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Multirange Ising model on the square lattice
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We study the Ising model on the square lattice (Z2) and show, via numerical simulation, that allowing
interactions between spins separated by distances 1 and m (two ranges), the critical temperature, Tc(m), converges
monotonically to the critical temperature of the Ising model on Z4 as m → ∞. Only interactions between
spins located in directions parallel to each coordinate axis are considered. We also simulated the model with
interactions between spins at distances of 1, m, and u (three ranges), with u a multiple of m; in this case our
results indicate that Tc(m, u) converges to the critical temperature of the model on Z6. For percolation, analogous
results were proven for the critical probability pc [B. N. B. de Lima, R. P. Sanchis, and R. W. C. Silva, Stochast.
Process. Appl. 121, 2043 (2011)].
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I. INTRODUCTION

The Ising model and percolation are among the most
important models in statistical mechanics. The former, in-
troduced in 1920 by Lenz [1], exhibits a continuous tran-
sition between paramagnetic and ferromagnetic phases as
temperature T is varied, while the latter, proposed in 1957
by Broadbent and Hammersley [2] to characterize transport in
random media, exhibits a transition between phases with and
without global connectivity as the concentration p is varied.
A key question regarding these models is the critical value,
Tc or pc. For the d-dimensional hypercubic lattice Zd , the
critical value is known exactly only for d = 1 and d = 2
[3–5]. Although quite precise estimates for the critical point
are available in some other cases [6–22], the exact values are
unknown.

The present study is motivated by recent work of de Lima,
Sanchis, and Silva [23] as well as previous studies of the
Ising model in dimensions d � 4 [17–22]. The authors of [23]
consider percolation on Zd adding bonds of n different lengths

m1 = k1, m2 = (k1 × k2), . . . , mn = (k1 × k2 × · · · × kn),

parallel to each coordinate axis, where ki ∈ {2, 3, . . .} for
all i. These authors prove that, if d � 2, the critical point
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converges to the critical point of percolation on Zd (n+1) as
ki → ∞, for all i, in both bond and site percolation. This
model is called multirange percolation. These authors also
conjecture that convergence is monotone and nonincreasing
in each variable ki. Recent numerical work suggests that, if
d = 2, this conjecture is valid and the convergence follows a
power law for n = 1 and n = 2 [24]. In addition to revealing
an unexpected connection between critical values in systems
of distinct connectivity, this result allows estimation of the
critical point in higher dimensions by simulating the model
with multiple ranges in lower dimensions, reducing computa-
tional complexity and cost.

These results raise the question of whether other models
with local interactions and exhibiting phase transitions have
properties similar to multirange percolation. In this study, we
provide numerical evidence suggesting that this is the case
for the Ising model in d = 2 dimensions, for n = 1 (two
ranges) or n = 2 (three ranges). Our results apply to the
critical temperature, Tc, allowing its determination in higher
dimensions by simulating the model with multiple ranges in
lower dimensions.

Turban [25] obtained analytical results for an Ising model
with n = 1 in one dimension. He studied a chain of N sites
with m-spin interactions with coupling constant J in a field H .
Using a change of variables, this model can be transformed
into the multirange Ising model in d = 1 with n = 1 and
first-neighbor interactions H and mth-neighbor interactions J .
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FIG. 1. Part of the graph with all bonds that terminate at one of
the vertices x or y, where n = 1 and m1 = 2. The length of bonds with
colors black (straight) and red (curved lines) is 1 and m1, respectively.

Turban showed that this model can be reinterpreted as a 2d
Ising model in zero external field and with first-neighbor in-
teractions H and J (one for each direction) on the rectangular
lattice of size N

m × m. In the thermodynamic limit N
m → ∞

and m → ∞, this model displays the critical behavior of the
two-dimensional Ising model. Similar results were obtained
for the Potts model [26].

The remainder of this paper is organized as follows. Sec-
tion II describes the model and our simulation procedure.
Section III discusses our results. Key conclusions and open
questions are summarized in Sec. IV.

II. MODEL AND NUMERICAL PROCEDURE

To define the multirange model we begin with the usual
d-dimensional cubic lattice, Zd , and add bonds linking pairs
of sites along the principal lattice directions. The result-
ing graph G is characterized by n (an integer �1) and a
set of n integers, k1, . . . , kn (all �2), such that the added
bonds have length m1 = k1, m2 = k2m1 = k1k2, and so on,
up to mn = k1 · · · kn. Thus a site (x1, x2, . . . , xd ) ∈ Zd is con-
nected to its 2d nearest neighbors, (x1 + 1, x2, . . . , xd ), (x1 −
1, x2, . . . , xd ), . . . , (x1, . . . , xd − 1), and in addition to sites
at distances m1, m2, . . . , mn along all principal directions.
Figure 1 shows, for n = 1 and m1 = 2, a portion of the square
lattice Z2 with the added bonds, highlighted in red (curves),
of the central pair of sites.

With the graph G defined as above, we can implement
many multirange statistical models (spin systems, lattice
gases, polymers) by equipping the sites with appropriate
variables or operators. One of the simplest is the multirange
Ising model, whose configurational energy (in the absence of
an external field) is given by

H = −J
∑

(i, j) ∈ EG

σiσ j, (1)

where EG is the set of bonds of the graph G, the spins σi

take values {−1,+1}, and J is the coupling constant (we take
J = 1).

We use the Wolff algorithm [15] to estimate the Binder
cumulant U and magnetic susceptibility χ on multirange

FIG. 2. Graphs obtained for n = 2 considering m = 2 (size
ranges: 1, 2, and 4). The plot shows the estimated Kc(m) using the
finite-size scaling (3) considering the functions dU

dK (black squares)
and χ (red circles). The lines correspond to fits as described in text.

graphs constructed on L × L square lattices with peri-
odic boundaries. For n = 1 (two ranges), we simulate the
model with m1 = m, where m ∈ {2, 5, 8, 10, 13, 16, 19}; for
n = 2, we use m1 = m and m2 = m2, where m ∈ {2, . . . , 6}.
We study system sizes 768 � L � 2048 (n = 1) and
1280 � L � 2560 (n = 2) (note: for n = 1 with m = 16
and m = 19, and n = 2 with m = 6, we only consider
1024 � L � 2048 and 1536 � L � 2560, respectively, to re-
duce finite-size effects). The number of Wolff steps following
equilibration ranges from 2×106 (L=768) to 106 (L=2560).
We use the first fifth of the Wolff steps for equilibration.

We estimate the inverse critical temperature, Kc(m), using
a procedure similar to that of [16]. Initially, we estimate the
critical exponent ν through the relation

dU

dK

∣∣∣∣
max

∼ L
1
ν , (2)

where the left-hand side represents the maximum of dU
dK for

size L.
The effective inverse critical temperature, Kc(m; L), for a

system of length L, can be taken as the value that maximizes
dU
dK or χ . Thus, for each m and L, we obtain two estimates for
Kc(m; L). Given estimates Kc(m; L) for a series of L values,
Kc(m) is estimated using the finite-size scaling (FSS) relation,

Kc(m) ≈ Kc(m; L) + λL− 1
ν + θL−2, (3)

TABLE I. Fitting parameters for Kc(m) using Eq. (4).

n Function a b c(Kc ) R square

1 χ 0.1015(12) −2.070(19) 0.149646(46) 0.999990
dU
dK 0.1007(16) −2.059(24) 0.149653(50) 0.999988

2 χ 0.0868(53) −3.258(96) 0.092188(78) 0.999835
dU
dK 0.0847(39) −3.226(74) 0.092160(63) 0.999934
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FIG. 3. Analysis of Kc(m), estimated through χ , as a function of m. Left: n = 1; right: n = 2. The inverse critical temperature appears to
converge monotonically to Kc(Z4) = 0.1496947(5) [17] (n = 1) and to Kc(Z6) = 0.09229(4) [18] (n = 2). The error bars are smaller than the
symbols. The curves were obtained using the three-parameter fit (4).

where λ and θ are constants. The correction term ∝L−2 is
used because, without it, the residuals for certain values of m
and n exhibit a systematic (parabolic) dependence on L. The
values obtained for ν vary between 0.883(20) (n = 1, m1 =
19) and 0.999(11) (n = 1, m1 = 2). Determination of critical
exponents would require a systematic analysis of a larger
range of system sizes. In the present context we regard ν

simply as a fitting parameter.
To estimate limm→∞ Kc(m) we use a three-parameter fit of

the form

Kc(m) = a mb + c. (4)

Details of the uncertainty analysis are provided in the Ap-
pendix.

III. RESULTS

For n = 2 with m = 6, Fig. 2 shows plots of the data used
to determine Kc(m) through relation (3). The best-fit values of
a, b, and c using Eq. (4) are summarized in Table I and Fig. 3.
The data show that Kc(m) is well fit by Eq. (4), and suggest
that it converges, as m → ∞, to values close to the inverse
critical temperature of the Ising model on Z4 [0.1496947(5)
[17]] for n = 1, and on Z6 [0.09229(4) [18]] for n = 2.

The small discrepancies between our results and literature
estimates for Kc(Z4) and Kc(Z6), obtained using χ and dU

dK ,
respectively, are likely due to the limited number of Wolff
steps employed for each L value analyzed and/or the limited
number of m values analyzed. Our goal was to be able to
study several cases to analyze the behavior of Kc(m) varying
m, which required about five months of cpu time on 50 cores
with speed 3.2 GHz.

On the basis of the results obtained and the fact that there
is analytical proof of convergence of pc for the multirange
percolation model on the square lattice [23], we conjecture
that the same holds for the multirange Ising model. All
estimated values of Kc(m), for n = 1 and n = 2, are listed in
Table II.

For the multirange percolation model with three ranges,
1, m, and u, the effective critical point varies in an irregular

manner when u is fixed and m varies between 1 and u [24].
We obtain numerical evidence showing analogous behavior
in the multirange Ising model. The effective inverse critical
temperature Kc(m; L) was estimated considering u = 15 and
1 < m < u for L = 1536 using five independent samples (see
Fig. 4).

IV. CONCLUSION

We study the two-dimensional Ising model with multiple
interaction ranges. It is known that in percolation on Zd with
n + 1 different ranges, each being a multiple of the previous
one, the critical point converges to the critical point on Zd (n+1)

for n � 1 and d � 2. We show, via numerical simulation,
that when we consider the critical temperature instead of the
critical point the same result is valid for the Ising model if
d = 2 when n = 1 or 2. We conjecture that the more general
result valid for percolation is also valid for the Ising model.

FIG. 4. Effective inverse critical temperature Kc(m; L), estimated
through χ , in model with sizes 1, m, and u, where u is fixed and m
varies between 1 and u (L = 1536). The error bars are smaller than
the symbols.
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TABLE II. Estimated inverse critical temperature for n = 1 and n = 2.

n m1 Kc (χ ) Kc( dU
dK ) n m1 m2 Kc (χ ) Kc( dU

dK )

1 2 0.173815(21) 0.173814(24) 2 2 4 0.101255(16) 0.101218(22)
5 0.153280(23) 0.153295(26) 3 9 0.094619(29) 0.094591(32)
8 0.150995(25) 0.151095(29) 4 16 0.093133(42) 0.093156(42)
10 0.150501(28) 0.150528(31) 5 25 0.092596(54) 0.092642(52)
13 0.150185(30) 0.150139(33) 6 36 0.092484(67) 0.092397(62)
16 0.149941(32) 0.149975(36)
19 0.149888(34) 0.149896(38)

For the case with three interaction ranges (n = 2) we find
that when the length of the largest range is fixed, then the
critical temperature behavior is irregular if the range with
intermediate length varies. This fact supports the hypothesis
that the length of each range has to be a multiple of the one of
the length immediately below.

The present study raises the question whether other models
with local interactions and which exhibit phase transitions
have similar connections between the number of interaction
ranges and the critical temperature. In addition, it also al-
lows us to estimate the critical temperature for the higher-
dimensional Ising models by simulating the multirange Ising
model on Z2, raising the possibility of a computationally
efficient method to study critical properties of models in
higher dimensions.
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APPENDIX: UNCERTAINTY ANALYSIS

Due to the large amount of data analyzed and the exten-
sive time required to obtain it, we have simplified obtaining
uncertainties. To explain the methodology, we will separate
the cases analyzed into two groups. Group I consists of cases
m = 2 and m = 19 for n = 1, and m = 2 and m = 6 for n = 2.
Group II contains the remaining cases. We describe the steps
used to estimate the uncertainty of each parameter in the
following.

1. Uncertainty in Kc(m; L): Group I

For each n, m, and L in this group, we obtain five inde-
pendent samples of the functions χ and U for q values of the
inverse temperature in the vicinity of Kc(m; L) (q = 10).

Let K (i)
c,χ (m; L) be the value of K that maximizes χ for a

given m and L in the ith sample. K (i)
c,χ (m; L) is determined

by fitting a cubic spline to the simulation data (q points)
and locating the maximum of this polynomial. We estimate

the uncertainty in Kc,χ (m; L) as the standard deviation of the
mean.

The estimates for Kc,U ′ (m; L) and the uncertainties ob-
tained by maximizing the derivative of U are derived in a
similar manner. The derivative is determined fitting U using a
five-parameter logistic function U = a1 + a2−a1

[1+(a3/K )a4 ]a5
to the

data for U in the vicinity of Kc(m, L), again using q points. We
then calculate the derivative of the logistic function to estimate
dU
dK (U ′).

2. Uncertainty in Kc(m): Group I

We estimate the critical exponent ν using the relation (2)
and, using the relation (3), perform a three-parameter fit to
determine the central value Kc(m) and a fitting uncertainty
� f . We calculated δLi , the uncertainty in Kc(m) induced by
�Kc,•(m; Li ), as the difference in the value obtained through
the fit of points using Kc,•(m; Li ) + �Kc,•(m; Li ) and Kc(m),
with all other Kc,•(m; Li )’s taking their central values (the
symbol • denotes χ or U ′).

The final uncertainty estimate in Kc(m) is

�Kc(m) =
√√√√(� f )2 +

s∑
i=1

δ2
Li
, (A1)

where s denotes the number of L’s analyzed.

3. Uncertainty in Kc(m): Group II

We did not estimate uncertainties for Kc,•(m; L) in this
group, as these data were obtained in single runs. To estimate
the uncertainty in Kc(m) we perform a linear interpolation
using the uncertainties obtained for group I (Table III). We as-
sume that �Kc(m) grows with m due to finite size effects; the
uncertainties determined for group I support this assumption.

TABLE III. Uncertainty estimates for group I.

n m �Kc(m)(χ ) �Kc(m)(U ′)

1 2 2.13 × 10−5 2.37 × 10−5

19 3.35 × 10−5 3.77 × 10−5

2 2 1.62 × 10−5 2.21 × 10−5

6 6.68 × 10−5 6.20 × 10−5
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4. Uncertainties in Kc(Z4) and Kc(Z6)

For estimating the uncertainties in Kc(Z4) and Kc(Z6)
via Eq. (4), we use the same procedure used to estimate

�Kc(m); in this case we have q = 7 data points for n =
1, and q = 5 for n = 2 (q is the number of m values
analyzed).
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