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Validity of path thermodynamics in reactive systems
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Path thermodynamic formulation of nonequilibrium reactive systems is considered. It is shown through
simple practical examples that this approach can lead to results that contradict well established thermodynamic
properties of such systems. Rigorous mathematical analysis confirming this fact is presented.
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I. INTRODUCTION

Stochastic thermodynamics was introduced in the early
1980s in the framework of jump Markov processes, us-
ing the Gibbs-Shannon definition of entropy S(X, t ) =
−kB ln P(X, t ), where kB is the Boltzmann constant, X ∈ ZN

the (random) composition of an N-component reactive system
(N < ∞), and P(X, t ) the associated probability distribu-
tion at time t [1]. Path thermodynamics is a generalization
of stochastic thermodynamics. It is based on the concept
of “path entropy,” an entropy associated with sample paths
(trajectories) of a stochastic process. Nowadays the general
belief is that path thermodynamics is the ultimate theoretical
formalism for physicochemical systems ranging from macro-
scopic to nanometer scale [2–5]. However, the main difference
with the traditional Gibbs-Shannon stochastic thermodynam-
ics is that path thermodynamics leads to the so-called fluc-
tuation theorem for the path entropy production [see Eq. (7)
for the precise definition]. This fundamental relation implies
that path entropy production may take negative values in
nonequilibrium physicochemical systems, in apparent con-
tradiction with the second law of thermodynamics (see [6]).
The probability of observing such an event is essentially zero
in macroscopic systems [3,4], but not necessarily so in very
small reactive systems, like those encountered at the level of
biological cells or simulated by molecular dynamics. And,
as such, it was at the origin of the impressive resurgence of
interest in the path thermodynamics description of reactive
systems, generally modeled as a jump Markov process.

Dozens and dozens of articles have appeared over the last
decade on this topic, all of them treating path thermodynamics
as a fundamental, well-established theory. Yet, we shall prove
that the resulting properties will be wrong whenever the
reactive system involves more than one elementary reaction
leading to the same composition changes. Needless to say, this
is the case for the great majority of the reactive models con-
sidered in these papers. Our results will thus have significant
impact on future work in this field.

In this paper we shall be concerned mainly with reactive
systems in contact with constant (time-independent) reser-
voirs and modeled as a jump Markov process. It is organized
as follows: First, we present simple examples to illustrate
the core of the problem so that readers not familiar with

the subject can easily comprehend the issue raised in this
paper. Next, after presenting a general background summary,
the relevant mathematical aspects are rigorously derived in
a series of proofs. Finally, we close with some concluding
remarks.

II. ILLUSTRATIVE EXAMPLES

Consider a perfectly homogeneous dilute reactive system,
as can be produced experimentally in a “continuously stirred
tank reactor” (CSTR). The CSTR is a particularly useful
device that maintains a reactive system out of equilibrium by
fixing the concentration of some reactants [7,8]. In principle,
by recording the step-by-step evolution of the system, a large
number of sample paths can be collected for detailed analysis.
In practice, such data are usually obtained by numerical sim-
ulation, using a well-established algorithm introduced some
decades ago by Gillespie [9]. Suppose now that two of the
reactions, say R1 and R2, are of the type X � Y and X +
Y � 2Y. Starting from an arbitrary state (X,Y �= 0), both
reactions lead to the same change, that is (X,Y ) → (X −
1,Y + 1) (forward) or (X,Y ) → (X + 1,Y − 1) (backward).
Consequently, when analyzing the sample paths of this sys-
tem, there is no criterion that allows us to differentiate R1

from R2. However, we know from the basic principles of
irreversible thermodynamics that the entropy production of
reactive systems depends on the characteristics of each indi-
vidual reaction (see, for example, Section 9.5 of Ref. [10]).
We thus conclude that in this case the entropy production
based on path thermodynamics corresponds actually to a
“coarse grained” entropy production which is inconsistent
with irreversible thermodynamics results [6,11,12]. Note that
a similar observation was reported by Seleznev et al. [13] (see
also [14] and [15]).

It is important to notice that this example is far from being
an isolated, exceptional case. In fact, the majority of published
works dealing with complex behavior in reactive systems
involve at least two elementary reactions leading to the same
composition change. Well known examples are the Schlögl
model and the reversible “Brusselator” [16], as well as many
of the reactive systems related to the modeling of biological
systems [17].
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An unexpected consequence of this issue is that the sample
paths of a class of one variable reactive systems behave, in
a stationary nonequilibrium regime, like those of a system
at thermodynamic equilibrium. For instance, let us consider
again the example of a dilute reactive mixture in a CSTR that
is now set up in order to maintain constant the concentration of
all but one of the reactants, say X . Suppose that the reactions
involving that component X are of the type

Aρ + (ρ − 1)X
kρ

�
k−ρ

Bρ + ρX, ρ = 1, . . . ,R. (1)

Unlike the previous example, here all of the reactions lead
exactly to the same changes, that is, X → X + 1 (forward)
or X → X − 1 (backward). As mentioned above, the sample
paths of this system do not permit us to distinguish one reac-
tion from another. They are thus equivalent to sample paths
of a system with a single reversible reaction, symbolically
represented as X � X + 1. This equivalence in turn implies
that the corresponding sample paths are perfectly reversible
in the stationary regime, in the sense that any path joining
an arbitrary state S1 to another arbitrary state S2 will occur
with the same probability as the corresponding reverse path
joining S2 to S1 (the mathematical proof will be presented
below). But such time-reversal symmetry concerns only the
thermodynamic equilibrium state where, on average, each
forward reaction in (1) is exactly balanced by its reverse.
We are thus faced with a paradox. On the one hand, in the
stationary regime, the sample paths of this system, under
given (time-independent) nonequilibrium constraints, possess
time-reversal symmetry, which is the key signature of thermo-
dynamic equilibrium states [18]. And, on the other hand, the
Gibbs-Shannon entropy production of the same system, under
the very same nonequilibrium conditions, proves to be strictly
positive, converging to the macroscopic thermodynamic result
in the vanishing noise limit [1].

Given the controversial nature of the issues illustrated
by the above examples, we now concentrate on the strictly
mathematical aspects of the problem.

III. GENERAL BACKGROUND

Let χ (t ) be a pure N-dimensional (N < ∞) jump Markov
process; that is, a Markov process with countable state space
E ∈ ZN which has all its sample paths constant, except for
isolated jumps. A jump Markov process is entirely character-
ized by the so-called transition probabilities per unit time, or
transition rates, defined as [19,20]

W (X | X ′) = lim
�t ↓ 0

1

�t
[P(X, t + �t | X ′, t ) − P(X, t | X ′, t )]

(2)

where the limit is assumed to be uniform in time t . The
function P(X, t + �t | X ′, t ) represents the conditional prob-
ability to have χ (t + �t ) = X , given that χ (t ) = X ′. Notic-
ing that P(X, t | X ′, t ) = δKr

X ′, X , we deduce that W (X | X ′) �
0, ∀ X ′ �= X . And since the convergence in (2) is assumed
to be uniform in time, we have

∑
X W (X | X ′) = 0. Finally,

using the Markovianity of χ (t ), it can be shown that the condi-
tional probability distribution obeys the so-called Kolmogorov

forward equation, or master equation [19,20],

d

dt
P(X, t | X0, t0) =

∑
X ′

W (X | X ′) P(X ′, t | X0, t0) (3)

for t > t0, with limt ↓ t0 P(X, t | X0, t0) = δKr
X, X0

. We note that
the definition (2) implies that

P(X, t + �t | X ′, t ) = W (X | X ′) �t + o(�t ), ∀ X �= X ′.

(4)

Let us assume that from any state S ∈ E , any other state
S′ ∈ E can be reached by a succession of jumps. This as-
sumption excludes the existence of absorbing states as well as
unidirectional processes, such as “pure birth” or “pure death”
processes. If the state space E is finite, then this assumption
also implies that there exists a unique stationary probability
distribution Ps(X ) that is reached exponentially fast in time
from an arbitrary initial state X0 ∈ E . As far as physicochemi-
cal systems are concerned, it is reasonable to assume that this
property remains true even if E is not finite. Here, however,
all we need is to assume that χ (t ) remains bounded, almost
surely, at least over a finite time interval [t0, t f ]. It can then
be proved that the master equation (3) has a unique solution
in this time interval [21]. We will show that this unicity
theorem, due to Kolmogorov and Feller, effectively restricts
the class of reactive systems that can be described by path
thermodynamics.

Let us now concentrate on sample paths of χ (t ). We
consider a finite time interval [t0, t f ] that we divide into n
subintervals, t0 < · · · < tn ≡ t f , with n 
 1. We then intro-
duce the (joint) probability distribution P(X), where X ≡
{X0, t0; X1, t1; . . . ; Xn−1, tn−1; Xf , t f } represents a sample
path of χ (t ) that starts from the state X0 at the initial time
t0 and ends up at the state Xf at the final time t f .

Similarly, we introduce the “reverse” joint
probability distribution P(R)(X̃), where X̃ ≡ {Xf , t0;
Xn−1, t1; . . . ; X1, tn−1; X0, t f } represents the “reverse sample
path” of χ (t ) that starts from the final state Xf at the initial
time t0 and ends up at the initial state X0 at the final time
t f . Note that the superscript “(R)” in P(R)(X̃) indicates that
we are dealing with the probability of the reverse path. In
particular, the change of variables X → X̃ transforms P to
P(R), and vice versa.

Before proceeding further, it is important to notice that,
contrary to what is stated by some authors, a conditional
probability P(Xi+1, ti+1 | Xi, ti ) does not correspond to the
probability of observing the jump Xi → Xi+1 at the given
instant of time ti+1; the jump may actually occur at any
instant of time in the interval ]ti, ti+1]. Besides, from the strict
mathematical point of view, the statement “observing a jump
at a given instant of time” is simply of zero measure [21].
Furthermore, it is worthwhile to recall a basic Kolmogorov
theorem stating that stochastic processes (including those with
continuous realizations) are completely characterized by their
family of discretized sample paths, such as X, provided the
associated probability distribution exists and remains invariant
under the permutation of the pairs (Xi, ti ) and (Xj, t j ), ∀ i, j ∈
[0, n] [21,22].

Let us denote respectively by �S and �eS the entropy
variation and the entropy flow along the sample path X joining
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the initial state X0 to the final state Xf . Similarly, we denote by
�iS = �S − �eS the corresponding entropy production, also
known as “path entropy production.” The cornerstone of path
thermodynamics is the relation

�iS(X) = kB Z (X), (5)

where the quantity Z (X) is defined as

Z (X) = ln
P(X)

P(R)(X̃)
(6)

with the obvious assumption that X̃ is not of zero mea-
sure. This relation generalizes the traditional Gibbs-Shannon
stochastic thermodynamics [1] and, as such, it was at the ori-
gin of an impressive resurgence of interest in this field [2,4,5].
Especially, Z (X) obeys the (detailed) fluctuation theorem, in
the sense that

P(ζ )

P(−ζ )
= P{ζ < Z � ζ + dζ }

P{−ζ < Z � −ζ + dζ } = exp(ζ ), (7)

where P{E} denotes the probability for the event E to occur.
It is important to notice that the validity of this result goes far
beyond the simple case of jump Markov processes. It doesn’t
rely on any physico-chemical property of the system, nor on
the Markovian attribute of the underlying stochastic process,
so long as the reverse process exists and remains bounded
almost surely [6].

The relation (5) was established by several authors, using
different approaches [11,23–28]. We shall not go through the
mathematical demonstration of this relation, nor discuss the
physical justification of the underlying concepts (see [3] and
[4] for extensive reviews). In particular, this type of relation,
with the associated fluctuation theorem, concerns a variety
of systems subjected to different types of nonequilibrium
constraints, such as controlled time-dependent driving exter-
nal forces and/or reservoirs, nicely illustrated by Jarzynski
using a Hamiltonian approach [29]. Instead, we will question
the validity of (5) in reactive systems submitted to a given
(time-independent) nonequilibrium constraint and modeled as
a jump Markov process.

Since χ (t ) is a Markov process, we can write
P(X) = P(X0, t0) × ∏n

i=1 P(Xi, ti | Xi−1, ti−1) and P(R)(X̃) =
P(R)(Xf , t0)×∏n

i=1 P(R)(Xn−i, ti | Xn−i+1, ti−1). Inserting these
relations into (6) and noticing that, by construction,
P(R)(Xf , t0) = P(Xf , t f ), we find

Z (X) =
n∑

i=1

ln
P(Xi, ti | Xi−1, ti−1)

P(R)(Xi−1, tn−i+1 | Xi, tn−i )
+ ln

P(X0, t0)

P(Xf , t f )
.

(8)

For n 
 1, we can use the relation (4) to obtain the main
result,

Z (X) =
n∑

i=1

ln
W (Xi | Xi−1)

W (Xi−1 | Xi )
+ ln

P(X0, t0)

P(Xf , t f )
. (9)

This relation was first introduced by Lebowitz and Spohn [30]
and later extended to the specific case of reactive processes by
Gaspard [31]. Since then, combined with (5), it constitutes the
starting point of practically all path thermodynamics formula-
tions of reactive systems.

IV. MATHEMATICAL PROOFS

We now establish two fundamental results: First, we prove
that the necessary condition for the validity of path thermo-
dynamics is that there exists one, and only one, elementary
reaction associated with each possible composition change of
the system. Second, we prove that the class of reactive systems
illustrated by the scheme (1) have sample paths that are time
reversible in the stationary regime, even though the system
operates under nonequilibrium constraints.

Let us consider the specific case of a system involving p �
2 possible processes leading to the very same transition X ′ →
X . Denoting the corresponding transition rates by Wρ (X | X ′),
ρ = 1, 2, . . . , p, the relation (4) implies

P(X, t + �t | X ′, t )

=
p∑

ρ=1

Wρ (X | X ′) �t + o(�t ), ∀ X �= X ′, (10)

which simply shows that assigning different probabilities to
the very same event (here the jump X ′ → X ) is just absurd.
We note that, from the strict mathematical point of view, this
is just a direct consequence of the Kolmogorov-Feller unicity
theorem.

This observation is precisely at the heart of the prob-
lem. In fact, in reactive systems the relation (9) is just a
duplication of the relation (8) where P(Xi, ti | Xi−1, ti−1) is
replaced by W (Xi | Xi−1) �ti. Therefore, according to (10),
each W (Xi | Xi−1) in (9) is necessarily the sum of all the
transition rates associated with elementary reactions giving
rise to the jump Xi−1 → Xi. And, evidently, the same argument
holds for the corresponding reverse reactions Xi → Xi−1.

It is important to notice that this fact is not a restriction
at the level of the master equation formulation (3) where the
contribution of each elementary process is treated separately,
precisely because they appear as a sum [1,12]. The situation
is different for the function Z (X) since it is defined as the
sum of the logarithm of transition rates, the argument of
each logarithm function being the sum of all transition rates
leading to the same jump. Given that the entropy production
of reactive systems depends on the characteristics of each
individual reaction [10], the relation (5) implies automatically
that stochastic thermodynamics remains limited to systems
where there exists one, and only one, elementary process
associated with each possible jump. This result completes the
demonstration of our first statement.

Consider now the paradoxical issue illustrated by the reac-
tive system (1) and let us assume that the associated stochastic
process χ (t ) possesses a stationary regime, i.e., the corre-
sponding stationary probability distribution Ps(X ) exists. De-
noting the transition rates of this system by λρ (X ) ≡ Wρ (X +
1 | X ) and μρ (X ) ≡ W−ρ (X − 1 | X ), ρ ∈ [1, R], and insert-
ing these expressions into the master equation (3), we can
easily verify that the latter satisfies the principle of detailed
balance at the stationary state, i.e.,

μ(X ) Ps(X ) = λ(X − 1) Ps(X − 1), (11)

where λ(X ) = ∑
ρ λρ (X ) and μ(X ) = ∑

ρ μρ (X ). This rela-
tion proves our second statement since we have a theorem stat-
ing that the necessary and sufficient condition for a stationary

052135-3



M. MALEK MANSOUR AND ALEJANDRO L. GARCIA PHYSICAL REVIEW E 101, 052135 (2020)

Markov process to be time reversible is that it satisfies the
principle of detailed balance (see, for example, Section 6.3 of
[19] for details). However, for the sake of completeness, we
give here a slightly simpler proof.

We observe that, by definition, the sequence of states
visited by χ (t ) along the sample path X is arbitrary, with the
exceptions that {χ (t0) = X0; χ (t f ) = Xf }. Being in a state Xi

at time ti, the process may well remain there during �ti =
ti+1 − ti, so that Xi+1 = Xi. For the reactive system (1), there
exist only two other possibilities: either Xi+1 = Xi + 1 (i �= n),
in which case W (Xi+1 | Xi ) = λ(Xi ), or Xi+1 = Xi − 1 (Xi > 0)
and thus W (Xi+1 | Xi ) = μ(Xi ).

In both cases, we can easily check that (11) can be written
as

W (Xi | Xi−1) Ps(Xi−1) = W (Xi−1 | Xi ) Ps(Xi ). (12)

Consequently, the relation (9) reduces to

Z (X) = ln
Ps(Xf )

Ps(X0)
+ ln

P(X0, t0)

P(Xf , t f )
, (13)

which vanishes at the stationary regime, implying in turn that
Ps(X) = P(R)

s (X̃). This result completes the demonstration of
our second statement.

One last point to be clarified concerns the Schnakenberg
graph theory of reactive systems and its extension to jump
Markov processes by Andrieux and Gaspard [32]. This theory
is just an alternative perspective to the very same problem, that
is, the study of the statistical properties of a nonequilibrium
system from their sample paths. And it suffers from exactly
the same restrictions as those of the traditional path thermo-
dynamics approach. To be precise, if we follow the stochastic
Schnakenberg’s procedure by taking into account each ele-
mentary process, one by one, in “multigraph” situations, then
we obtain an expression for the “currents” in nonequilibrium
systems that indeed leads to the expected thermodynamic
result, on average. And the very same property holds for the
path entropy production obtained from the traditional path
thermodynamics approach [31], again on average. The crucial
point turns out to be the way the authors actually performed
this average. Rather than using sample paths of the system
obtained by an appropriate succession of individual transition
rates Wρ (X | X ′) [see Eq. (10)], a close examination of their
work shows that they actually use, quite wisely, the master
equation based on the Kolmogorov equation (12) (Eq. (45) in
Ref. [31] and Eq. (20) in Ref. [32]). This strategy, however,
has its own intrinsic limitations. In particular, it cannot be
used to establish a fluctuation theorem for nonequilibrium
“currents,” nor for the path entropy production. For that, one
way or another, we have to appeal to sample path properties
of the system.

A “sample path” of a stochastic process χ (t ) has a precise
mathematical meaning. It represents a succession of states
assumed by χ (t ) in the course of time. These states are thus
necessarily measurable, in the sense that a probability density
can be associated to each of them individually. In this respect
it is quite instructive to recall that a fundamental theorem by
Kolmogorov states that a stochastic process can be entirely
characterized by the family of its sample paths if, and only if,
the latter represent a succession of measurable states visited
by the system in the course of time. In particular, a transition

rate associated to a reaction is a measurable quantity if, and
only if, there exists no other elementary reaction leading to
the same change. The Kolmogorov relation (10) clearly proves
that it is impossible to associate a (conditional) probability
distribution to each individual transition rate Wρ (X | X ′). In
other words, these transition rates are not separately measur-
able quantities so they cannot be used to define the stochastic
process χ (t ), the latter being defined by the sum of all
transition rates leading to the same jump.

Needless to say, we are entirely free to define a “path” any
way we want. But then it is not always possible to associate
a stochastic process to an arbitrary constructed path. This
misinterpretation of the Kolmogorov’s theorem is at the origin
of the wrong result of Gaspard and Andrieux [31,32].

We note that this statement is quite obvious from a phys-
ical point of view. In fact, we have already shown that the
sample paths of the reactive system (1) are time reversible
at the stationary regime [i.e., Ps(X) = Ps(X̃)] so extracting
an irreversible property from strictly reversible trajectories
is impossible. In particular, no matter how we define the
current or the entropy production, in terms of elementary
transition rates of the reactive system (1), they cannot obey
the fluctuation theorem. For the sake of completeness, we
nevertheless present below the mathematical proof.

The authors consider explicitly the case of the Schlögl
model [R = 2, in (1). This model involves two elementary
reactions leading to the jump Xi → Xi + 1 and two others
leading to the reverse jump Xi → Xi − 1. Let us denote
the corresponding transition rates by Wρi (Xi + 1 | Xi ) and
W−ρi (Xi − 1 | Xi ), respectively, where the subscript ρi = 1 or
2. Following the authors, one obtains at the stationary regime
[cf. Eq. (5)]

Z (X) = �iS(X)/kB =
n∑

i=1

ln
Wρi (Xi|Xi−1)

W−ρi (Xi−1|Xi )
+ ln

Ps(X0)

Ps(Xf )
,

(14)

where the values assigned to ρi (1 or 2) determine the precise
structure of the path leading to X0 → Xf and its reverse. As
stated above, the authors showed that the average 〈�iS(X)〉 is
equivalent to the expected thermodynamic result.

Let us now consider the probability density P(ζ ) associated
with Z (X), defined as

P{ζ < Z (X) � ζ + dζ } = P(ζ ) dζ . (15)

Using the fundamental relation Ps(X) = P(R)
s (X̃) and noticing

that the change of variables X → X̃ transforms P(X) to
P(R)(X̃), Ps(X0) to Ps(Xf ), Wρi (Xi + 1 | Xi ) to W−ρi (Xi − 1 | Xi ),
and thus Z (X) to −Z (X), we readily find that at the stationary
regime

P(ζ ) =
∑

X

δKr
ζ , Z (X) Ps(X) =

∑
X̃

δKr
ζ , Z (X̃)

P(R)
s (X̃)

=
∑

X

δKr
ζ ,−Z (X) Ps(X) = P(−ζ ). (16)

Consequently, P(ζ ) = P(−ζ ) which contradicts (7) and thus
proves that the entropy production defined by (14) does
not obey the fluctuation theorem. Clearly, for these types
of reactive systems using the Schnakenberg graph theory
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formulation does not correct the flaw that exists with path
thermodynamics.

V. CONCLUDING REMARKS

Obviously, the core of the problem lies in the fact that
the specificities of elementary reactions cannot be deduced
from the sample paths of the corresponding reactive system
in “multigraph” situations. One potential way out of this
difficulty is to supplement the stochastic formulation with a
sort of “counting parameter” which is used to identify the
actual elementary process responsible for each transition. This
strategy was proposed by Gaspard et al. for the stochastic
Schnakenberg formulation of reactive systems [33], as well
as for the so-called quantum dots problem [34] (an entirely
different issue).

The legitimate question is obviously the precise meaning
of this “counting parameter.” One way to implement this pa-
rameter is through Gillespie’s numerical simulation method.
Being at a given state, we pick a random number to choose
the next jump. If there exist several elementary processes
associated with that jump, then we pick a second random
number to decide which reaction is actually responsible for
that jump. This method allows us to construct a random
path thus justifying the expression �iS(X) of path entropy
production proposed by Gaspard and Andrieux for the Schlögl
model (14). No doubt, upon repeating this procedure as many
times as necessary, we will find that, on average, �iS(X)
approaches the expected thermodynamic behavior. This is
because generating the extra random numbers between suc-
cessive jumps does not modify the dynamics of the system,
which therefore remains identical to Kolmogorov’s original
formulation. The process of averaging by repeating over and
over again the same sequence of numerical experiments is thus
identical to taking the average at the level of master equation
[see the discussions after Eq. (13)]. The drawback, however,
is that the resulting path generated in this way can no longer

be associated with the sample path of the system. As shown
above, the path entropy production defined in this way does
not obey the fluctuation theorem.

Another possibility is to incorporate this counting parame-
ter to the very definition of the stochastic process, a procedure
that obviously needs to be defined in a precise way. However,
it is important to keep in mind that this alternative proce-
dure changes profoundly the statistical nature of the problem
because the system is provided with some information that
it does not actually possesses. Determining thermodynamic
properties of a system under this modified condition is, at
minimum, a problematic endeavor that requires evidently
more profound investigations.

One way to decide once and for all this controversial issue
is to appeal to reactive Boltzmann simulations. Here, the elas-
tic and reactive collisions between the particles (usually, hard
spheres) obey precise microscopic rules, and the evolution of
the composition of the system is entirely determined by the
knowledge of the activation energies of the reactive processes,
thus excluding the introduction of any extra parameters or
hidden variables.

One last perspective needs to be mentioned. We know that,
in the limit of large system size, a jump Markov process
converges to a diffusion process whose associated probability
obeys a Fokker-Planck equation (the famous Kurtz theorem
[35]). What is the validly of path thermodynamics in this case?
As we will soon report elsewhere, yet again a number of path
thermodynamics predictions turn out to be simply wrong.
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