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Maximum efficiency of low-dissipation refrigerators at arbitrary cooling power
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We analytically derive maximum efficiency at given cooling power for Carnot-type low-dissipation refrigera-
tors. The corresponding optimal cycle duration depends on a single parameter, which is a specific combination
of irreversibility parameters and bath temperatures. For a slight decrease in power with respect to its maximum
value, the maximum efficiency exhibits an infinitely fast nonlinear increase, which is standard in heat engines,
only for a limited range of parameters. Otherwise, it increases only linearly with the slope given by ratio
of irreversibility parameters. This behavior can be traced to the fact that maximum power is attained for
vanishing duration of the hot isotherm. Due to the lengthiness of the full solution for the maximum efficiency,
we discuss and demonstrate these results using simple approximations valid for parameters yielding the two
different qualitative behaviors. We also discuss relation of our findings to those obtained for minimally nonlinear
irreversible refrigerators.
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I. INTRODUCTION

The laws of energy conservation and nondecrease of en-
tropy of the universe, cornerstones of classical thermody-
namics developed during 19th century, imply universal upper
bounds on efficiencies of thermodynamic machines such as
heat engines, heat pumps, and refrigerators [1]. They are
reached by idealized machines operating under reversible con-
ditions, with vanishing net entropy production. The advantage
of these results is their generality. The disadvantages are
omnipresent dissipation looses in real machines, rendering
their reversible operation difficult, and even more importantly,
the fact that reversible conditions correspond to practically
negligible output power [2].

These issues triggered a less general, but more practical,
branch of research based on various models of irreversible
and/or finite-time thermodynamics, which is efficiency of
thermodynamic machines at maximum power. Starting with
the works on performance of nuclear power plants by Yvon,
Chambadal, and Novikov [3–5] later popularized by Curzon
and Ahlborn [6], this model-based research attracted a con-
siderable attention during the last 50 years and is still lively
today. Efficiency at maximum power has been studied for en-
doreversible [6–8], low-dissipation [9–11], linear irreversible
[12–14], minimally nonlinear irreversible [15–17], quantum
[18–20], and Brownian [21–23] models.

In recent years, based on the above models, yet another, an-
other even more practice-oriented, branch of research started,
optimization of efficiency at given power. For vanishing power
the maximum efficiency equals the reversible limit and for
maximum power efficiency at maximum power. Below we
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address this task, previously solved for various heat engines
[2] but only minimally nonlinear irreversible refrigerators
[24,25], for Carnot-type low-dissipation refrigerators.

In Secs. II and III we introduce in detail the considered
model and define variables describing its thermodynamic per-
formance. In Sec. IV we review the corresponding result for
efficiency at maximum power. Our main results on maximum
efficiency at a given power are given in Sec. V. We conclude
in Sec. VI. The relation between the low-dissipation and
minimally nonlinear irreversible models is discussed in the
Appendix.

II. MODEL AND ASSUMPTIONS

We consider a refrigerator operating along a finite-time
Carnot cycle of duration tp depicted and described in detail in
Fig. 1. We assume that in the limit of infinitely slow driving,
tp → ∞, the fridge operates reversibly and its finite-time
performance is captured by the so-called low-dissipation (LD)
assumption [9]

Qh = Th�S + σh

th
, (1)

Qc = Tc�S − σc

tc
, (2)

for total amounts of heat interchanged with the individual
reservoirs during the cycle. The ratio σh/(thTh) measures an
excess in the total amount of entropy Qh/Th − �S produced
during the hot isotherm due to its finite duration th, and
similarly for σc/(tcTc). We assume that the adiabatic branches
interconnecting the isotherms are ideal and thus the net
amount of entropy �Stot produced per cycle is solely given by
the dissipation due to the heat transferred to the two reservoirs
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FIG. 1. Thermodynamic T -S (bath temperature-system entropy)
diagram of the considered Carnot refrigeration cycle. The fridge
uses the input work W to extract heat Qc from the cold bath at
temperature Tc during the cold isotherm (AB, blue). The used work
and the extracted heat are then dumped as heat Qh = Qc + W into
the hot bath at temperature Th during the hot isotherm (CD, red). The
input work equals the enclosed area, Qc = Tc�S, and Qh = Th�S
only if the cycle is performed reversibly. Otherwise, the work is
larger and the extracted heat smaller leading to a decreased efficiency
(coefficient of performance) of the machine. The branches BC and
DA (black) of the cycle are adiabats.

during the isotherms:

�Stot = Qh

Th
− Qc

Tc
= σh

thTh
+ σc

tcTc
. (3)

The fridge hence operates reversibly if the isotherms are
infinitely slow (and thus tp → ∞) or if the so-called irre-
versibility parameters σh and σc vanish.

Interestingly, this simple model, where all thermodynam-
ically important details about the system dynamics are de-
scribed by the irreversible parameters, represents quite well
two general realistic setups, justifying the considerable at-
tention it received in recent literature [9–11,26–30]. First,
Eqs. (1) and (2) can be interpreted as formal expansions
of the interchanged heats in the inverse cycle duration 1/tp.
Therefore, they should be generally valid for slowly, but
not quasistatically, driven systems. Indeed, the decay of total
dissipated heat with the inverse of duration was theoretically
predicted for various quantum and classical setups [31–34]
and observed in various experiments [35,36]. The second
situation, where assumptions (1) and (2) hold for arbitrary
cycle duration, is overdamped Brownian systems driven by
special time-dependent protocols (usually minimizing dissi-
pated energy during the isotherms [21,25,27,37,38]). While
a similar optimization might also be performed for other
systems, we are not aware of such results.

Furthermore, models of thermal machines utilizing the LD
assumption can exactly be mapped to the minimally nonlinear
irreversible (MNI) model operating under the tight coupling
condition [15–17,39]. This broadly used model of irreversible
thermodynamics generalizes the standard linear irreversible
model [12,40] by including terms describing dissipation of
the input work due to an internal friction (or, in the case
of thermoelectric machines, resistivity [41]), which are pro-
portional to the irreversibility parameters. Even though this

model also can describe cyclically operating systems [42], it
does not incorporate any obvious periodicity, and thus it is
usually interpreted as operating in a nonequilibrium steady
state. On the other hand, the LD model naturally describes
machines operating cyclically. Therefore, thermal machines
described by the two models are usually optimized differently.
The natural control parameter for MNI models is the external
force X1, corresponding to the (scaled) input work W/Th in the
LD model, or, equivalently, the flux J1 conjugated to X1, which
stands in the mapping to the LD model for the inverse cycle
duration 1/tp. Since the LD models are not only optimized
with respect to tp but also with respect to distribution of this
total duration among the individual branches of the cycle,
the obtained optimal performance in the two models usually
differs. The notable exception is bounds on performance
obtained by further optimizing with respect to the irreversible
parameters. Then the two optimization procedures coincide,
and the results obtained within the two models agree. For
more details, see the Appendix.

III. POWER AND EFFICIENCY

Central quantities describing performance of a refrigerator
are its cooling power, P, and efficiency, ε, often referred to as
the coefficient of performance (COP). The cooling power is
defined as heat extracted from the cold bath per cycle over the
cycle duration,

P = Qc

tp
= Tc�S

tp
− σc

tctp
, (4)

where we have applied the LD assumption (2). The COP
measures cost of the cooling in units of input work, W =
Qh − Qc, used to pump the heat from the cold bath,

ε = Qc

W
= εC

1 + ThεC�Stot/(Ptp)
. (5)

A first glance at these definitions reminds us of the textbook
knowledge that simultaneous optimization of power and COP
is not possible (textbooks usually deal with heat engines,
but the situation with refrigerators is the same). Maximum
COP, εC = Tc/(Th − Tc), is attained under reversible condi-
tions (�Stot = 0) when the term ThεC�Stot/(Ptp) in the de-
nominator of Eq. (5) vanishes. And, even though recent theo-
retical results on thermodynamics of small systems allowing
unprecedented control of the intrinsic relaxation times show
that power corresponding to εC can even diverge [43–46], it is
doomed to be negligible compared to its maximal value [2].

In practice, we thus always have to resort to a compromise
between power and COP. To this end, various ad hoc trade-off
figures of merit of refrigerators have been proposed. Examples
are the χ criterion [47–49], � criterion [50–52], and ecologi-
cal criterion [53–55]. However, none of these tell us what we
really want to know: what is the exact cost of running a refrig-
erator with a specific cooling power, which is usually fixed
by our needs (for example, the size of the space that should
be cooled). The optimization task of practical interest is thus
to find the maximum COP for a given cooling power, i.e., to
show under which conditions this cooling power is cheapest.
With respect to heat engines, this task has already gained
considerable attention in the literature [2]. Expressions for
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maximum efficiency at given power were derived for quantum
thermoelectric heat engines [56,57], LD heat engines [26,58],
MNI heat engines [59], and a stochastic heat engine based
on an uderdamped harmonic oscillator [60] and using general
linear response theory [40]. With respect to refrigerators, the
treasury of results for general models is not so overflowing,
with a notable exception of results for MNI refrigerators [25].

Below we derive maximum COP at given power for the
LD model defined above. Our bounds (22) on the maximum
COP agree with those obtained by Long et al. [25] for MNI
refrigerators. This is because, in these limiting cases, the two,
generally different, optimization procedures agree. The rest
of our results differ from those for MNI refrigerators quan-
titatively, but the most interesting qualitative features of the
obtained maximum COP are preserved. Thus our discussion
below might interest also readers of Ref. [25].

IV. COP AT MAXIMUM COOLING POWER

The values of cooling power accessible to a refrigerator
are bounded by 0 and the maximum power, P�. A natural
starting point for calculating maximum COP at fixed power
is thus determination of P� for LD refrigerators, which was
done in Ref. [61]. Since peculiarities of the derivation strongly
affect qualitative behavior of maximum COP at fixed power,
we review it in detail.

We aim to maximize the cooling power (4) as function of
the cycle duration tp and its division among the individual
branches. To this end, we assume, without loss of generality,
that the sum of durations of the adiabatic branches is propor-
tional to the total duration of the isotherms, ti = th + tc, so that
tp = ati with a � 1. This assumption allows us to simplify the
calculations, and it can easily be relaxed. Maximum power is
obviously obtained for a = a� = 1 (adiabats infinitely faster
than isotherms). Since the parameter a does not influence the
COP (5), we keep it at this value for the rest of our dis-
cussion. Even though such infinitely fast adiabatic branches
seem strange at first glance, they were realized in experiments
with Brownian heat engines [62]. Together with infinitely fast
adiabats an issue might arise with bringing the system far from
equilibrium, thus effectively breaking the regime of validity
of the LD model. However, this can be avoided by properly
adjusting the value of the control parameter (for example,
volume or stiffness of a potential) and temperature at the ends
of the adiabatic branches [37,63]. Readers who nevertheless
feel uncomfortable setting a = 1 can redefine the power for
the rest of the paper as aP. Furthermore, we introduce the
dimensionless parameter

α = th/ti ∈ [0, 1] (6)

measuring relative duration of the hot isotherm.
Maximizing the cooling power in Eq. (4) with respect to ti

gives [61]

t∗
i,α = 2σc

(1 − α)Tc�S
, (7)

P∗
α = (1 − α)(Tc�S)2

4σc
, (8)

ε∗
α = εC

2 + εC + σεC(1/α − 1)
, (9)

where we have introduced the irreversibility ratio

σ ≡ σh/σc. (10)

With decreasing α, the partially optimized cooling power
(8) monotonously interpolates between 0 [attained for α = 1,
t∗
i,α = ∞, and ε∗

α = εC/(2 + εC); note that this process is not
reversible even though the cycle duration diverges] and its
maximum, reached for α = α∗ = 0 [61]. The resulting maxi-
mum power and the corresponding duration of the isothermal
branches thus read

P∗ = (Tc�S)2

4σc
, (11)

t∗
i = 2σc

Tc�S
. (12)

With decreasing irreversibility parameter σc, the maximum
power and 1/ti monotonously interpolate between 0 and ∞.
In contrast, the COP at maximum power, ε∗, reads

ε∗
− = 0 for σ > 0, (13)

ε∗
+ = εC

2 + εC
for σ = 0, (14)

and thus it exhibits a discontinuity at σ = 0 [61], which
should be understood in the sense that σh � σc. This discon-
tinuity is caused by the requirement α∗ = 0, which should be
understood in the sense that the duration of the hot isotherm
is negligible compared to that of the cold one, i.e., th � tc.
Then the total entropy production (3) diverges unless the
irreversibility parameter σ is set to zero before α.

Actually, if one does not set α = α∗ = 0 exactly in the
derivation, but instead considers a limiting process α → α∗,
they can get efficiencies at maximum power, ε∗, within the
bounds [ε∗

−, ε∗
+]. For example, assuming that limα→α∗ σ/α =

k and thus σ = kα, k > 0, the efficiency at maximum power
reads

ε∗ = εC

2 + (1 + k)εC
. (15)

Since Eqs. (13) and (14) do not depend on σ , they represent
lower and upper bounds on COP at maximum power of LD
refrigerators. For MNI refrigerators, ε∗

± describe bounds on
COP at maximum power [15,25], obtained as extreme values
of (9) as a function of σ . Thus the discontinuity found in the
LD model, caused by optimization with respect to α, is not
present in the MNI model.

In closing this section, we should discuss how reasonable
taking the limit σ → 0 is, leading to the nontrivial value ε∗

+ of
COP at maximum power, from a physical perspective. How-
ever, we postpone this discussion to Sec. V A and continue
with optimization of COP at fixed power.

V. MAXIMUM COP AT ARBITRARY COOLING POWER

From technical reasons [2,26,27,40], it is advantageous to
study the maximum COP at fixed power using the dimension-
less loss in power (with respect to the maximum power),

δP ≡ P − P∗

P∗ ∈ [−1, 0], (16)
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and the dimensionless duration (of the isotherms),

τ = ti − t∗
i

t∗
i

∈ [−1,∞]. (17)

The loss in power vanishes for P = P� and assumes its mini-
mum value −1 if the power P is negligible compared to P� [2].
The definition (16) physically means that we measure energy
flows in units of maximum power (11), and thus we effectively
fix the value of σc. The duration τ equals −1 for ti = 0,
and it is negative (positive) for ti < t∗

i (ti > t∗
i ). Since we are

interested in maximum COP at fixed power and longer cycles
in general allow for larger COPs, our intuition suggests (and
the calculation below proves) that we can focus on positive
values of τ only.

Fixing the cooling power (or, equivalently, δP) creates a
dependence between the duration, τ , and relative duration of
the hot isotherm, α. Using Eq. (4), we find that

α = 1 + 1

(1 + δP)τ 2 + 2δPτ + δP − 1
. (18)

Using further the definition (6), implying that 0 � α � 1, we
find that the above formula makes sense only for a limited
interval of τ :

−
√−δP

1 + √−δP
� τ �

√−δP

1 − √−δP
. (19)

The COP (5) in these new variables reads

ε = τ 3 + A1,3τ
2 + A0,3τ + A0,1

−τ 3 + A1/ε∗+,−3τ 2 + B3,4,1τ + B1,2,−1
, (20)

with Ak,l = (k + lδP)/(1 + δP) and Bk,l,m = [−k(δP)2 +
(l/εC + 1 + σ )δP + mσ ]/(1 + δP)2, and we will now find its
maximum as function of τ .

A. Bounds

For fixed τ , δP, and εC, the COP (20) is a monotonously
decreasing function of σ . Analytically, this follows by notic-
ing that ∂ε/∂σ < 0. Intuitively, it can be understood as fol-
lows. As noted above, σc is fixed by the chosen energy unit P∗,
and thus σ is solely determined by σh. COP (5) monotonously
decreases with increasing entropy production �Stot , which is,
for fixed dissipation during the cold isotherm, a monotonously
increasing function of σh.

The lower bound on COP is thus obtained in the limit of an
infinitely irreversible hot isotherm (σ = ∞). Then �Stot/P in
Eq. (5) diverges and the maximum attainable COP vanishes,
regardless of values of τ and δP. Fortunately, the upper bound
on COP, obtained if the hot isotherm is reversible (σ = 0), is
positive. In this case, Eq. (20) can be simplified to

ε =
[

2(1 + εC)

(1 + τ )εC(1 + δP)
− 1

]−1

. (21)

For the allowed values (19) of τ , this function monotonously
increases, and thus the upper bound on COP is obtained by
setting τ = √−δP/(1 − √−δP). In agreement with the result
derived for MNI refrigerators [25], we find that the maximum

COP at fixed power, εopt = εopt (δP), is bounded as

0 � εopt � εC(1 + √−δP)

2 + εC(1 − √−δP)
≡ ε

opt
+ . (22)

All known bounds on maximum efficiency at fixed power for
heat engines [2,26,40,56,57,59,60] exhibit an infinite gain in
efficiency (with respect to the efficiency at maximum power)
when the engines operate at powers infinitely smaller than P∗,
in symbols ∂ηopt/∂δP|δP=0 → ∞. The upper bound ε

opt
+ on

εopt in Eq. (22) shows qualitatively the same large gain in
COP. The corresponding relative gain in COP for small δP
reads

ε
opt
+ − ε∗

+
ε∗+

= (1 + ε∗
+)

√−δP + O (δP), (23)

where O(δP) denotes a correction of order δP. Thus the
derivative of the relative gain with respect to δP diverges with
δP → 0− as 1/

√−δP. This is a general behavior expected
for a COP near maximum power if the latter is determined by
a vanishing derivative with respect to a control parameter x
[26,40,60]. Indeed, if ∂P/∂x|P=P∗ = 0 (in the present setting,
x stands for α or τ ) one would expect that expansions of power
and efficiency around the maximum power P∗ read δP ≈
−x2/c2 and ε − ε∗ = |a|x, leading to the relation ε − ε∗ =
|ac|√−δP. In the present case, however, the maximum power
(11) does not correspond to a a vanishing derivative with
respect to α. As a result, the described “universal” behavior
for LD refrigerators can be observed for small parameters σ

and εC only, as suggested by behavior of bounds (22) and
discussed in the following two sections.

In closing this section, let us review how (physically)
reasonable the limiting values 0 and ∞ of the irreversibility
ratio are, leading to the bounds (22). To this end, there is a
handful of microscopic models yielding reasonable expres-
sions for σ . For a relatively broad class of slowly driven sys-
tems (described by a generalized Markovian master equation
with a symmetric protocol for hot and cold isotherms), the
irreversibility ratio assumes the form σ = (Th/Tc)1−ξ , where
ξ stands for the exponent in the bath spectral density [33]. The
limit σ → 0 thus corresponds to an infinitely superohmic bath
(ξ → ∞), while the opposite limit σ → ∞ is obtained for
an infinitely subohmic bath (ξ → −∞). Obviously, neither of
such strongly diverging spectral densities (and thus also the
corresponding values of σ ) make much physical sense. For
overdamped Brownian dynamics with time-dependent driving
optimized to minimize the dissipated work, the irreversibility
ratio is given by the ratio σ = μc/μh of mobilities [21].
Since the infinite mobility is not compatible with assumptions
of overdamped dynamics [2,21,27,28,46], meaningful possi-
bilities to reach the limiting values of σ are the vanishing
mobility μc during the cold isotherm (σ = ∞) or vanishing
mobility during the hot isotherm (σ = 0). Such conditions
can indeed be realized. One ensuing technical problem is that
with decreasing mobility the relaxation time of the system
increases, and thus one has to resort to a stronger driving
to get the same performance [46]. To conclude, realizing
the limiting values of the irreversibility ratio exactly in the
laboratory is practically impossible, but these regimes can the-
oretically be reasonably approximated. Nevertheless, this can
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FIG. 2. COP (20) as function of τ for six values 0, 0.01, 0.1,
1, 10, and 100 of σ increasing from the top black solid line to the
lowermost broken line. The inset shows that the maximum COP is
attained at σ = 0. Parameters taken: δP = −0.5 and εC = 1.

be quite expensive, and thus, for real practical applications, it
is important also to study the behavior of εopt for nonextreme
values of the irreversibility ratio, which is a topic of the next
section.

B. Arbitrary parameters

In Fig. 2 we show the COP (20) as a function of the
duration τ for six values of the irreversibility ratio. For σ = 0,
ε indeed monotonously increases. For all larger σ , it develops
a peak at a position τ opt <

√−δP/(1 − √−δP), which can be
determined from the condition ∂ε/∂τ |τ=τ opt = 0. Explicitly, it
reads

(τ opt )4 + Ã(τ opt )3 + B̃6+3σ̃ ,2+2σ̃ ,−σ̃ (τ opt )2

+ B̃4+3σ̃ ,−2σ̃ ,−σ̃ τ opt + B̃1+σ̃ ,−2σ̃ ,0 = 0, (24)

where the the coefficients Ã = [(4 + σ̃ )δP + σ̃ ]/(1 + δP)
and B̃k,l,m = (kδP2 + lδP + m)/(1 + δP)2 depend on σ and
εC only through the combination σ̃ = σ/( 1

εC
+ 1). For a given

loss in power, the optimal duration is thus solely determined
by σ̃ , which monotonously increases with both σ and εC.

The quartic equation (24) has four roots and can be an-
alytically solved using Ferrari’s method [64]. The physical
optimal duration τ opt is given by the root in the interval (19),
which can be determined by inserting some specific values
of δP and σ̃ into the formal expressions for the roots. Even
though the ensuing expression is far too long and cumbersome
to be more enlightening than a numerical solution, it can
be used as a basis of various approximations explaining the
qualitative behavior of τ opt (or αopt) and εopt, depicted in
Fig. 3.

Specifically, the maximum COP, shown in Fig. 3(a), ex-
hibits a sharp increase with power near the maximum power
only for small values of σ . In agreement with the dis-
cussion in the preceding section, the rate of this increase
−∂εopt/∂δP|δP=0 actually decreases with σ from ∞ (for σ →
∞) to 0 (for σ = 0). For large values of σ , the maximum COP
exhibits a fast increase (similar to that of εopt near P = P∗ for
small σ ) close to the vanishing power, where the COP attains

0
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FIG. 3. (a) The optimal COP εopt as a function of δP for six
values 0, 0.01, 0.1, 1, 10, and 100 of σ increasing from the top
black solid line to the lowermost broken line. Panels (b) and (c) show
the corresponding parameters τ opt and αopt. The inset in panel
(b) magnifies the differences between the individual curves. Note the
inverse ordering of the curves in panel (c). We took εC = 1.

its ultimate upper bound εC. While the described dependence
of εopt on σ is significant, the optimal duration τ opt in Fig. 3(b)
changes with σ only slightly, always monotonously inter-
polating between 0 for δP = 0 and ∞ for δP = −1. This
suggests that a reasonable approximation of τ opt substituted
for τ in Eq. (20) might lead to an excellent approximation of
εopt. The optimal relative duration of the hot isotherm shown
in Fig. 3(c) is fixed by τ and δP through Eq. (18). Contrary to
that of τ opt, the dependence of αopt on σ is significant. Let us
note that a similar situation occurs also for LD heat engines
[26]. To get a more analytical and quantitative grasp of the
described qualitative behavior of the maximum COP, we now
derive several approximate formulas valid in the two regions
of σ described above.
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C. Approximations

1. Small irreversibility ratio

Expanding the exact optimal duration τ opt and COP εopt,
obtained using Eq. (24), up to the first order in σ̃ , we find that,
up to a correction O(σ̃ ),

τ opt ≈
√−δP

1 − √−δP
−

√
σ̃

2(−δP)1/4
, (25)

εopt ≈ ε
opt
+ − 2(1 + εC)(εopt

+ )2(1 − √−δP)
√

σ̃

εC(−δP)1/4(1 + √−δP)
. (26)

The expansion (26) explodes to −∞ for δP → 0, and thus
it makes sense for reasonably large −δP only. A similar
divergence is present for all other terms in the series. This,
mathematically undesirable, sharp decrease of the correction
term for small −δP describes the jump in the COP at maxi-
mum power (13)–(14) from ε∗

+ for 0 for σ > 0. Note that the
approximate optimal duration (25) exhibits a similar behavior.

2. Large temperature difference

The above approximation is valid for small σ̃ attained
for both large temperature differences (small εC) and small
irreversibility ratios σ . For small εC expression (26) can be
further simplified to

εopt

εC
= (1 + √−δP)

2
− (1 + δP)σ̃ 1/2

2(−δP)1/4
+ O(εC). (27)

Interestingly, the first term above is the same as that in LD
[26], linear irreversible [40], and MNI [59] heat engines.

3. Large irreversibility ratio

Let us now turn to the case of large irreversibility ratio. Up
to the leading order in σ̃ , the solution to Eq. (24) reads

τ opt = − 2δP

1 + δP
. (28)

Interestingly, the same expression is obtained for σ̃ = 1 and
thus, for example, for an infinitely small temperature differ-
ence (εC → ∞) and σ = 1. Substituting this τ opt for τ in
Eq. (20) leads to the expression for maximum COP at fixed
power,

εopt ≈ δP(1 − δP)εC

2δP + (1 + δP)(δP − σ )εC
, (29)

which is exact for σ̃ = 1 and ∞, and which can be expected
to give a good approximation of εopt for all σ̃ ∈ [1,∞]. The
expansion of Eq. (29) up to the first order in δP reads

εopt ≈ −δP

σ
+ O(δP). (30)

4. Discussion

In agreement with results shown in Fig. 3(a), the ex-
pansions (26) and (27) clearly show that for small values
of σ and/or εC the COP (26) exhibits a sharp nonlinear
increase when the power is decreased from its maximum
value. Equation (29), on the other hand, shows that, for
moderate and large values of σ , this increase is linear with
the slope determined by an inverse irreversibility ratio, which

is again seen in Fig. 3(a). It is noteworthy that all the above
approximate results give the correct maximum COP εC for
vanishing cooling power δP = −1.

Let us now discuss the range of validity of the above
approximations more quantitatively. To this end, we define the
function

E = 1

εC

∫ 0

−1
d (δP)

∣∣εopt (δP) − εopt
approx(δP)

∣∣, (31)

which measures the area in the εopt-δP plot between the
true maximum COP and its individual approximations ε

opt
approx

given by Eqs. (26), (27), and (29).
In Fig. 4 we show only the performance of the approxi-

mations (26) and (29). Equation (27) performs slightly worse
than Eq. (26) for large εC, but it shares the same qualitative be-
havior. In agreement with our vague discussion above, Fig. 4
proves that the approximation (26) works well for small σ̃ 

1 (parameters c and d), but that it is also reasonable for small
εC and large σ , yielding σ̃ of order 1 (a). For large values
of the irreversibility ratio, Eq. (26) yields negative values for
(almost) all δP, and thus the approximation completely fails
(b). The approximation (29), on the other hand, performs
almost perfectly for moderate and large values of σ̃ (a and b)
but gives reasonable results also for small irreversibility ratios
(c and d).

VI. CONCLUSION AND OUTLOOK

We have derived an exact but complicated formula for
maximum COP at arbitrary power for Carnot-type low-
dissipation refrigerators and also three simple approxima-
tions valid for a large part of the parameter space of the
model. Based on these results, we have shown that the in-
finitely fast nonlinear increase in COP with decreasing power
from its maximum value P�, routinely seen in heat engines
[2,26,40,56,57,60], occurs in LD refrigerators only for small
values of the irreversibility ratio (10) or large temperature
differences (which, however, lead to small ultimate upper
bounds on COP εC). For large irreversibility ratios, such an
increase occurs only for small values of power, where the COP
rapidly grows towards its maximum εC.

Our formulas for efficiency are functions of power mea-
sured in units of maximum power, which thus can further
be optimized without affecting the efficiency corresponding
to the fixed ratio P/P�. For slowly driven systems, one can
straightforwardly use the results obtained in Ref. [65] for LD
heat engines. For arbitrary cycle duration and a given change
in the system volume (measured by the increase �S in system
entropy during the hot isotherm), larger maximum cooling
power (11) corresponds to small values of the reversibility
parameter during the cold isotherm, σc. To conclude, an ideal
LD refrigerator should be based on a working fluid with
small σc (yielding large maximum cooling power) and even
much smaller σh (allowing one to profit from the large gain
in COP while sacrificing only a small part of the maximum
power).

Our present contribution to the collection of maximum effi-
ciencies at given power for various systems might be of imme-
diate practical interest. Even though the used assumptions are
valid only for systems under perfect experimental control such
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FIG. 4. Performance of the approximations (26) (top) and (29) (bottom) of the exact maximum COP. The left panels depict the error (31)
(color code) as function of εC and σ . The remaining panels show the individual approximate functions (broken lines) and the exact εopt (solid
lines) for the points a, b, c, and d, depicted in the leftmost figures. Their coordinates are a = (10−3, 103), b = (103, 103), c = (10−3, 10−3), and
d = (103, 10−3). For the parameters b, Eq. (26) yields positive values only near the left boundary of the corresponding figure. For parameters
c and d above and a and b below, the curves almost perfectly overlap.

as Brownian heat engines [21,27,35,62], taking into account
additional sources of dissipation just leads to a decrease in
efficiency. And thus the derived maximum efficiencies can be
thought of as upper bounds on efficiencies even for relativistic
settings. Furthermore, our results for refrigerators could be
combined with known results for heat engines to yield max-
imum efficiency at fixed power for absorption refrigerators,
which were studied numerically in Ref. [66]. What remains
to complete the collection for LD models is a derivation of
maximum efficiency at fixed power for heat pumps. Both
these tasks are subjects of our present research. Furthermore,
it would be interesting to investigate maximum efficiency at
fixed power for LD systems with respect to their dynamical
stability [10,29,30].
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APPENDIX: MINIMALLY NONLINEAR
IRREVERSIBLE MODEL

In this Appendix, we review in detail the mapping between
the LD model and the minimally nonlinear irreversible (MNI)
model [15–17]. We proceed in two steps. First, we map the
average total entropy production rate

�Stot

tp
= − Qc

tpTc
+ Qh

tpTh
= 1

tp

W

Th
+ P

(
1

Th
− 1

Tc

)
(A1)

for cyclic Carnot-type refrigerators, depicted in Fig. 1, to
the entropy production rate σ̇ = J1X1 + J2X2, written as a

linear combination of (generalized) fluxes Ji and forces Xi,
i = 1, 2, used in linear irreversible thermodynamics [12,40].
While there is a variety of possible choices, we employ the
commonly used mapping [14,17,24] J1 = 1/tp, X1 = W/Th,
and J2 = P, X2 = 1/Th − 1/Tc. Consequently, the heat flux to
the hot reservoir reads Qh/tp = J2 + J1X1Th ≡ J3.

The MNI model assumes that the linear flux-force relation
applied in linear irreversible thermodynamics is generalized
as [15–17]

J1 = L11X1 + L12X2, (A2)

J2 = L21X1 + L22X2 − γcJ2
1 . (A3)

Here Li j i, j = 1, 2 denote Onsager coefficients, and the new
term −γcJ2

1 , with γc � 0, stands for a fraction of input power
leaking into the cold bath. Physically, it describes frictional
losses in mechanical machines or losses due to a finite resis-
tivity in thermoelectric devices [41].

Using Eq. (A2), the heat fluxes from the cold bath (J2) and
to the hot bath (J3) read

J2 = L21

L11
J1 + L22(1 − q2) X2 − γcJ2

1 , (A4)

J3 = L21

L11

Th

Tc
J1 + L22(1 − q2) X2 + γhJ2

1 , (A5)

where γhJ2
1 denotes the fraction of input power leaking into

the hot reservoir. The Onsager reciprocity relations imply that
the coupling strength parameter q = L12/

√
L11L22 is bounded

as (|q| � 1). As the second step in the mapping, we compare
Eqs. (1) and (2) and (A4) and (A5) and try to find a mapping
between the parameters. This can be done under the tight
coupling condition |q| = 1, when the flux J1 and the heat
fluxes Ji, i = 2, 3 are proportional in the linear irreversible
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model and efficiencies of machines based on the MNI model
are largest. The result is [17](

L11 L12

L21 L22

)
=

( Th
λ

ThTc�S
λ

ThTc�S
λ

Th (Tc�S)2

λ

)
, (A6)

γh = σh

α
, (A7)

γc = σc

1 − α
, (A8)

where γ ≡ γh/γc and λ ≡ σh/α + σc/(1 − α). Let us now
study the COP at maximum power of refrigerators based on
the MNI model in terms of this mapping.

Assuming that we control either the flux J1 or the cor-
responding thermodynamic force X1, the maximum cooling
power ensues from the formula ∂J2/∂J1 = 0 (or, equivalently,
∂J2/∂X1 = 0). We obtain the following values of model pa-
rameters at maximum cooling power [25]:

1

J∗
1

= 2γcL11

L21
, (A9)

J∗
2 = L2

21

4γcL2
11

, (A10)

J∗
2

J∗
3 − J∗

2

= εC

2 + (1 + γ )εC
, (A11)

where the last expression describes the COP at maximum
power. Substituting the mapping (A6)–(A8) into (A9)–(A11),
we reproduce Eqs. (7)–(9) corresponding to power in the LD
model optimized only with respect to the duration of the
isothermal branches, ti. These expressions thus still depend on
the distribution of ti between the two isotherms, α [16,58]. In
order to get the final results (12)–(14) for COP at maximum
power in the LD refrigerator, one thus just needs to further
optimize the power (A9) with respect to α. This also holds for
maximum COP at fixed cooling power and all other figures
of merit. Indeed, substituting the mapping (A7)–(A8) into
Eq. (17) in Ref. [25] for maximum COP at given power for
MNI refrigerators and optimizing the resulting expression
with respect to α, one obtains our results for the maxi-
mum COP at fixed power for LD refrigerators, described in
Sec. V.

To conclude, LD models can exactly be mapped to MNI
models with tight coupling if the latter are further optimized
with respect to the additional parameter α. However, to the
best of our knowledge, this possibility is usually overlooked
[15–17,25]. One exception where both models always give the
same results is bounds on performance, obtained by taking
the limits σ → 0 and ∞ (or, equivalently, γ → 0 and ∞).
The reason is that the dependence of the mapping on α is lost
during the limiting process.
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