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We introduce and numerically study the branching annihilating random walks with long-range attraction
(BAWL). The long-range attraction makes hopping biased in such a manner that particle’s hopping along the
direction to the nearest particle has larger transition rate than hopping against the direction. Still, unlike the Lévy
flight, a particle only hops to one of its nearest-neighbor sites. The strength of bias takes the form x−σ with
non-negative σ , where x is the distance to the nearest particle from a particle to hop. By extensive Monte Carlo
simulations, we show that the critical decay exponent δ varies continuously with σ up to σ = 1 and δ is the same
as the critical decay exponent of the directed Ising (DI) universality class for σ � 1. Investigating the behavior
of the density in the absorbing phase, we argue that σ = 1 is indeed the threshold that separates the DI and
non-DI critical behavior. We also show by Monte Carlo simulations that branching bias with symmetric hopping
exhibits the same critical behavior as the BAWL.
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I. INTRODUCTION

The branching annihilating random-walks model (BAW)
[1] is a reaction-diffusion system with pair annihilation
[2A → 0] and branching m offspring by a particle [A →
(m + 1)A] as well as (symmetric) diffusion. The competition
between pair annihilation and branching can bring about
an absorbing phase transition between an active phase with
nonzero steady-state density and an absorbing phase with zero
steady-state density. The BAW exhibits rich phenomena in
that critical behavior depends on the parity of the number m
of offspring [1–4]. It belongs to the directed percolation (DP)
universality class [5–9] for odd m, whereas it belongs to the
directed Ising (DI) universality class [10–16] for even m. For
a review of these two classes, see, e.g., Refs. [17–19].

When a global hopping bias is introduced to the BAW
in such a way that hopping along a predefined direction is
preferred (for example, in one dimension hopping to the right
has larger transition rate than hopping to the left), this bias
in the (asymptotic) field theory is gauged away by a Galilean
transformation [20] and, in turn, critical behavior is not af-
fected by the global bias. Recently, a local hopping bias was
introduced to the BAW [21] in such a manner that a particle
prefers hopping toward the nearest particle. Since a particle is
likely to get close to the nearest particle by the local bias, this
form of interaction associated with the local bias is termed as
attraction in Ref. [22]. Since hopping along any direction is
equally likely on average, no macroscopic current is produced
by the local bias. In this sense, the Galilean transformation
cannot remove the local bias and, in turn, the local bias can
be relevant in the renormalization-group (RG) sense. Indeed,
it was shown that the local bias changes the critical behavior
when the number m of offspring is even [21,22].

Unlike a long-range jump (Lévy flight) introduced to mod-
els exhibiting an absorbing phase transition [23,24], every
particle still hops to one of its nearest-neighbor sites. In
this sense, one may think of the local bias as short-range

interaction. This idea seems to have support because the BAW
with an odd number of offspring is not affected by the local
bias, while Lévy flight applied to DP models changes critical
behavior [25–27]. However, it was argued that the local bias
is irrelevant (in the RG sense) in the DP class not because
the bias is short-ranged but because spontaneous annihilation
(A → 0) arising by combination of branching with pair anni-
hilation (A → 2A → 0) removes the long-range nature of the
local bias for odd m [22].

To reveal clearly the long-range nature of the local bias
for the case of even number of offspring, Ref. [22] studied
a modified model by introducing the range R of attraction.
In the modified model, a particle is attracted to the nearest
particle only if the distance between the two particles is not
larger than R. When R is finite, the model with even m turned
out to crossover to the DI class and the crossover behavior for
large R is described by the exponent φ, which is found to be
1.39 ± 0.04 [22]. Therefore, it is concluded that the different
critical behavior from the DI class in Ref. [21] is attributed to
the long-range nature of the local bias.

Since long-range interaction usually entails continuously
varying critical exponents [25–27], it is natural to ask if
the local bias with appropriate generalization can trigger
continuously varying exponents. The aim of this paper is to
answer this question by studying such a generalized model
that the strength of the local bias depends on the distance
x to the nearest particle by a power-law function x−σ . The
case with σ = 0 will correspond to the model in Ref. [21].
We will investigate how the critical behavior changes with the
value of σ .

The structure of this paper is as follows. In Sec. II, we de-
fine a model with a local bias. As explained above, the strength
of the bias becomes a power-law function of distance to the
nearest particle. We will call this model the branching anni-
hilating random walks with long-range attraction (BAWL). In
Sec. III, we present our simulation results, focusing on the
critical decay exponent that is defined in Sec. II. We will also
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find σc that separates the DI critical behavior (for σ � σc) and
non-DI critical behavior (for σ < σc). In Sec. IV, we discuss
what happens if branching is biased. Section V summarizes
the paper.

II. MODEL AND METHODS

The BAWL is defined on a one-dimensional lattice of
size L with periodic boundary conditions. Each site i (i =
1, 2, . . . , L) is characterized by an occupation number ai that
takes either one or zero. If ai = 1, we say that there is a
particle at site i. If ai = 0, we say that site i is vacant. For
later purpose, we define ri and li such that

ri = min {x|ai+x = 1, x > 0},
(1)

li = min {x|ai−x = 1, x > 0},
where we assume that site j + L is identical to site j (periodic
boundary condition). In words, ri (li) is the distance from site
i to the nearest particle on the right-hand (left-hand) side.

If there is a particle at site i (ai = 1), it either hops to one
of its nearest-neighbor sites with rate p (hopping event) or
branches four offspring with rate 1 − p (branching event). In
the hopping event, it hops to site i ± 1 with probability q±,
where

q± = 1
2 ± ζx−σ , x = min{ri, li}, σ � 0 (2)

with (0 � ε � 0.5)

ζ =

⎧⎪⎨
⎪⎩

ε, if ri < li,

−ε, if ri > li,

0, if ri = li.

(3)

Notice that q± mimics attraction by the nearest particle.
In the branching event, its four offspring are placed at

sites i − 2, i − 1, i + 1, and i + 2 (A → 5A). If a particle is
to be placed at an already occupied site either by hopping
or branching, these two particles are annihilated immediately
(2A → 0). We summarize the above dynamic rules as follows:

1iai+1 → 0i ai+1 rate pq+, (4a)

ai−i1i → ai−1 0i rate pq−, (4b)

1i ai±1 ai±2 → 1i ai±1 ai±2 rate 1 − p, (4c)

where 1i (0i) means that ai is one (zero) and a j ≡ 1 − a j . We
set ε = 0.1 in simulations but other choice of nonzero ε does
not change our conclusion.

The algorithm we have used to simulate the corresponding
master equation to the rule (4) is as follows. Assume that
there are Nt particles at time t . We choose one particle among
Nt particles at random with equal probability. The chosen
particle branches four offspring with probability 1 − p or
hops toward (against) the nearest particle with probability pq+
(pq−), where q± is defined in Eq. (2). If two particles happen
to occupy a site, these two particles are removed in no time.
After the change, time increases by 1/Nt .

The BAWL with σ = 0, which is identical to the model in
Ref. [21], does not belong to the DI class, while the BAWL
under σ → ∞ limit is equivalent to the model in Ref. [22]
with R = 1 and, in turn, belongs to the DI class. Thus, there

should be σc such that the BAWL with σ � σc belongs to the
DI class. In this paper, we will find σc and investigate the
critical behavior for σ < σc.

We will study the average density ρ of occupied sites at
time t defined as

ρ(t ) = 1

L

L∑
i=1

〈ai〉, (5)

where 〈· · · 〉 stands for average over all ensemble. The config-
uration with ai = 1 for all i will be used as an initial condition
in this paper.

At the critical point, ρ(t ) is expected to show a power-law
behavior with a critical decay exponent δ such that

ρ(t ) = At−δ[1 + Bt−χ + o(t−χ )], (6)

where t−χ is the leading term of corrections to scaling, o(x)
stands for all terms that decrease faster than x as x → 0, and
A, B are constants. We will call χ the corrections-to-scaling
exponent.

To find δ, we study an effective exponent −δe defined as

−δe(t, b) ≡ ln[ρ(t )/ρ(t/b)]

ln b
, (7)

where b is a constant. At the critical point, the effective
exponent in the long time limit should behave as

−δe(t, b) ≈ −δ − B
bχ − 1

ln b
t−χ . (8)

From Eq. (8), it is obvious that at the critical point −δe,
when treated as a function of t−χ , should show a linear behav-
ior for small t−χ . On the other hand, if the system is slightly
off the critical point and is actually in the active (absorbing)
phase, −δe should eventually veer up (down) as t−χ → 0.
Accordingly, we can find the critical point by observing how
−δe behaves. Once we find the critical point, the critical decay
exponent can be found by linear extrapolation of −δe vs t−χ

at the critical point.
To estimate δ accurately, information of χ is crucial. To

find χ , we analyze a corrections-to-scaling function Q defined
as [28,29]

Q(t ; b, χ ) = ln ρ(t/b2) + ln ρ(t ) − 2 ln ρ(t/b)

(bχ − 1)2
, (9)

whose asymptotic behavior at the critical point is Q ∼ Bt−χ

regardless of the value of b if χ is correctly chosen. Notice
that if B is positive (negative), −δe approaches −δ from below
(above). In our system, we actually found that B is negative.

For convenience, an ith measurement is performed at time
Ti defined as

Ti =

⎧⎪⎨
⎪⎩

i, i � 40,

	40 × 2(i−40)/15
, 41 � i � 55,

2Ti−15, 56 � i,

(10)

where 	x
 is the floor function (greatest integer not larger than
x). With this choice of measurement time, we can set b = 2n

(n = 1, 2, . . .) to analyze the effective exponent as well as the
corrections-to-scaling function.
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FIG. 1. Plots of −δe vs t−χ (a) for σ = 0.1 at p = 0.573 35,
0.572 375, 0.5724 (top to bottom) with χ = 0.3 and b = 16 and
(b) for σ = 0.3 at p = 0.5904, 0.5905, 0.5906 (top to bottom) with
χ = 0.25 and b = 16. The (dot-dashed cyan) straight lines overlap-
ping with the middle curves show the results of linear extrapolation
for the critical decay exponent. Clearly, the critical decay exponent δ

varies with σ .

III. RESULTS

In this section, we present our simulation results for the
critical decay exponent δ for various values of σ . To begin,
we analyze the BAWL with σ = 0.1 and 0.3. In simulations
for these two cases, the system size is L = 223 and the
maximum observation time is T289 ≈ 4 × 106. The number of
independent runs is between 80 and 200. We first analyzed the
corrections-to-scaling function Q and we found χ to be 0.3
and 0.25 for σ = 0.1 and 0.3, respectively, see Supplemental
Material [30]. In Fig. 1, we depict the effective exponent as
a function of t−χ for σ = 0.1 [Fig. 1(a)] and 0.3 [Fig. 1(b)]
with b = 16.

Since middle curves in both panels show linear behav-
iors, while the other curves eventually veer up or down, we
estimate the critical point as pc = 0.572 375(25) for σ =
0.1 and pc = 0.5905(1) for σ = 0.3, where the numbers in
parentheses indicate uncertainty of the last digits. By linear
extrapolation, we get δ = 0.2532(8) for σ = 0.1 and 0.276(1)
for σ = 0.3. It is clear that δ does depend on σ , which is
a typical feature of absorbing phase transitions with long-
range jump [25–27,31]. Once again we confirm the claim in
Ref. [22] that the model with hopping bias in Ref. [21] does
not belong to the DI class because of long-range interaction.

We have established that the critical decay exponent varies
with σ . Now, we move on to finding σc. Recall that the
BAWL with σ � σc is supposed to belong to the DI class.
We simulated the system of size L = 223 for various σ ’s. As
we have done in Fig. 1, we first found χ and pc, then analyzed
the effective exponent, see Supplemental Material [30].

Figure 2 depicts the resulting effective exponents at the
critical point for σ = 0.4, 0.6, 0.8, and 1 against (TM/t )χ ,
where TM is the maximum observation time of each simulation
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e
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0.4
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FIG. 2. Plots of −δe vs (TM/t )χ with b = 32 at the critical point
for σ = 0.4, 0.6, 0.8 and 1 (top to bottom), where TM is the maxi-
mum observation time. Here, TM = T289 ≈ 4 × 106 for σ = 0.4 and
TM = T309 ≈ 107 for other cases. Straight lines are results of linear
extrapolation and the dotted horizontal line indicates the critical
decay exponent of the DI class.

for the corresponding parameter set. When σ < 0.8, the esti-
mate of δ is clearly distinct from δ of the DI class that is shown
as a dotted horizontal line in Fig. 2. For σ = 1, the critical
decay exponent is hardly discernible from δ of the DI class,
which seems to suggest σc = 1. Our preliminary simulations
also showed that δ remains the same for σ > 1 (not shown
here).

To affirm that δ for the case of σ = 0.8 is indeed larger
than the critical decay exponent of the DI class, we extensively
performed simulations for this case (800 independent runs are
averaged). As shown in Fig. 2, our simulation results suggest
that σc is indeed larger than 0.8, see Supplemental Material
[30].

The values of pc, χ , and δ for various σ ’s [30] are summa-
rized in Table I and in Fig. 3, we graphically show how δ and
pc depend on σ .

Now we will argue that σc is indeed one. Since the DI class
is intimately related to the annihilation fixed point [13,15],
a necessary condition for a model to belong to the DI class
is that the asymptotic behavior of density should be t−0.5 in

TABLE I. Critical points (pc), corrections-to-scaling exponents
(χ ), and critical decay exponents (δ) of the BAWL. The numbers in
parentheses indicate uncertainty of the last digits.

σ pc χ δ

0a 0.562 142(3) 0.3 0.2393(3)
0.1 0.572 375(25) 0.3 0.2532(8)
0.2 0.581 85(5) 0.3 0.2647(7)
0.3 0.5905(1) 0.25 0.276(1)
0.4 0.5983(1) 0.25 0.2828(8)
0.6 0.6112(1) 0.35 0.2855(5)
0.8 0.621 11(1) 0.4 0.2866(3)
1.0 0.628 75(5) 0.4 0.2872(4)

aFrom Ref. [22].
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FIG. 3. Plot of δ vs σ . The critical decay exponent of the DI
class is shown as a horizontal dotted line. The size of the error bar is
comparable to the symbol size. (Inset) Plot of pc vs σ . The line is for
guides to the eyes.

the absorbing phase. In this context, we will analyze how the
density of the BAWL with p = 1 (without branching) behaves
in the long time limit.

In the absorbing phase, the density approaches zero as
t → ∞. Hence, the asymptotic behavior of the density for the
BAWL with p = 1 can be understood by studying a random
walk model with an attracting center at the origin. In this
random walk model, a walker located at site n (n > 0) hops
to the right with rate (1 − vn−σ )/2 and to the left with rate
(1 + vn−σ )/2. Now we will find the mean first-passage time
to the origin, once it starts from site m. It is convenient to
regard the origin as an absorbing wall.

The analysis starts from writing down the master equation
(n � 1)

∂

∂t
Pn(t ) = − Pn(t ) + 1 + v(n + 1)−σ

2
Pn+1(t )

+ 1 − v(n − 1)−σ

2
(1 − δn,1)Pn−1(t ), (11)

∂

∂t
P0(t ) = 1 + v

2
P1(t ), (12)

where Pn(t ) is the probability that the walker is at site n at time
t . For n � 2, we rewrite Eq. (11) as

∂

∂t
Pn(t ) = −∂n[−vn−σ Pn(t )] + 1

2
∂2

n Pn(t ), (13)

where ∂n f (n) ≡ [ f (n + 1) − f (n − 1)]/2 and ∂2
n f (n) ≡

f (n + 1) + f (n − 1) − 2 f (n). Taking (naive) continuum
limit, we get a Fokker-Planck equation (n is now a continuous
variable)

∂

∂t
P(n, t ) = − ∂

∂n
[−vn−σ P(n, t )] + 1

2

∂2

∂n2
P(n, t ), (14)

which is equivalent to the Langevin equation

ṅ = −vn−σ + ξ, (15)

where ξ is the white noise with zero mean and unit variance.
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FIG. 4. Plots of Pn(t ) vs n at t = 1000, 3000, 5000, and 7000
(right to left). Initial position is set m = 2000. Solid curves depicts
the approximate solution (17).

Using a mean-field-like approximation 〈n−σ 〉 ≈ 〈n〉−σ ,
where 〈· · · 〉 is the average over noise, we get

〈ṅ〉 ≈ − v

〈n〉σ ⇒ 〈n〉 ≈ m

[
1 − (1 + σ )vt

m1+σ

]1/(1+σ )

, (16)

where m is the initial position of the walker. If we further
assume that the white noise makes Pn be a Gaussian with
variance t , we arrive at

Pn(t ) ≈ 1√
2πt

exp

[
− (n − 〈n〉)2

2t

]
, (17)

for sufficiently large n (and m).
To check how good the approximation is, we performed

Monte Carlo simulations for the continuous time master equa-
tion (11) with σ = 0.2, v = 0.2, and m = 2000. In Fig. 4,
we show Pn(t ) at t = 1000, 3000, 5000, 7000 together with
Eq. (17). Our approximation is in an excellent agreement with
numerical (exact) result.

If σ < 1, the mean first-passage time τ to the origin is
obtained by 〈n〉 = 0, which gives τ ∼ m1+σ . On the other
hand, if σ > 1, the spreading by fluctuation is faster than
the deterministic motion. Accordingly, time τ to arrive at the
origin is dominated by diffusion, which gives τ ∼ m2. If we
write τ ∼ mz, we find

z =
{

1 + σ, σ < 1

2, σ � 1.
(18)

From Eq. (18) and the scaling argument for the pair an-
nihilation dynamics [32,33], we predict that the long time
behavior of the density is t−α with

α = 1/z =
{

1/(1 + σ ), if σ < 1,

1/2, if σ � 1.
(19)

To confirm the anticipation, we simulated the BAWL with
ε = 0.1 and p = 1 for various σ ’s. We present the behavior of
effective exponent −αe for σ = 0.2, 0.6, and 1 in Fig. 5, which
shows an excellent agreement with the analytic argument.
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FIG. 5. Plots of −αe vs t−χ for σ = 0.2 (χ = 0.8: bottom), σ =
0.6 (χ = 0.3: middle), and σ = 1 (χ = 1: top). Dotted line segments
indicate the anticipated value of −α from Eq. (19).

From the above analysis, the BAWL with σ < 1 should
not belong to the DI class, as we have seen in Fig. 2. Since the
BAWL with σ = 1 belongs to the DI class as shown in Fig. 2,
we conclude that the upper bound σc is indeed 1.

IV. DISCUSSION: BRANCHING BIAS

We have shown that the local hopping bias due to long-
range attraction with decreasing strength as x−σ continuously
changes the critical decay exponent of the BAWL when σ �
1. Now, we would like to ask which one determines the
critical behavior, hopping bias or bias in itself. To answer this
question, we modify the BAWL in such a way that hopping
is symmetric but branching is biased. To be concrete, we will
now investigate a model with dynamics

1iai±1 → 0i ai+1 rate p/2, (20a)

1i

4∏
k=1

ai+k → 1i

4∏
k=1

ai+k rate (1 − p)q+, (20b)

1i

4∏
k=1

ai−k → 1i

4∏
k=1

ai−k rate (1 − p)q−, (20c)

where q± is the same as in Eq. (2) and we use the same
notation as in Eq. (4).

Before presenting simulation results, let us ponder on what
would happen in this modified model. The driven pair contact
process with diffusion (DPCPD) [20] would be a good starting
point for our discussion. In the DPCPD, though it has global
bias, only presence of bias is an important factor to determine
the universality class, as it is immaterial whether hopping or
branching is biased [34]. In this regard, one would conclude

10−3

10−2

10−1

100

10−2 10−1 100 101

ρ
t0

.5

1 − p = 10−6

1 − p = 10−5

1 − p = 10−4

FIG. 6. Scaling-collapse plot of ρt0.5 vs (1 − p)t of the BAW1

for 1 − p = 10−4, 10−5, and 10−6 on a double-logarithmic scale.
As anticipated by Eq. (21), curves for different p’s are hardly
discernible.

that bias in itself is relevant (in the RG sense) and that the
critical behavior of the BAWL would not be affected by to
which dynamic process the local bias is applied. However, the
DPCPD should be considered a system with two independent
fields and both the hopping bias and the branching bias in
the DPCPD generates a relative bias between the two fields
[20,35]. Since the BAW is described by a single field [13,15],
the discussion about the DPCPD would not give a clear
answer to our question.

In the mean time, one may easily come up with an argu-
ment that only hopping bias is relevant, because the density
of the modified model with p = 1 (trivially) behaves as t−0.5

for any σ . This should be compared with the discussion in
Sec. III, based on the analysis of the BAWL with p = 1.
However, this argument has a serious flaw; the dynamics at
p = 1 may not represent the absorbing phase of the mod-
ified model. An example in this context is the BAW with
one offspring (BAW1). As in the BAWL, let us denote the
branching rate of the BAW1 by 1 − p. If p = 1, the density
(again trivially) decays as t−0.5. If branching rate is turned on,
however, a spontaneous annihilation of a single particle by the
chain of reactions A → 2A → 0 can occur, which results in
an exponential density decay. That is, the BAW1 with p = 1
cannot capture the main feature (exponential density decay in
this example) of its absorbing phase.

Actually, the behavior of the BAW1 around p = 1 can be
described by a scaling function

ρ(t ) = t−0.5F [(1 − p)t], (21)

where F (x) is expected to decrease exponentially for large x.
The reason why (1 − p)t should be a single scaling parameter
is clear. The spontaneous annihilation can be crucial only
when substantial amount of branching events have occurred,
which is expected if time elapses more than 1/(1 − p). In
Fig. 6, we show scaling collapse of the BAW1 for p close to 1,
which confirms the scaling ansatz (21). Here, the system size
is 225 and average over 8 independent runs for each parameter
is taken. As the example of the BAW1 reveals, it is possible
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FIG. 7. Double-logarithmic plots of ρ vs t of the model with
dynamic rules (20) for σ = 0, 0.2, 0.6, and 1 (bottom to top). Here,
we set p = 0.8 for all cases. For guides to the eyes, we also depict a
line segment with slope −1/(1 + σ ) right below each curve.

that p = 1 of the modified model is in a sense a singular point
and that the modified model in the absorbing phase does not
exhibit t−0.5 behavior for small σ .

To obtain the answer, we now resort to Monte Carlo
simulations. Using systems of size L = 224, we performed
simulations for ε = 0.5 and p = 0.8. To reduce statistical
error, we performed 40 independent runs for each parameter
set. Figure 7 shows the behavior of the density for σ = 0,
0.2, 0.6, and 1 on a double logarithmic scale. Just like the
BAWL with p = 1, the density decays as t−α with α in
Eq. (19). Hence, we expect that the critical behavior is the
same regardless of whether hopping or branching is biased.
We have checked this anticipation by simulations and our pre-
liminary simulations for σ = 0 indeed show that the critical
behavior of the modified model is the same as the BAWL

(details not shown here). This also indirectly confirms that
the BAWL with p = 1 correctly represents the behavior in the
absorbing phase. To conclude this section, we have shown that
the presence of the local bias due to long-range attraction is
enough to exhibit non-DI critical phenomena, irrespective of
which dynamic process the local bias is applied.

V. SUMMARY

To summarize, we studied the branching annihilating ran-
dom walks with long-range attraction (BAWL). The long-
range attraction has a power-law feature with exponent σ ; see
Eq. (2). We investigated the critical decay exponent δ that
describes how the density behaves with time at the critical
point. We first numerically found that δ varies continuously
with σ for σ < 1 and is the same as the critical decay exponent
of the directed Ising universality class for σ � 1. By the
analysis of a random walk with an attracting center at the
origin together with Monte Carlo simulations for the BAWL
with p = 1, we argued that σc should be 1.

We also studied the modified model in which offspring
prefer being placed toward the nearest particle but hopping
is now unbiased. We found that the absorbing phase of the
modified model shows the same asymptotic behavior of the
BAWL for the same value of σ . Therefore, we concluded that
it is immaterial which dynamic process, hopping or branching,
is biased by the long-range attraction.
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