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The Kardar-Parisi-Zhang (KPZ) equation is a paradigmatic model of nonequilibrium low-dimensional systems
with spatiotemporal scale invariance, recently highlighting universal behavior in fluctuation statistics. Its space
derivative, namely the noisy Burgers equation, has played a very important role in its study, predating the
formulation of the KPZ equation proper, and being frequently held as an equivalent system. We show that, while
differences in the scaling exponents for the two equations are indeed due to a mere space derivative, the field
statistics behave in a remarkably different way: while the KPZ equation follows the Tracy-Widom distribution,
its derivative displays Gaussian behavior, hence being in a different universality class. We reach this conclusion
via direct numerical simulations of the equations, supported by a dynamic renormalization group study of field
statistics.
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I. INTRODUCTION

The Kardar-Parisi-Zhang (KPZ) equation [1] describes the
space-time evolution of a scalar field h(r, t ) as

∂t h = ν∇2h + (λ/2)(∇h)2 + η, (1)

〈η(r, t )η(r′, t ′)〉 = 2Dδ(r − r′)δ(t − t ′), (2)

where r ∈ Rd ; ν, D > 0, and λ are parameters; and η is zero-
average, Gaussian white noise. This continuum model is a
landmark of current statistical physics [2,3], being considered
even on a par with the Ising model [4]. Indeed, 24 years and
mathematical tours de force were required for nontrivial exact
solutions to be achieved in the cases of both the Ising model
[5] and the KPZ equation [6–8]. The former (latter) model
constitutes a paramount universality class for equilibrium
(nonequilibrium) critical phenomena, defined by universal
behavior of critical exponents, correlation functions [9], and
amplitude ratios [10–12]. The KPZ equation in particular,
having been originally proposed to model interface growth
[1], displays critical behavior that is currently being identified
in widely disparate contexts, including bacterial populations
[13], turbulent liquid crystals [14], nonlinear oscillators [15],
stochastic hydrodynamics [16], colloidal aggregation [17],
thin-film deposition [18,19], reaction-diffusion systems [20],
random geometry [21], superfluidity [22], active matter [23],
or quantum entanglement [24].

While, from the point of view of exact integrability, the
Ising model is most theoretically fertile in two dimensions
(2D) [9], for KPZ this happens for d = 1. Here, the statistics
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of the field has been proven to be described, depending on
global constraints on system size L and/or initial conditions,
by some member of the Tracy-Widom (TW) family of proba-
bility distribution functions (PDFs) for the largest eigenvalue
of random matrices [11,12,25], demonstrating KPZ behavior
as a conspicuous instance among systems with non-Gaussian
fluctuations [26]. Now the universality class incorporates the
field statistics, the precise flavor of the TW distribution lead-
ing to universality subclasses in the KPZ case [11,12,25].

Historically, a major role in delineating KPZ universality
has been played by the stochastic or noisy Burgers equation,

∂t u = ν∂2
x u + λu∂xu + ∂xη, (3)

where η is as in Eq. (2). Clearly, the space derivative of
Eq. (1) yields Eq. (3) if u = ∂xh. This relation was exploited,
e.g., in [1] to seminally obtain the exact scaling exponents by
adapting the earlier dynamical renormalization group (DRG)
analysis [27] of Eq. (3), as a model of a randomly stirred
fluid. The noisy Burgers equation [28–30] is a paramount
system on its own, e.g., for fluid [31] and plasma [32] tur-
bulence, or for interacting particle [33] and driven-diffusive
systems [2]. Actually, both 1D equations, (1) [3,34] and (3)
[33], share an “accidental” fluctuation-dissipation symmetry
by which the nonlinear term does not influence the corre-
sponding stationary solution of the Fokker-Planck equation
governing the field PDF, P , which becomes a Gaussian,
equilibrium-like distribution, determined by the linear and the
noise terms [3,33,34]. Combined with the shared symmetry
under Galilean transformations, this allows us to show that
the two equations share the nontrivial z = 3/2 value for the
dynamic exponent describing the power-law increase of the
correlation length, ξ (t ) ∼ t1/z [34]. The roughness exponent
α quantifying the scaling of the field rms deviation with
system size at saturation [34], w ∼ Lα , differs as expected
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(αKPZ = αBurgers + 1 = 1/2), since h(x) = ∫ x
0 u(x′)dx′. Thus,

Eqs. (1) and (3) are frequently considered as two equivalent
descriptions of the same underlying process. However, the
KPZ equation shows that Gaussian behavior for the stationary
P does not imply that the height statistics prior to saturation
(for L < ∞) is also Gaussian; indeed, it is TW-distributed for
KPZ [11,12,25].

From the point of view of the specific physical systems de-
scribed by the noisy Burgers equation [2,31–33], it is crucial
to clarify whether their field statistics is also non-Gaussian
in the growth regime, in order to accurately identify the
universality class of their kinetic roughening behavior. In this
article, we show that this is not the case, i.e., we show that the
one-point PDF for u(x, t ) as described by Eq. (3) is Gaussian
for times dominated by the nonlinearity, crucially prior to and
(as expected) after saturation to steady state. We reach this
conclusion by direct numerical simulations of the equation,
which are analytically supported by a DRG analysis of the
field statistics for Eq. (3). We also address the dynamics of
the space-integral of Eq. (3), explicitly illustrating that, in this
case, the KPZ sum, h(x, t ), of (correlated) Gaussian Burgers
variables u(x, t ) indeed yields TW statistics [35].

II. UNIVERSALITY CLASS OF THE NOISY
BURGERS EQUATION

A. Scaling exponents

We begin by addressing the full time dynamics described
by Eq. (3). While the invariant measure of the equation has
been shown [28,29,33] to be Gaussian, and the asymptotic
scaling exponents are analytically known via DRG [27,36],
to our knowledge the time crossover that occurs from linear
to nonlinear behavior has not been explicitly addressed yet.
To assess it, we have performed numerical simulations of
Eq. (3). Note that this model is known to be conspicuously
prone to numerical instabilities [37]. We use the numerical
scheme proposed in [38], which provides consistent results.
We consider flat initial conditions and periodic boundary
conditions.

Figure 1 shows the time evolution of the structure factor
S(k, t ) = 〈φ̃(k, t )φ̃(−k, t )〉, as described by Eq. (3); here, a
tilde denotes spatial Fourier transform and k is the wave num-
ber. Panel (a) corresponds to φ(x, t ) = u(x, t ), while panel
(b) is for its space integral, φ(x, t ) = h(x, t ) = ∫ x

0 u(x′, t )dx′,
which should retrieve the behavior expected for Eq. (1). At
relatively early times, the linear term and the noise in Eq. (3)
are expected to control the evolution of both the u and h fields,
hence z = 2 as provided by the exact solution of the linearized
equation [34]. This behavior is approximately reproduced by
our simulations, as implied by the data collapse shown in the
insets for small times. Indeed, recall that under kinetic rough-
ening conditions, S(k, t ) ∼ k−(2α+1)s(kt1/z ), with s(u) ∼ 1
for u 	 1 and s(u) ∼ u2α+1 for u 
 1 [34,39]. Collapse is
achieved for u (h) using α = −1/2 (1/2), as also borne out
from the exact solution of the linearized equations (3) and (1),
respectively. However, for sufficiently long times, the value of
z changes, indicating nonlinear behavior. Indeed, data collapse
is now obtained using z = 3/2 for both u and h, as expected
in the asymptotic limit [1,27]. Note that, also in both cases, α
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FIG. 1. Time evolution of the structure factor described by
Eq. (3) for (a) u(x, t ) and (b) h(x, t ) = ∫ x

0 u(x′, t )dx′, using D =
ν = 1, λ = 4, and L = 256. Black (red) solid lines correspond to
the linear (nonlinear) regime, as implied by the data collapses in the
insets. The arrows indicate time increase, t , for each line being twice
that of the previous one, starting at t0 = 0.64. All units are arbitrary.

remains fixed to its linear-regime value as a consequence of
the “accidental” fluctuation-dissipation symmetry [3,33,34].
Overall, Eq. (3) is thus seen to account for the full dynamics
of the Burgers field, and for the KPZ behavior of its space
integral. Conversely, in Appendix A we integrate numerically
the KPZ equation (1) showing that the evolution of its slope
field u(x, t ) = ∂xh(x, t ) coincides with results from Eq. (3).
All this supports the consistency of our numerical results.

B. Statistics of fluctuations

1. Numerical study

Beyond scaling exponents, we have also studied numeri-
cally the field statistics described by Eq. (3) by considering

X (x,
t, t0) = (
φ − 
φ)/(�
t )β, (4)

where 
φ(x,
t, t0) = φ(x, t0 + 
t ) − φ(x, t0), the overbar
denotes space average, β = α/z is the growth scaling
exponent, � is a normalization constant [40], and 
t 	 1
will be assumed. In principle, the statistical distribution
of X (x,
t, t0) can differ before (t0 = 0,
t 
 tsat) and
after (t0 > tsat) saturation. For example, for a periodic KPZ
system, they are provided by the TW distribution for the
largest eigenvalue of random matrices in the Gaussian
orthogonal ensemble (TW-GOE) and by the Baik-Reins (BR)
distributions, respectively [11,12,25,40].

We assess in Fig. 2 the histogram of X (x,
t, t0) for the u
and h fields, as numerically obtained from Eq. (3). Full PDFs
are shown in Figs. 2(a) and 2(b) for times both in the nonlinear
growth regime determined above (t0 + 
t < tsat, blue empty
symbols) and after saturation to steady state (t0 > tsat, red
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sat

FIG. 2. Histograms for X (x, 
t, t0 ) (a), (b) from simulations of Eq. (3) with ν = 1, λ = 103, D = 10−3, and L = 256 for φ = u (squares)
and φ = h(x, t ) = ∫ x

0 u(x′, t )dx′ (circles). Means and variances have been adjusted to TW-GOE and BR values. The dynamics of skewness
(kurtosis) appears in (c) [(d)]. In all panels blue (red) and empty (filled) symbols correspond to the growth (saturation) regime, with black,
blue, and red solid lines showing exact Gaussian, TW-GOE, and BR values, respectively; tsat = 100, and 
t = 25–50, 1.5–3, and 0.4–0.8 are
used for Gaussian, TW-GOE, and BR-like histograms, respectively. Thin lines in (c), (d) are guides to the eye. All units are arbitrary.

filled symbols). Figures 2(c) and 2(d) show the time evolution
of the field skewness, S = 〈X 3〉c/〈X 2〉3/2

c , and excess kurtosis,
K = 〈X 4〉c/〈X 2〉2

c , respectively, where 〈X n〉c denotes the nth-
order cumulant. The statistics of u(x, t ) are Gaussian to a high
precision, both prior to and after saturation; see the PDFs in
panels (a), (b). Indeed, the skewness and (somewhat more
slowly) the excess kurtosis converge rapidly to zero [panels
(c), (d)] for u(x, t ). The slope field of Eq. (1) exhibits a similar
Gaussian behavior, as shown in Fig. 6 in Appendix A, again
supporting the identification of solutions of Eq. (3) with the
slope field for Eq. (1).

In the case of the h(x, t ) field, Eq. (3) correctly leads
S (t ) and K(t ) to take on the characteristic universal values
of the KPZ equation, either TW-GOE or BR [shown as blue
or red solid lines, respectively, in Figs. 2(c) and 2(d)] for
intermediate values of 
t within the expected ranges of t0
and 
t (t0 = 0, tsat > 
t 	 0 and t0 > tsat, t0 > 
t 	 0,
respectively). Indeed, the PDF of h fluctuations approaches
the TW-GOE or BR distributions for t0 = 0 or t0 = tsat,
respectively, only for such intermediate values of 
t . This
behavior has also been observed for discrete and continuum
models in the KPZ universality class [40,41]. Specifically,
the difference between the actual PDF and the ideal TW-
GOE or BR distributions reaches a minimum for intermediate
values of 
t . It is for such 
t that the numerical h-PDF
is plotted in Figs. 2(a) and 2(b). Means and variances have
been adjusted to equal those of the exact TW-GOE or BR
distributions. As the pre- or post-saturation h-PDF evolves
from Gaussian to TW-GOE or BR, to become Gaussian again
for large 
t [see panels 2(c) and 2(d) and the animations
in the Supplemental Material [42]], the Gaussian black solid
line in panels 2(a) and 2(b) seems to attract the tails of the h
distribution.

A final stark difference in the critical behavior of the u
(Burgers) and h (KPZ) fields, as described by Eq. (3), lies in
the behavior of the two-point correlation function C(x, t ) =
〈φ(x0, t )φ(x0 + x, t )〉 − 〈φ̄(t )〉2; see Fig. 3. Although in both
cases the expected scaling form holds [34,39], C(x, t ) =
t2βc(x/t1/z ) with c(y) ∼ cst − y2α for y 
 1 and 0 for y 	 1,
the exponents leading to collapse are different (i.e., those
derived from Fig. 1), as are the corresponding scaling func-
tions c(y). For the h field, the latter is the covariance of
the Airy1 process, as expected in the growth regime for 1D
KPZ scaling with periodic boundary conditions [11,12,43].
Qualitative differences between Burgers and KPZ behaviors
seem larger for the one-point statistics than for C(x, t ).
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FIG. 3. Collapse of the two-point correlation function C(x, t )
at different times described by Eq. (3) for (a) φ = u and (b) φ =
h = ∫ x

0 u(x′, t )dx′ for L = 256, 
t = 10−2, ν = D = 1, λ = 10. The
insets show the uncollapsed data. The small range of values for C
induces large relative errors in (a). The solid line in (b) shows the
exact covariance of the Airy1 process [43]. The arrows show time
increase, with t doubling for each line, from t0 = 1. All units are
arbitrary.
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FIG. 4. Two-point correlation function G(x, t ) from numerical
simulations of Eq. (3) for (a) φ = u and (b) φ = h = ∫ x

0 u(x′, t )dx′

for L = 210, 
t = 5×10−3, ν = D = 1, λ = 6. In panel (a) the
black solid line is a fit to f (ξ ) ∝ e−a2ξ2.6

, and it has slope 2.6
in the inset. The exponents required for collapse are close (but
not identical) to the theoretical expectations [12,44,45]. In panel
(b) 
G′ = G′(ξ,
t, t0) − G′(0,
t, t0), the black dash-dotted line is
the stationary KPZ correlation g(ξ ) − g(0), and the green dotted line
is the Airy1 correlation, as in [40]. In both panels, color evolves from
blue to red for increasing t (a) or t0 (b). The number of realizations
is larger in (a) (2×104) than in (b) (102). All units are arbitrary.

Our simulations of Eq. (3) likewise reproduce the expected
two-point correlations for u and h after saturation to steady
state, as shown by studying G(l,
t, t0) = 〈[δφ(x + l, t0 +

t ) − δφ(x, t0)]2〉 with δφ = φ − 〈φ〉. For φ = u, one ex-
pects [12,44,45] G(x, t ) ∝ t1/z f (a1x/t1/z ) for t0 > tsat, where
f (y) ∼ e−a2y3

, with a1,2 being numerical constants, as approx-
imately obtained in Fig. 4(a). In turn, for φ = h and large t0
and 
t , one expects G′(ξ,
t, t0) ≡ t−1/zG(ξ,
t, t0)  g(ξ ),
with ξ = l/t1/z and g(ξ ) the exact solution for the rescaled
stationary KPZ correlation, which is such that f (ξ ) ∝ g′′(ξ )
[40,44,45]. This is indeed the behavior found in Fig. 4(b),
quite similar to that assessed in [40] for a discrete model in
the 1D KPZ class. Note again that fluctuations and relative
errors are much stronger for φ = u than for φ = h.

2. Dynamic renormalization group calculation

The Gaussian behavior numerically obtained for u as
described by Eq. (3) coincides with analytical expectations
derived from a DRG evaluation of the field cumulants. Specif-
ically, we take an approach that has been successfully em-
ployed for the KPZ [46–48] and nonlinear molecular beam
epitaxy (MBE) [49] equations, and for the scalar Burgers
equation with nonconserved noise [50]. The method performs
a partial RG transformation only, in which a coarse-graining
of the equation is performed, while omitting the standard
additional rescaling step [27,36]. This allows us to make
explicit the scale dependence of the equation parameters,
as seminally proposed in [51]. Thus, within a one-loop ap-
proximation [46–50] (see the details in Appendix B), w2 =
〈u2〉c = B

∫
R dk1, where B is a numerical constant. Consid-

ering nonzero lattice spacing s and finite L, the variance of
u thus scales as 1/L for L 	 s, which indeed agrees with

the expected value of the roughness exponent, α = −1/2.
Moreover, w2 ∼ s−1 for s 
 1 [34,52]. We have additionally
characterized the divergence of the fourth cumulant, 〈u4〉c,
with lattice spacing to determine the asymptotic behavior
of the kurtosis, K = 〈u4〉c/〈u2〉2

c . In Appendix B we obtain
〈u4〉c ∼ [ln(1/s)]0.79, leading to a vanishing K as s → 0.
Moreover, as in [50], an exact symmetry in reciprocal space
induces the exact cancellation of all odd-order cumulants
(〈un〉c for odd n). Hence the skewness is identically zero
and, more generally, the u-PDF is symmetric (as a Gaussian,
but unlike the TW distribution [50]). Combined with the
vanishing kurtosis, these results fully agree with the Gaussian
statistics we have found numerically for the u field.

III. DISCUSSION

Our numerical and analytical results indicate that the long-
time behavior of Burgers equation with conserved noise,
Eq. (3), albeit controlled by the nonlinear term, displays Gaus-
sian statistics. This is in spite of the fact that it is precisely such
nonlinearity that breaks the inversion symmetry (u ↔ −u) of
the equation. This lack of symmetry has been correlated in the
KPZ [34] and nonlinear-MBE equations [53] with a nonzero
skewness due to the existence of a preferred growth direction
[39]. Hence, the symmetry of the (Gaussian) PDF is an emer-
gent property of the large-scale behavior in Eq. (3), much as
it is for Burgers equation with nonconserved noise [50]. Akin
to the latter, the symmetric field PDF in the nonlinear regime
can be related to the behavior of the deterministic (viscous)
Burgers equation, which is analytically known [54,55] to yield
sawtooth profiles that are symmetric [such as Eq. (3)] under a
combined (x, u) ↔ (−x,−u) transformation. This nonlinear
behavior can be specifically assessed in the slopes histogram,
again as in Burgers equation with nonconserved noise [50,56],
being enhanced for large λ and small ν and D values. Figure 7
in Appendix A shows the time evolution of the statistics of the
slopes of u (∂xu), which evolves from a symmetric PDF in the
early linear regime, to a nonsymmetric form in the nonlinear
regime, and finally to a symmetric form again at saturation.
Once more, similar behavior is observed in numerical simula-
tions of the KPZ equation, Eq. (1), now for the h curvatures
(∂2

x h) of the KPZ profiles; see Fig. 8 in Appendix A.

A. Higher dimensions

It is natural to consider whether non-KPZ behavior also
occurs for the Burgers equation with conserved noise in higher
dimensions. For example, in 2D note that if the equation is
for a scalar field, it can no longer be the derivative of the
KPZ equation, as this is a vector field. Nevertheless, a scalar
2D generalization of Eq. (3) can still be formulated in close
analogy with the case of nonconserved noise [50], which reads

∂t u = ν ∇2u + λu(∂xu + ∂yu) + ∂xηx + ∂yηy, (5)

〈ηi(r1, t1)η j (r2, t2)〉 = 2Dδi jδ(r1 − r2)δ(t1 − t2), i, j = x, y.

(6)

We again find a symmetric field PDF and non-KPZ exponents
for Eq. (5) (see Appendix C), thus a non-KPZ universality
class in 2D [11,12].
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B. Exact linear approximation

Finally, let us remark that the Gaussian nature of the field
PDF displayed by Eq. (3) in its large-scale nonlinear regime
allows for an exact Gaussian (asymptotic) approximation
of the equation in terms of a linear model that is in the
same universality class, including scaling exponent values and
Gaussian statistics. Again, this is akin to the case of the scalar
Burgers equation with nonconserved noise [50], also includ-
ing higher-dimensional and strongly anisotropic generaliza-
tions [57,58], like the celebrated Hwa-Kardar equation for the
height of a running sand pile [59]. In contrast with these cases,
Eq. (3) does not support hyperscaling (2α + d = z) [34,39],
hence noise correlations are required in order to match
the full universal behavior. Specifically, the linear, nonlocal
equation

∂t ũ(k, t ) = −|k|3/2ũ(k, t ) + η̃(k, t ), (7)

〈η̃(k, t )η̃(k′, t ′)〉 = |k|3/2δ(k + k′)δ(t − t ′), (8)

yields the exact same asymptotic behavior of the nonlinear
Eq. (3). Note that a similar exact Gaussian approximation
is not possible for systems with non-Gaussian statistics (like
the KPZ equation), not even considering correlations in the
noise.

IV. SUMMARY AND CONCLUSIONS

In summary, we have obtained that the field statistics of
the Burgers equation with conserved noise is Gaussian, in
spite of the fact that its asymptotic behavior is controlled by a
nonlinear term that explicitly breaks the up-down symmetry
and that the equation is related to KPZ through a mere
space derivative. Such nonsymmetric statistics indeed occurs
for both the integral and the slope fields related with the u
field described by Eq. (3). In particular, this behavior pro-
vides a nontrivial example in which the KPZ sum, h(x, t ) =∫ x

0 u(x′, t )dx′, of (correlated) Gaussian Burgers variables u
yields non-Gaussian KPZ variables h; although this effect is
counterintuitive, it is not unknown [60]. The correct iden-
tification of the universality class (including scaling expo-
nent values and field PDF) is paramount to fully identify
stochastic Burgers behavior in the many contexts of spatially
extended systems, from fluid turbulence to driven diffusive
systems, in which Eq. (3) plays a relevant role as a physical
model.
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FIG. 5. Time evolution of the structure factor of solutions of the
Burgers equation with conserved noise (a) and the slopes of the KPZ
equation (b), for D = 1, λ = 4, ν = 1, and L = 256. Black (red)
solid lines correspond to the linear (nonlinear) regime, as implied
by the collapse shown in the insets. Time increases following the
arrow, t , for each line being twice that of the previous one, starting at
t0 = 0.64. All units are arbitrary.

APPENDIX A: NOISY BURGERS EQUATION
AS THE DERIVATIVE OF THE KPZ EQUATION

To further assess the relationship between the Burgers
equation with conserved noise,

∂t u = ν∂2
x u + λu∂xu + ∂xη,

〈η(x, t )η(x′, t ′)〉 = 2Dδ(x − x′)δ(t − t ′), (A1)

and the Kardar-Parisi-Zhang (KPZ) equation,

∂t h = ν∂2
x h + (λ/2)(∂xh)2 + η,

〈η(x, t )η(x′, t ′)〉 = 2Dδ(x − x′)δ(t − t ′), (A2)

namely that the former is the space derivative of the lat-
ter, here we simulate numerically both Eqs. (A1) and (A2)
(taking the space derivative of the latter for each time and
noise realization), we compute the structure factor for both
numerical fields, and we compare the results. Recall that the
stochastic nonlinear equations that we are discussing are con-
spicuously prone to numerical inaccuracies and instabilities
[37,38], which renders nontrivial the present type of check
that we are performing. Results are provided in Fig. 5, in
which panel (a) corresponds to Eq. (A1) [thus repeating the
same data shown in Fig. 1(a) of Sec. II A for the reader’s
convenience], and panel (b) corresponds to the numerical
derivative of the KPZ profile described by Eq. (A2). As
expected, the results are virtually indistinguishable, hence
they are consistent with the behavior discussed in Sec. II A
for the Burgers equation with conserved noise, Eq. (A1),
namely early-time (linear regime) exponent values zlinear=1.9,
αlinear = −1/2 and late-time (nonlinear regime) exponent val-
ues znonlinear = 3/2, αnonlinear = −1/2.
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FIG. 6. Fluctuation histogram [using X as defined in Eq. (4)] for
t0 = 0 (blue) and t0 = tsat = 300 (red) and 
t = 150 from numerical
simulations of Burgers equation with conserved noise (squares) and
from the derivative (slope field) of numerical simulations of the KPZ
equation (circles), using parameters as in Figs. 1(a) and 1(b). The
solid lines correspond to a Gaussian distribution. Time evolution of
the fluctuations skewness (c) and kurtosis (d) for the same numerical
simulations are as in panels (a) and (b). All units are arbitrary.

We proceed similarly to compute the probability distribu-
tion function (PDF) of the field [using Eq. (4) from Sec. II B]
both for Eq. (A1) and for the numerical derivative of Eq. (A2).
Results are provided in Fig. 6. The histograms have been
computed for the same parameter conditions as in Fig. 2 from
Sec. II B for the same t0 and 
t values for which Tracy-
Widom (TW) and Baik-Rains (BR) distributions are obtained
for the h field described by Eq. (3) therein. The histograms
shown in Figs. 6(a) and 6(b) are Gaussian to a high precision;
compare the symbols in the figures with the exact Gaussian
forms (solid lines). Also, the skewness and kurtosis shown
in Figs. 2(c) and 6(d), respectively, are seen to readily take
on their Gaussian (zero) values. All these results support the
interpretation of the noisy Burgers equation as the derivative
of the KPZ equation, as well as the Gaussian behavior of its
fluctuations both prior to and after saturation to the steady
state, as assessed by our numerical simulations.

Asymmetric profiles

To illustrate the discussion from Sec. III, and in analogy
with the simulations provided in Figs. 2 and 5, we assess the
relevance of sawtooth-like features in the long-time behavior
of the noisy Burgers equation by evaluating the fluctuation
histogram for (i) the slopes of the u field from the solutions
of the Burgers equation with conserved noise, and (ii) the
second-order space derivative (curvature field) of the h field
from the solutions of the KPZ equation. As expected, in
both cases the profiles are asymmetric for intermediate times
within the nonlinear regime [Figs. 8 and 7(b)–7(d)], away
from both the linear [Figs. 8(a) and 7(a)] and the saturation
[Figs. 8(e) and 7(e)] regimes, in which the surface is x ↔ −x
symmetric on average.
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FIG. 7. Histogram for the slope field φ = ∂xu [using X = (φ −
φ̄)/std(φ)] from numerical simulations of Eq. (3) for ν = 1, λ = 104,
D = 10−3, and L = 256 for times in the linear (a), nonlinear (b), (c),
(d), and saturation (e) regimes [time for each panel is twice that of
the previous one, starting at t0 = 40 (a)]. The X > 0 data (red left
triangles) have been reflected to facilitate comparison with X < 0
data (blue right triangles). All units are arbitrary.

APPENDIX B: DYNAMICAL RENORMALIZATION GROUP
ANALYSIS OF FIELD STATISTICS FOR THE 1D NOISY

BURGERS EQUATION

This Appendix provides additional details on the eval-
uation of field cumulants for the noisy Burgers equation,
Eq. (3) (see Sec. II B), following the dynamical renormaliza-
tion group (DRG) approach of [51], previously applied to the
evaluation of field statistics in the cases of the KPZ [46,47,49]
and the nonlinear molecular beam epitaxy [48] equations, and
of the Burgers equation with nonconserved noise [50].

According to Eq. (A1), the nth cumulant of u reads

〈un〉c =
∫
R2(n−1)

G(kn, ωn)Ln

n−1∏
j=1

dk jdω j

(2π )2
G(k j, ω j ), (B1)

with G(k, ω) = [−iω + ν̃(k)k2]−1, ν̃(k) =
√

λ2D
2πν

k−1/2 (see
[46] for details), and G(k, ω)η̂ = û(k, ω), where a caret de-
notes a space-time Fourier transform, k is the wave number, ω
is the time frequency, kn = −∑n−1

j=1 k j , and ωn = −∑n−1
j=1 ω j .

The correction Ln is perturbatively computed to one-loop
order as

Ln = (2D)δn,2 + Ln,1, (B2)
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FIG. 8. Fluctuation histogram from numerical simulations of
the curvature field (second-order space derivative) from numerical
simulations of the KPZ equation for times in the linear (a), nonlinear
(b)–(d), and saturation (e) regimes (the time for each panel is twice
that of the previous one, starting at t0 = 40). The histogram for
X > 0 (red left triangles) has been reflected to facilitate comparison
with the X < 0 (blue right triangles) data. Parameters as in Fig. 1,
except for λ = 104 and D = 10−3. All units are arbitrary.
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where Ln,1 = Kλninknln,1
∏n−1

j=1 k j is the lowest-order correc-
tion in the Feynman expansion of the cumulants, with K =
(2n − 2)!! being a combinatorial factor (the number of dif-
ferent fully connected diagrams). As we are interested in the
(ki, ωi ) → (0, 0) limit,

ln,1 =
∫ ∞

−∞

d�

2π

∫ > dq

2π
|G0(q,�)|2n(2Dq2)n, (B3)

where G0(k, ω) = (−iω + νk2)−1 and the integration domain
in

∫ > is the region {q ∈ R|�(�) = �0e−� < |q| < �0}. After
integration,

ln,1 = 2n+1�
(
n − 1

2

)
4π3/2(n − 1)!

Dnν1−2n

�2n−3(�)

e(3−2n)� − 1

3 − 2n
. (B4)

Taking � → 0, and considering the dependence of ν and D
with � [46], the following differential equation is obtained:

dln,1

d�
= 2n+1�

(
n − 1

2

)
4π3/2(n − 1)!

(
Dν Dλ2

2πν3

)(1−n)/4

�
5
2 (n−1)(�)

, (B5)

whose solutions for large � become

ln,1(�)  2n+1�
(
n − 1

2

)
4π3/2(n − 1)!

(
Dν Dλ2

2πν3

)(1−n)/4

5
2 (n − 1)�

5
2 (n−1)(�)

. (B6)

Due to symmetry among k1, . . . , kn−1, we take [46,47,49,51]

ln,1(k) = 2n+1�
(
n − 1

2

)
4π3/2(n − 1)!

(
Dν Dλ2

2πν3

)(1−n)/4

5
2 (n − 1)

n−1∏
j=1

1

k5/2
j

. (B7)

For n > 1, as k5/2 f (ω/kz ) = k−3/2ν(k)−2|G(k, ω)|−2, where
f is a scaling function [ f (u) → 1 as u → 0], we substitute
k−5/2

i  k3/2
i ν2(ki )|G(ki, ωi )|2. Finally,

〈un〉c = A
∫
R2(n−1)

G(kn, ωn)kn

×
n−1∏
i=1

dkidωi

(2π )2
kiG(ki, ωi )k

3/2
i ν2(ki )|G(ki, ωi )|2, (B8)

where A = πn−1/2in�(n − 1/2)K2D/[n!(n − 1)λn−2].
For odd cumulants (odd n), after integration in

ω1, . . . , ωn−1, the integrand of Eq. (B8) equals

kng(k1, . . . , kn)
n−1∏
i=1

ki, (B9)

where all ki in g(·) should be taken in absolute
value. Now, Eq. (B9) is antisymmetric under the
transformation ki �→ −ki, which maps the semispace
S+ = {(k1, . . . , kn−1) ∈ Rn−1| ∑n−1

i=1 ki > 0} into S− =
{(k1, . . . , kn−1) ∈ Rn−1| ∑n−1

i=1 ki < 0}. Hence, the integral
over the full Rn−1 cancels exactly. Thus, all the
odd cumulants of the u distribution are zero. As the
PDF of a stochastic variable χ can be expressed as
P(χ ) = F−1{exp[

∑∞
n=1(iv)nCn(χ )/n!]}, where Cn(χ ) are

the cumulants, F is a Fourier transform, and v is conjugate
to χ , and F preserves the parity of a function, if all the
odd-order cumulants are zero, the function of v is even and
P(χ ) is symmetric [50].

FIG. 9. Numerical computation of the fourth cumulant in the
[k1, k2, k3] ∈ [1, �]3 region, for different values of � (symbols). The
solid line shows a linear fit of the numerical data, and corresponds to
the straight line y = 0.79x − 3.94, hence 〈u4〉c ∼ (ln �)0.79.

Kurtosis behavior with lattice spacing

The fourth cumulant of the fluctuation distribution has
been estimated for different values of the lattice spacing s by
means of analytical integration in ω1, ω2, ω3, and numerical
integration in k1, k2, k3. Parameters have been chosen so as to
make A = 1 and Dλ2/2π = 1. Integration limits in k1, k2, k3

of the form [1,�] have been taken for different values of � ∝
1/s in order to characterize the divergence of the integral with
the lattice spacing s. The conclusion is that 〈u4〉c ∼ (ln �)0.79

(see Fig. 9), a result that is employed in Sec. II B.

APPENDIX C: 2D GENERALIZATION OF THE BURGERS
EQUATION WITH CONSERVED NOISE

Next we describe in detail the study of the scaling expo-
nents and field statistics of the 2D generalization of Burgers
equation with conserved noise, which is presented in Sec. III.
Specifically, numerical simulations have been carried out of
the scalar evolution equation

∂t u = ν ∇2u + λu(∂xu + ∂yu) + ∂xηx + ∂yηy, (C1)

〈ηi(r1, t1)η j (r2, t2)〉 = 2Dδi jδ(r1 − r2)δ(t1 − t2), i, j = x, y.

(C2)

This continuum model is a conserved-noise version of the
equation [the so-called generalized Hwa-Kardar (gHK) equa-
tion [58]] shown in [50] to provide a 2D generalization of the
1D Burgers equation with nonconserved noise. In turn, the
gHK equation has as a particular case, e.g., the well-known
model proposed by Hwa and Kardar to describe the height
fluctuations of a running sand pile [59].

Our numerical simulations of Eq. (C1) employ the same
numerical scheme as those carried out for Eq. (3). The evolu-
tion of the structure factor S(k, t ) = S(kx, 0, t ) = S(0, ky, t )
[50,58] is shown in Fig. 10. For increasing time and as in
1D, S(k, t ) converges toward k-independent (i.e., white noise)
behavior except for the largest values of k, due to the limited
accuracy of the numerical scheme at small scales. Note the
small range of values that actually occur for S(k, t ), leading
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FIG. 10. Time evolution of the structure factor S(k) = S(kx, 0) =
S(0, ky ) for the gHK equation with conserved noise, Eq. (C1). Time
increases in the direction of the arrow, doubling for each consecutive
live starting at t0 = 1. The inset show the collapse of the k2α+1S(kt1/z )
curves for the longest times within the nonlinear regime, using ex-
ponent values α = −1/2 and z = 3/2. Here, Lx = Ly = 256, 
x =

y = 1, 
t = 0.01, and ν = D = λ = 1.

to large relative numerical errors, which are especially large
at such small scales. Data collapse is achieved for α = −1/2
and z = 3/2, notably the same numerical values as in 1D, i.e.,
for Eq. (3).

The one-point statistics of the u field has also been numer-
ically characterized for Eq. (C1). The time evolution of the
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FIG. 11. Histogram for X (x,
t, t0) (with φ = u) (a), (b) from
simulations of Eq. (C1) with ν = D = λ = 1, and Lx = Ly = 1024.
In all panels blue up (red down) and empty (filled) triangles cor-
respond to the growth (saturation) regime, with black solid lines
showing exact Gaussian values; tsat = 64, and 
t = 0.1 are used. All
units are arbitrary.

skewness and excess kurtosis, as well as the histograms for X
as defined in Eq. (4), are plotted in Fig. 11, both in the growth
regime and after saturation to steady state. The large impact
of numerical errors for these data, related to the limited range
of values of the structure factor (see also Fig. 10), seems to
induce a slightly negative excess kurtosis. Nevertheless, the
variations in u show a symmetric PDF and behave not far from
a Gaussian random variable.
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