic
solid described by Eq. (16) [30],

J (t ) = 6πR

mω2
0

[
1 − e−t/2τ

(
cos(ωDt ) + 1

2τωD
sin(ωDt )

)]
, (20)

where ωD = ωR

√
1 − ( 1

2ωRτ
)2 = ω0

√
1 − ( 1

2ω0τ
)2 is the

damped angular frequency. In deriving Eq. (20) we used
mR = m

6πR . By comparing the results of Eqs. (15) and (20),
the mean-square displacement 〈�r2(t )〉 of a Brownian

microsphere with radius R in a harmonic trap (Kelvin-Voigt
solid) is given again by Eq. (12), where now J (t ) is the creep
compliance of the inertoviscoelastic solid given by Eq. (20).

In a dimensionless form Eq. (15) or (20), which is for the
underdamped case (ω0τ > 1

2 ), is expressed as

mω2
0

2NKBT
〈�r2(t )〉 = GJ (t )

= 1 − e−t/2τ

{
cos

[
ω0τ

√
1 −

(
1

2ω0τ

)2 t

τ

]
+ 1

2ω0τ

√
1 − (

1
2ω0τ

)2
sin

[
ω0τ

√
1 −

(
1

2ω0τ

)2 t

τ

]}
. (21)

For the overdamped case (ω0τ < 1
2 ), the normalized mean-square displacement of a Brownian particle in a harmonic trap is

mω2
0

2NKBT
〈�r2(t )〉 = GJ (t )

= 1 − e−t/2τ

{
cosh

[
ω0τ

√(
1

2ω0τ

)2

− 1
t

τ

]
+ 1

2ω0τ

√(
1

2ω0τ

)2 − 1
sinh

[
ω0τ

√(
1

2ω0τ

)2

− 1
t

τ

]}
. (22)

For small values of the dimensionless product ω0τ (weak
spring), Eq. (22) at early times contracts to the solution for
the Brownian motion of a particle in a Newtonian viscous fluid
since the inertia and viscous terms dominate over the elastic
term

mω2
0

2NKBT
〈�r2(t )〉 = (ω0τ )2

[
t

τ
− 1 + e−t/τ

]
. (23)

Equation (23) is obtained after multiplying both sides of
Eq. (3) with ω2

0 and replacing 1
η

with 6πRτ
m . Figure 3 plots

the normalized mean-square displacement given by Eqs. (21)
and (22) as a function of the dimensionless time t

τ
for various

values of ω0τ =
√

k
√

m
6πRη

=
√

G
√

mR

η
together with the results

from Eq. (23) for values of ω0τ = 0.2 and 0.3.

IV. STATEMENT OF THE CORRESPONDENCE
PRINCIPLE FOR BROWNIAN MOTION

The preceding analysis leads invariably to Eq. (12) re-
gardless of whether the Brownian particles are suspended
in a memoryless Newtonian fluid or a Kelvin-Voigt solid.
The proposed correspondence principle for Brownian mo-
tion is partly motivated by the classical work by Lee [31],
who established a correspondence principle between elas-
tic and viscoelastic stress analyses. Given the linearity of
viscoelastic constitutive laws, their time dependence is re-
moved by applying the Laplace transform and this enables
the response analysis of a viscoelastic problem in terms
of the solution of an associated elastic problem. With the
elastic-viscoelastic correspondence principle established by
Lee [31], the extensive literature in the theory of elastic-
ity can be utilized for solving problems in viscoelasticity
[32–34].
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FIG. 3. Normalized mean-square displacement of a Brownian
particle in a harmonic trap for the underdamped ω0τ > 1

2 , critically
damped ω0τ = 1

2 , and overdamped ω0τ < 1
2 cases which is equal

to GJ (t ) of the inertoviscoelastic solid shown in Fig. 2. For the
overdamped cases (weak spring) at early times, the time-response
functions of the Brownian particle in a harmonic trap coincide with
the corresponding time-response functions of a Brownian particle in
a viscous fluid with viscosity η.

The Laplace transform of Eq. (12) gives

〈�r2(s)〉 = NKBT

3πR

1

sG(s)
, (24)

where G(s) = 1
J (s) is the complex dynamic modulus of the

linear network shown on the right-hand side of Fig. 4, which
is a parallel connection of the linear viscoelastic material
with an inerter with distributed inertance mR = m

6πR . Given

the parallel connection, the complex dynamic modulus of
the linear network G(s) is the superposition of the complex
dynamic modulus of the linear viscoelastic material within
which the Brownian particles are immersed, Gve(s), and the
complex dynamic modulus of the inerter equal to mRs2 =

m
6πR s2,

G(s) = Gve(s) + m

6πR
s2. (25)

Substitution of Eq. (25) into Eq. (24) gives

〈�r2(s)〉 = NKBT

3πR

1

s
[
Gve(s) + m

6πR s2
] . (26)

For the classical case of Brownian motion of particles in a
memoryless Newtonian viscous fluid with viscosity η, the
Laplace transform of Eq. (3) gives

〈�r2(s)〉 = NKBT

3πR

1

s
(
ηs + m

6πR s2
) . (27)

Given that Gve(s) = ηve(s)s, where ηve(s) is the complex
dynamic viscosity of the linear isotropic viscoelastic material,
the direct analogy between Eqs. (26) and (27) leads to the
following viscous-viscoelastic correspondence principle for
Brownian motion: The mean-square displacement 〈�r2(t )〉 of
Brownian particles with mass m and radius R suspended in
a linear isotropic viscoelastic material (fluid or solid) due to
the random forces from the collisions of the molecules of the
viscoelastic material is identical to NKBT

3πR γ (t ), where γ (t ) =
J (t ) is the strain due to a unit step stress on a viscoelastic
network that is a parallel connection of the linear viscoelastic
material (within which the particles are suspended) and an
inerter with distributed inertance mR = m

6πR .
The velocity autocorrelation function of the

Brownian particles 〈v(0)v(t )〉 = 〈v(ξ )v(ξ + t )〉 =
limT →∞ 1

T

∫ T
0 v(ξ )v(ξ + t )dξ is related to the mean-square

Brownian motion of particles 
(microspheres) with mass m and 
radius R in a linear, isotropic 
viscoelastic material subjected to 
random forces. M=number of
probe microspheres.

Linear, Isotropic 
Viscoelastic Material

~=

Reference
Position

r j(t)

Δr 2(t) = γ(t)NKBT
3πR

1
M |rj(t)-rj(0)|2=

j=1
Σ

M

Linear, Isotropic 
Viscoelastic

Material

γ(t)=J(t) 

τ(t) 1 

t 

mR= m
6πR

FIG. 4. Statement of the correspondence principle for Brownian motion. The mean-square displacement 〈�r2(t )〉 of Brownian particles
(microspheres), with mass m and radius R suspended in some linear isotropic viscoelastic material when subjected to the random forces from
the collisions of the molecules of the viscoelastic material, is identical to NKBT

3πR γ (t ), where γ (t ) = J (t ) is the strain due to a unit step stress on
a viscoelastic network that is a parallel connection of the linear viscoelastic material and an inerter with distributed inertance mr = m

6πR .
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displacement 〈�r2(t )〉 in the Laplace domain via the identity

L{〈v(0)v(t )〉} = 〈v(0)v(s)〉 = s2

2
〈�r2(s)〉. (28)

Substitution of Eq. (24) into Eq. (28) gives

〈v(0)v(s)〉 = NKBT

6πR

s

G(s)
= NKBT

6πR

1

η(s)
, (29)

where η(s) is the complex dynamic viscosity of the mechan-
ical network shown on the right-hand side of Fig. 4. The in-
verse of the complex dynamic viscosity is known in rheology
as the complex dynamic fluidity φ(s) = 1

η(s) = γ̇ (s)
τ (s) [35,36]

and relates a strain-rate output to a stress input. Accordingly,
Eq. (29) is expressed as

〈v(0)v(s)〉 = NKBT

6πR
φ(s). (30)

In structural mechanics, the equivalent of the complex dy-
namic fluidity at the velocity-force level is known as the
mechanical admittance or mobility [37]. For the inertoviscous
fluid shown in Fig. 1, the complex dynamic fluidity derives
from Eq. (9),

φ(s) = s

G(s)
= 1

η(s)
= 1

η + mRs
= 1

mR

1

s + η

mR

, (31)

and according to the proposed correspondence principle as
expressed by Eq. (30), the velocity autocorrelation function
of Brownian particles suspended in a Newtonian viscous fluid
is

〈v(0)v(s)〉 = NKBT

6πR

1

mR

1

s + η

mR

. (32)

By using that the distributed inertance is mR = m
6πR and that

η

mR
= 6πRη

m = 1
τ

, the inverse Laplace transform of Eq. (32)
gives

〈v(0)v(t )〉 = NKBT

m
L−1

{
1

s + 1
τ

}
= NKBT

m
e−t/τ , (33)

which is the expected result for the velocity autocorrelation
function of Brownian particles suspended in a memoryless
viscous fluid [17].

The inverse Laplace transform of the complex dynamic
fluidity L−1{φ(s)} = ψ (t ) is the impulse strain-rate response
function defined as the resulting strain-rate output at time
t due to an impulsive stress input at time ξ (ξ < t). Ac-
cordingly, an alternative statement of the viscous-viscoelastic
correspondence principle for Brownian motion uncovered in
this study is that the velocity autocorrelation function of
Brownian microspheres with mass m and radius R suspended
in some linear isotropic viscoelastic material, when subjected
to the random forces from the collisions of the molecules of
the viscoelastic material, is

〈v(0)v(t )〉 = NKBT

6πR
ψ (t ), (34)

where ψ (t ) = L−1{φ(s)} is the impulse strain-rate response
function of the mechanical network shown on the right-hand
side of Fig. 4.

The impulse strain-rate response function of the inertovis-
coelastic solid shown in Fig. 2 was recently derived by Makris
[25],

ψ (t ) = 1

mR

[
cos(ωDt ) − 1

2

1

τωD
sin(ωDt )

]
e−(t/τ )/2, (35)

where ωD is the damped angular frequency as defined follow-
ing Eq. (20) and τ = mR

η
= m

6πRη
. By using that mR = m

6πR , the
substitution of Eq. (35) into Eq. (34) yields that the velocity
autocorrelation of Brownian particles trapped in a harmonic
potential is

〈v(0)v(t )〉

= NKBT

m

[
cos(ωDt ) − 1

2

1

τωD
sin(ωDt )

]
e−(t/τ )/2 (36)

and the classical result derived by Wang and Uhlenbeck [23]
is recovered.

The main advantage of the proposed correspondence prin-
ciple that is illustrated in Fig. 4 is that it is valid for all
timescales, while the action of the random forces fR on the
Brownian particles is replaced with the action of a unit step
stress τ (t ) = U (t − 0) on a linear viscoelastic network. This
remarkable analogy reduces the mathematics involved for the
solution of the stochastic generalized Langevin equation to the
time-response analysis of a deterministic linear network.

From Eq. (26), the complex dynamic modulus Gve(s) of the
viscoelastic material within which the Brownian particles are
suspended is given by

Gve(s) = NKBT

3πR

1

s〈�r2(s)〉 − m

6πR
s2. (37)

Equation (37) was derived by Mason and Weitz [1] by follow-
ing a different approach.

V. COMPARISON WITH THE MASON-WEITZ
DERIVATION

Mason and Weitz [1] employed dynamic light scattering
to measure the mean-square displacement of probe particles
〈�r2(t )〉 and related it to the complex dynamic modulus
Gve(s) of the viscoelastic fluid within which the particles are
suspended. Given the viscoelastic behavior of the complex
fluid, the motion of a particle is described by the generalized
Langevin equation [38,39]

m
dv(t )

dt
= −

∫ t

0
ζ (t − ξ )v(ξ )dξ + fR(t ), (38)

where m is the particle mass, v(t ) is the particle velocity, and
fR(t ) are random forces acting on the particle. The integral
in Eq. (38) represents the drag force on the particle as it
moves through the viscoelastic fluid and accounts for the
fading memory of this drag due to the elasticity of the fluid.
The elastic component of the fluid influences the temporal
correlations of the stochastic forces acting on the particle;
therefore, in this case Eq. (6) is replaced with

〈 fR(t ) fR(0)〉 = KBT ζ (t − 0), (39)

where ζ (t − 0) is the relaxation kernel of the convolution
appearing in the generalized Langevin equation (38). Mason
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and Weitz [1] calculated the mean-square displacement of
the suspended particles in the Laplace domain by making the
assumption that the Stokes result for the drag coefficient on a
moving sphere in a memoryless viscous fluid ζ = 6πRη [21]
can be generalized to relate the complex dynamic viscosity
of the viscoelastic material ηve(s) = Gve(s)

s to the impedance
of the Brownian particle-viscoelastic material system Z (s) =
L{ζ (t )} = ∫ t

0 ζ (t )e−st dt ,

ηve(s) = Gve(s)

s
= Z (s)

6πR
. (40)

By adopting Eq. (40), Mason and Weitz [1] derived Eq. (37).
A rigorous derivation of Eq. (40) will require the solution
of the appropriate three-dimensional continuum mechanics
equations around the microsphere moving within the vis-
coelastic material. In the Mason and Weitz [1] study, the
mechanical behavior of the surrounding viscoelastic material
was the unknown, so this challenge was bypassed by adopting
a viscous-viscoelastic analogy where the Stokes law, when
expressed in the Laplace space F (s) = 6πRηv(s), can be
generalized to F (s) = 6πRηve(s)v(s) with Eq. (40). This
physically motivated viscous-viscoelastic analogy adopted by
Mason and Weitz [1] is equivalent to the viscous-viscoelastic
correspondence principle illustrated in Fig. 4, which was
conceived herein after observing the mathematical structure
of Eqs. (3) and (15) in association with the concept of the
inerter.

The viscous-viscoelastic correspondence principle for
Brownian motion simplifies appreciably the calculations of
the mean-square displacement and of the velocity autocorrela-
tion function of Brownian particles suspended in viscoelastic
materials where inertia effects are non-negligible at longer
timescales as in the case of Brownian particles suspended in a
Maxwell fluid.

VI. BROWNIAN MOTION WITHIN A MAXWELL FLUID

The Brownian motion of particles suspended in a Maxwell
fluid with a single relaxation time λ = η

G , when subjected
to the random forces fR(t ), is described by the Langevin
equation (38), where the relaxation kernel ζ (t − ξ ) is [38–40]

ζ (t − ξ ) = 6πRGve(t − ξ ) = 6πRGe−(G/η)(t−ξ ), (41)

where Gve(t − ξ ) = Ge−(G/η)(t−ξ ) is the relaxation modulus
[stress due to a unit-amplitude step strain γ (t ) = U (t − 0)]
of the Maxwell fluid [15]. Equation (38) in association with
Eq. (41) leads to the temporal evaluation of the particle’s
velocity autocorrelation functions [40] from which the mean-
square displacement 〈�r2(t )〉 can be computed [41].

In this section the mean-square displacement of Brownian
particles suspended in a Maxwell fluid is calculated with the
correspondence principle summarized in Fig. 4. Accordingly,
the problem reduces to the calculation of the creep compliance
of a Maxwell fluid with shear modulus G and viscosity η

that is connected in parallel with an inerter with distributed
inertance mR = m

6πR as shown in Fig. 5.
The total stress τ (t ) = τ1(t ) + τ2(t ) from the linear net-

work shown in Fig. 5 is the summation of the stress output

flywheel

pinion

rack

θ(t) γ(t) = J(t) 

η G

τ(t) = U(t-0) 

mR =
m

6πR

FIG. 5. Mechanical analog for Brownian motion in a Maxwell
fluid. It consists of the Maxwell fluid with shear modulus G and vis-
cosity η that is connected in parallel with an inerter with distributed
inertance mR = m

6πR .

from the Maxwell element τ1(t ),

τ1(t ) + η

G

dτ1(t )

dt
= η

dγ (t )

dt
, (42)

and the stress output from the inerter τ2(t ),

τ2(t ) = mR
d2γ (t )

dt2
. (43)

The summation of Eqs. (42) and (43) together with the time
derivative of Eq. (43) yields a third-order constitutive equation
for the linear network shown in Fig. 5,

τ (t ) + η

G

dτ (t )

dt
= η

dγ (t )

dt
+ mR

d2γ (t )

dt2
+ ηmR

G

d3γ (t )

dt3
.

(44)
By defining the dissipation time τ = mR

η
= m

6πRη
and the

rotational angular frequency ωR =
√

G
mR

=
√

6πRG
m , Eq. (44)

assumes the form

τ (t ) + 1

τω2
R

dτ (t )

dt

= mR

(
1

τ

dγ (t )

dt
+ d2γ (t )

dt2
+ 1

τω2
R

d3γ (t )

dt3

)
. (45)

The Laplace transform of Eq. (45) gives γ (s) = J (s)τ (s),
where J (s) is the complex dynamic compliance of the linear
network shown in Fig. 5,

J (s) = 1

G(s)
= γ (s)

τ (s)
= 1

mR

1 + 1
τω2

R
s

s
(

1
τ

+ s + 1
τω2

R
s2

) . (46)

In addition to s = 0, the other two poles of the complex
dynamic compliance J (s) given by Eq. (46) are

s1 = −τω2
R

2
+ ωR

√(τωR

2

)2
− 1 = −ωR(β −

√
β2 − 1)

(47)
and

s2 = −τω2
R

2
− ωR

√(τωR

2

)2
− 1 = −ωR(β +

√
β2 − 1),

(48)
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where β = τωR
2 = 1

2η

√
mG
6πR is a dimensionless parameter of

the linear network and of the Brownian-particle–Maxwell-
fluid system. By virtue of Eqs. (47) and (48), the complex
creep function C(s) = J (s)

s = ∫ ∞
0 J (t )e−st dt is expressed as

C(s) = J (s)

s
= 1

η

[
1

s2
−

(
2β2 − 1

4β
√

β2 − 1
+ 1

2

)
1

s(s − s1)

+
(

2β2 − 1

4β
√

β2 − 1
− 1

2

)
1

s(s − s2)

]
. (49)

For the case where β = τωR
2 > 1 (stiff spring), the inverse

Laplace transform of Eq. (49) gives

J (t ) = L−1{C(s)} = mR

η2

(
t

τ
− 1

4β2

{
4β2 − 1

− e−2(t/τ )β2

[
4β3 − 3β√

β2 − 1
sinh

(
2

t

τ
β
√

β2 − 1

)

+ (4β2 − 1) cosh

(
2

t

τ
β
√

β2 − 1

)]})
, β > 1,

(50)

whereas for the case where β = τωR
2 < 1 (flexible spring) the

creep compliance of the network shown in Fig. 5 is

J (t ) = L−1{C(s)} = mR

η2

(
t

τ
− 1

4β2

{
4β2 − 1

− e−2(t/τ )β2

[
4β3 − 3β√

1 − β2
sin

(
2

t

τ
β
√

1 − β2

)

+ (4β2 − 1) cos

(
2

t

τ
β
√

1 − β2

)]})
, β < 1.

(51)

By employing the correspondence principle for Brownian
motion, the mean-square displacement of Brownian particles
suspended in a Maxwell fluid with elasticity G and viscosity η

is given by Eq. (12), where now J (t ) is offered by Eq. (50) or
(51). Figure 6 plots the normalized mean-square displacement
for Brownian motion in a Maxwell fluid

18π2R2η2

mNKBT
〈�r2(t )〉 = η2

mR
J (t ) (52)

as a function of the dimensionless time t
τ

for various values

of β = τωR
2 = 1

2η

√
mG
6πR = 1

2

√
mR

√
G

η
.

For values of β < 1, the shear modulus G is weak; there-
fore, the inertia effects are more pronounced. In this case the
mean-square displacement shown in Fig. 6 exhibits a reversal
of curvature as the dimensionless time t

τ
increases, while

for selective values of β (say, β = 0.1 and 0.2) it exhibits
a plateau [41]. This distinct behavior at time regimes which
are orders of magnitude larger than τ = m

6πRη
is due to the

inertia effects and cannot be captured by the approximate
equation (2) proposed in [4,5] since the creep compliance
of the surrounding viscoelastic Maxwell fluid is merely a
linear function of time Jve(t ) = 1

G + 1
η
t , with t � 0. As the

value of β = τωR
2 increases (stiffer G), the inertia effects are

suppressed and the normalized mean-square displacement of

Newtonian, viscous fluid:

plateau

plateau

FIG. 6. Normalized mean-square displacement of Brownian par-
ticles suspended in a Maxwell fluid with shear modulus G and

viscosity η for various values of the parameter β = 1
2η

√
mG
6πR =

1
2

√
mR

√
G

η
. For values of β < 1 (weak spring), the inertia effects are

more pronounced and the mean-square displacement curves exhibit
a reversal of curvature as time increases together with a plateau (the
inset shows β = 0.2 at t

τ
≈ 12 and β = 0.1 at t

τ
≈ 90).

Brownian particles suspended in a Maxwell fluid tends to that
of Brownian particles suspended in a Newtonian viscous fluid:
t
τ

− 1 + e−t/τ .
The velocity autocorrelation function of Brownian parti-

cles suspended in a Maxwell fluid is offered by Eq. (34),
where ψ (t ) = L−1{φ(s)} is the impulse strain-rate response
function of the mechanical network shown in Fig. 5. The com-
plex dynamic fluidity φ(s) = s

G(s) of the mechanical network
shown in Fig. 5 derives directly from Eq. (46),

φ(s) = 1

mR

s + τω2
R

(s − s1)(s − s2)
, (53)

where the poles s1 and s2 are given by Eqs. (47) and (48). For
the case where β = τωR

2 > 1 (stiff spring), the inverse Laplace
transform of Eq. (53) gives

ψ (t ) = L−1{φ(s)} = 1

mR
e−2(t/τ )β2

[
cosh

(
2

t

τ
β
√

β2 − 1

)

+ β√
β2 − 1

sinh

(
2

t

τ
β
√

β2 − 1

)]
, β > 1, (54)

whereas, for the case where β = τωR
2 < 1 (flexible spring),

the impulse strain-rate response function of the mechanical
network shown in Fig. 5 is

ψ (t ) = L−1{φ(s)} = 1

mR
e−2(t/τ )β2

[
cos

(
2

t

τ
β
√

1 − β2

)

+ β√
1 − β2

sin

(
2

t

τ
β
√

1 − β2

)]
, β < 1. (55)

By employing the correspondence principle for Brownian
motion, the velocity autocorrelation function of Brownian
particles suspended in a Maxwell fluid with elasticity G and
viscosity η is given by Eq. (34), where now ψ (t ) is offered
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Newtonian, viscous

fluid:

FIG. 7. Normalized velocity autocorrelation function of Brown-
ian particles suspended in a Maxwell fluid with shear modulus G

and viscosity η for various values of the parameter β = 1
2η

√
mG
6πR =

1
2

√
mR

√
G

η
. For values of β > 1 (stiff spring), the velocity autocorrela-

tion curves tend to the velocity autocorrelation function of Brownian
particles in a Newtonian viscous fluid, e−t/τ .

by Eq. (54) or (55). Figure 7 plots the normalized velocity
autocorrelation function for Brownian motion in a Maxwell
fluid

m

NKBT
〈v(0)v(t )〉 = mRψ (t ). (56)

As the value of β = τωR
2 increases (stiffer G), the normalized

velocity autocorrelation function of Brownian particles sus-
pended in a Maxwell fluid tends to that of Brownian particles
suspended in a Newtonian viscous fluid, e−t/τ .

VII. BROWNIAN MOTION WITHIN A SUBDIFFUSIVE
MATERIAL

Most materials exhibit both viscous and elastic behavior.
For such materials the thermally driven motion of embed-
ded microspheres reflects the combined viscous and elastic
contributions which are revealed in the time evolution of the
mean-square displacement and the velocity autocorrelation
function as shown in Figs. 6 and 7 for the case where the
probe microspheres are suspended in a Maxwell fluid. Several
complex materials exhibit a subdiffusive behavior where from
early times and over several temporal decades the mean-
square displacement grows with time according to a power
law 〈�r2(t )〉 ∼ tα , where 0 � α � 1 is the diffusive exponent
[4,5,42].

Early studies of the behavior of viscoelastic ma-
terials that their time-response functions follow power
laws have been presented by Nutting [43], who no-
ticed that the stress response of several fluidlike ma-
terials to a step strain decays following a power law
τ (t ) = Gve(t ) ∼ t−α , with 0 � α � 1. Following Nutting’s
observations and the early work of Gemant [44,45]
on fractional differentials, Scott Blair [46,47] pioneered

the introduction of fractional calculus in viscoelasticity.
In analogy to the Hookean spring, in which the stress is
proportional to the zeroth derivative of the strain, and the
Newtonian dashpot, in which the stress is proportional to
the first derivative of the strain, Scott Blair and co-workers
[46–48] proposed the springpot element, which is a mechan-
ical element in between a spring and a dashpot with the
constitutive law

τ (t ) = μα

dαγ (t )

dtα
, 0 � α � 1, (57)

where α is a positive real number 0 � α � 1, μα is a phe-
nomenological material parameter with units [M][L]−1[T]α−2

(i.e., Pa sα), and dαγ (t )
dtα is the fractional derivative of order α of

the strain history γ (t ).
A definition of the fractional derivative of order α is given

through the convolution integral

Iαγ (t ) = 1

�(α)

∫ t

c
(t − ξ )α−1γ (ξ )dξ, (58)

where �(α) is the Gamma function. When the lower limit
c = 0, the integral given by Eq. (58) is often referred to
as the Riemann-Liouville fractional integral [49–52]. The
integral in Eq. (58) converges only for α > 0, or in the case
where α is a complex number, the integral converges for
R(α) > 0. Nevertheless, by a proper analytic continuation
across the line R(α) = 0 and provided that the function γ (t )
is n times differentiable, it can be shown that the integral
given by Eq. (58) exists for n − R(α) > 0 [53]. In this case
the fractional derivative of order α ∈ R+ exists and is defined
as

dαγ (t )

dtα
= I−αγ (t ) = 1

�(−α)

∫ t

0−

γ (ξ )

(t − ξ )α+1
dξ, α ∈ R+,

(59)
where R+ is the set of positive real numbers and the lower
limit of integration 0− may engage an entire singular function
at the time origin such as γ (t ) = δ(t − 0) [22]. Equation
(59) indicates that the fractional derivative of order α of
γ (t ) is essentially the convolution of γ (t ) with the kernel
t−α−1

�(−α) [49–51,54]. The Riemann-Liouville definition of the
fractional derivative of order α ∈ R+ given by Eq. (59), where
the lower limit of integration is zero, is relevant to rheology
since the strain and stress histories γ (t ) and τ (t ) are causal
functions, being zero at negative times.

The relaxation modulus [stress history due to a unit-
amplitude step strain γ (t ) = U (t − 0)] of the springpot ele-
ment (Scott Blair fluid) expressed by Eq. (57) is [55–60]

Gve(t ) = μα

1

�(1 − α)
t−α, t > 0, (60)

which decays by following the power law initially observed
by Nutting [43]. The creep compliance (retardation function)
of the springpot element is [56–59]

Jve(t ) = 1

μα

1

�(1 + α)
tα, t � 0. (61)

The power law tα appearing in Eq. (61) renders the elementary
springpot element expressed by Eq. (57) (Scott Blair fluid), a
suitable phenomenological model to study Brownian motion
in subdiffusive materials.
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The Brownian motion of a microsphere suspended in a
subdiffusive material whose viscoelastic behavior is approx-
imated by the Scott Blair (springpot) element with relaxation
modulus Gve(t ) given by Eq. (60) is described by the Langevin
equation (38) where the relaxation kernel ζ (t − ξ ) is [61,62]

ζ (t − ξ ) = 6πRGve(t − ξ ) = 6πRμα

1

�(1 − α)

1

(t − ξ )α
(62)

and the Langevin equation assumes the expression

m
dv(t )

dt
+ 6πRμα

∫ t

0−

1

�(1 − α)

1

(t − ξ )α
v(ξ )dξ = fR(t ).

(63)
When the order of differentiation in Eq. (57) is α = 1, the
springpot element becomes a Newtonian dashpot with μα =
μ1 = η, while the kernel 1

�(1−α)
1

(t−ξ )α becomes the Dirac
delta function δ(t − 0) according to the Gel’fand-Shilov [63]
definition of the Dirac delta function and its integer-order
derivatives

dnδ(t − ξ )

dtn
= 1

�(−n)

1

(t − ξ )n+1
with n ∈ N0, (64)

where N0 is the set of positive integers including zero. Ac-
cordingly, for the limiting case where α = 1, the convolution
in the Langevin equation (63) reduces to the Stokes term

6πRη

∫ t

0−
δ(t − ξ )v(ξ )dξ = 6πRηv(t ) (65)

and Eq. (63) contracts to Eq. (4). At the other limit where
α = 0 in Eq. (57), the springpot element becomes a Hookean
spring with elastic shear modulus μα = μ0 = G, while the
kernel 1

�(1)
1

(t−ξ )0 = 1. Accordingly, for the limiting case where
α = 0, the convolution in the Langevin equation (63) reduces
to

6πRG
∫ t

0
v(ξ )dξ = 6πRGr(t ), (66)

where r(t ) is the displacement of the microsphere and
6πRG = k is the spring constant of the restoring force on
the microsphere [7]. In this limiting case (α = 0), Eq. (63)
describes the Brownian motion of the particle in a harmonic
trap with zero damping [see Eq. (13) with ζ = 0].

With reference to Eq. (58), the convolution integral appear-
ing in Eq. (63) is the fractional integral of order 1 − α of the
velocity history; therefore, the Langevin equation (63) can be
expressed in a compact form

m
dv(t )

dt
+ 6πRμαI1−αv(t ) = fR(t ), (67)

which is the anticipated result given the fractional derivative
constitutive equation (57) of the surrounding viscoelastic ma-
terial.

The mean-square displacement of a Brownian particle
suspended in the fractional Scott Blair fluid described by
Eq. (57) was evaluated in [61,64] after computing the velocity
autocorrelation function of the random process described by
Eq. (63),

〈�r2(t )〉 = 2NKBT

m
t2E2−α,3

(
−6πRμα

m
t2−α

)
, (68)

where Eα,β (z) is the two-parameter Mittag-Leffler function
[65,66]

Eα,β (z) =
∞∑
j=0

z j

�( jα + β )
, α, β > 0. (69)

Herein the mean-square displacement of Brownian particles
suspended in the fractional Scott Blair fluid described by
Eq. (57) is calculated with the correspondence principles
summarized in Fig. 4. Accordingly, the problem reduces to the
calculation of the creep compliance of the springpot element
described by Eq. (57) that is connected in parallel with an
inerter with distributed inertance mR = m

6πR as shown in Fig. 1
in which the dashpot is replaced with a springpot. Given
the parallel connection of the springpot and the inerter, the
constitutive law is

τ (t ) = μα

dαγ (t )

dtα
+ mR

d2γ (t )

dt2
, α ∈ R+. (70)

The Laplace transform of Eq. (70) gives γ (s) = J (s)τ (s),
where J (s) is the complex dynamic compliance of the linear
network

J (s) = 1

G(s)
= 1

μαsα + mRs2
= 1

mR

1

sα
(
s2−α + μα

mR

) ; (71)

therefore, the complex creep function C(s) = ∫ ∞
0 J (t )e−st dt

of the springpot-inerter parallel connection is

C(s) = J (s)

s
= 1

mR

1

sα+1
(
s2−α + μα

mR

) . (72)

The inverse Laplace transform of Eq. (72) is evaluated with
the convolution integral [30]

J (t ) = L−1{C(s)} =
∫ t

0
f (t − ξ )h(ξ )dξ, (73)

with

f (t ) = L−1

{
1

mR

1

sα+1

}
= 1

mR

1

�(1 + α)
tα (74)

and

h(t ) = L−1

{
1

s2−α + μα

mR

}
= t1−αE2−α,2−α

(
−μα

mR
t2−α

)
,

(75)
where Eα,β (z) is the two-parameter Mittag-Leffler func-

tion defined by Eq. (69). The function h(t ) expressed by
Eq. (75) is also known in rheology as the Rabotnov function
ε1−α (−λ, t ) = t1−αE2−α,2−α (−λt2−α ) [54,67]. Upon substitu-
tion of the results of Eqs. (74) and (75) into the convolution
given by Eq. (73), the creep compliance of the springpot-
inerter parallel connection is merely the fractional integral of
order 1 + α of the Rabotnov function given by Eq. (75) [68],

J (t ) = 1

mR

1

�(1 + α)

×
∫ t

0
(t − ξ )αξ 1−αE2−α,2−α

(
−μα

mR
ξ 2−α

)
dξ

= 1

mR
t2E2−α,3

(
−μα

mR
t2−α

)
. (76)
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FIG. 8. Normalized mean-square displacement of Brownian par-
ticles suspended in a fractional subdiffusive Scott Blair fluid with
material constant μα with units [M][L]−1[T]α−2 for various values of
the fractional exponent 0 � α � 1 as a function of the dimensionless
time ( μα

mR
t2−α )1/(2−α), where mR = m

6πR and τ = m
6πRη

.

By comparing the results of Eqs. (68) and (76) after using
mR = m

6πR , the mean-square displacement 〈�r2(t )〉 of Brow-
nian particles suspended in a subdiffusive fractional fluid is
given again by Eq. (12), where now J (t ) is offered by Eq. (76).
Figure 8 plots the normalized mean-square displacement for
Brownian motion in a subdiffusive Scott Blair fluid(

6πRμα

m

)2/(2−α) m〈�r2(t )〉
2NKBT

=
(

μα

mR

)2/(2−α)

mRJ (t ) (77)

as a function of the dimensionless time ( μα

mR
t2−α )1/(2−α), with

mR = m
6πR for various values of the fractional exponent α ∈

R+.
For the limiting case where α = 1, the Scott Blair subd-

iffusive fluid becomes a Newtonian viscous fluid with μα =
μ1 = η and Eq. (68) reduces to

〈�r2(t )〉 = 2NKBT

m
t2E1,3

(
− t

τ

)
, (78)

with τ = m
6πRη

. By virtue of the recurrence relation of the two-
parameter Mittag-Leffler function [65,66]

Eα,β (z) = 1

z
Eα,β−α (z) − 1

z�(β − α)
. (79)

Equation (78) simplifies to

〈�r2(t )〉 = 2NKBT

m
tτ

[
1 − E1,2

(
− t

τ

)]
. (80)

By using the identity E1,2(− t
τ

) = τ
t (1 − e−t/τ ) together with

τ = m
6πRη

, Eq. (80) further simplifies to Eq. (3). Figure 8
reveals that the mean-square displacement curves of Brownian
particles suspended in a subdiffusive material (0 < α � 1)
follow the curve for Brownian motion in a Newtonian viscous

fluid until time t ≈ 3τ and subsequently reverse their curva-
ture to follow the power law ( t

τ
)α [4,5,42].

The complex dynamic fluidity φ(s) = s
G(s) of the

springpot-inerter parallel connection derives directly from
Eq. (71),

φ(s) = s

G(s)
= s

μαsα + mRs2
= 1

mR

s1−α

s2−α + μα

mR

, 0 � α � 1.

(81)

The inverse Laplace transform of Eq. (81) is evaluated with
the convolution integral given by Eq. (73) where

f (t ) = L−1

{
1

mR
s1−α

}
= 1

mR

d1−αδ(t − 0)

dt1−α

= 1

mR

1

�(−1 + α)

1

t2−α
(82)

and h(t ) is given by Eq. (75). Substitution of the results of
Eqs. (82) and (75) into the convolution given by Eq. (73), the
impulse strain-rate response function of the springpot-inerter
parallel connection is merely the fractional derivative of order
1 − α of the Rabotnov function given by Eq. (75),

ψ (t ) = L−1{φ(s)} = 1

mR

1

�(−1 + α)

×
∫ t

0

1

(t − ξ )2−α
ξ 1−αE2−α,2−α

(
−μα

mR
ξ 2−α

)
dξ

= 1

mR
E2−α,1

(
−μα

mR
t2−α

)
. (83)

By employing the correspondence principle for Brownian
motion, the velocity autocorrelation function of Brownian
particles suspended in a subdiffusive Scott Blair fluid with
material constant μα is given by Eq. (34), where now ψ (t )
is offered by Eq. (83). This result is in agreement with the
result for the velocity autocorrelation function presented by
Lutz [61]. Figure 9 plots the normalized velocity autocorrela-
tion function as expressed by Eq. (56) for Brownian motion
in a subdiffusive Scott Blair fluid as a function of the di-
mensionless time ( μα

mR
t2−α )1/(2−α), with mR = m

6πR for various
values of the fractional exponent α ∈ R+. For the limiting
case where α = 1, the Scott Blair subdiffusive fluid becomes
a Newtonian viscous fluid with μα = μ1 = η and Eq. (83)
contracts to ψ (t ) = 1

mR
E1(− t

τ
) = 1

mR
e−t/τ ; therefore, Eq. (56)

yields the result for the velocity autocorrelation function given
by Eq. (33). For the other limiting case where α = 0, the Scott
Blair fluid becomes a Hookean solid with μα = μ0 = G and
Eq. (83) contracts to ψ (t ) = 1

mR
E2(−ω2

Rt2) = 1
mR

cos(ωRt ),

where ωR =
√

G
mR

. The cos(ωRt ) periodic response is in agree-

ment with the results for Brownian motion in an undamped
harmonic potential (η = 0) given by Eq. (35) after setting
1
τ

= 6πRη

m = η

mR
= 0.
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Newtonian, viscous fluid:

: Undamped harmonic trap: 

:

FIG. 9. Normalized velocity autocorrelation function of Brown-
ian particles suspended in a fractional subdiffusive Scott Blair fluid
with material constant μα with units [M][L]−1[T]α−2 for various
values of the fractional exponent 0 � α � 1 as a function of the
dimensionless time ( μα

mR
t2−α )1/(2−α), where mR = m

6πR and τ = m
6πRη

.

VIII. SUMMARY

This paper builds upon past theoretical and experimental
work on Brownian motion and microrheology and uncov-
ers that for all timescales the mean-square displacement of

Brownian microspheres with mass m and radius R suspended
in any linear isotropic viscoelastic material is identical to the
creep compliance of a linear mechanical network that is a
parallel connection of the linear viscoelastic material with an
inerter with distributed inertance mR = m

6πR . The synthesis of
this mechanical network simplifies appreciably the calculation
of the mean-square displacement and the velocity autocorrela-
tion function of Brownian particles suspended in viscoelastic
materials where inertia effects are non-negligible at longer
timescales as is the case of a Maxwell fluid. The viscous-
viscoelastic correspondence principle established in this paper
after introducing the concept of the inerter is equivalent to the
viscous-viscoelastic analogy suggested by Mason and Weitz
[1], while it extends the work of Palmer et al. [4] and Xu et al.
[5] for all fluidlike and solidlike viscoelastic materials at all
timescales.

The proposed correspondence principle was employed to
calculate the mean-square displacement and the velocity au-
tocorrelation function of Brownian particles suspended in a
fractional subdiffusive Scott Blair fluid and concludes that for
times t > 3τ = m

2πRη
, the mean-square displacement reverses

its curvature and follows the power law ( t
τ

)α , as was shown
in the experiments reported in the literature [4,5,42]. The
study concludes that for Brownian particles suspended in a
subdiffusive Scott Blair fluid (0 � α � 1), the mean-square
displacement is the fractional integral of order 1 + α of the
Rabotnov function ε1−α (−μα

mR
, t ) = t1−αE2−α,2−α (−μα

mR
t2−α )

[67], whereas the velocity autocorrelation function is the
fractional derivative of order 1 − α of the same Rabotnov
function ε1−α (−μα

mR
, t ).
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