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We study the overdamped Brownian dynamics of particles moving in piecewise-defined potential energy
landscapes U (x), where the height Q of each section is obtained from the exponential distribution p(Q) =
aβexp(−aβQ), where β is the reciprocal thermal energy, and a > 0. The averaged effective diffusion coefficient
〈Deff〉 is introduced to characterize the diffusive motion: 〈x2〉 = 2〈Deff〉t . A general expression for 〈Deff〉 in terms
of U (x) and p(Q) is derived and then applied to three types of energy landscape: flat sections, smooth maxima,
and sharp maxima. All three cases display a transition between subdiffusive and diffusive behavior at a = 1, and
a reduction to free diffusion as a → ∞. The behavior of 〈Deff〉 around the transition is investigated and found to
depend heavily upon the shape of the maxima: Energy landscapes made up of flat sections or smooth maxima
display power-law behavior, while for landscapes with sharp maxima, strongly divergent behavior is observed.
Two aspects of the subdiffusive regime are studied: the growth of the mean squared displacement with time and
the distribution of mean first-passage times. For the former, agreement between Brownian dynamics simulations
and a coarse-grained equivalent was observed, but the results deviated from the random barrier model’s predic-
tions. The discrepancy could be a finite-time effect. For the latter, agreement between the characteristic exponent
calculated numerically and that predicted by the random barrier model is observed in the large-amplitude limit.
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I. INTRODUCTION

It is well known that the mean squared displacement of
an ensemble of freely diffusing, overdamped, Brownian par-
ticles grows according to 〈x2〉 = 2Dfreet , where Dfree denotes
the free diffusion coefficient, which is equal to kBT/γ : the
ratio of the thermal energy to the damping coefficient. Since
this result was established and publicized by both Einstein
[1] and Smoluchowski [2], many studies of diffusion have
been performed. A wide range of phenomena, categorizable
as diffusive, subdiffusive, or superdiffusive depending upon
how the mean squared displacement grows with time, are
found. Diffusive and subdiffusive behavior has been observed
in a variety of biological systems, with some displaying a
transition between the two. For instance, increasing the spatial
density of obstacles placed upon a lattice on which a colloid
moves can bring about a transition from diffusive to subdif-
fusive behavior [3]. Other systems exhibit the reverse of this
transition over time, where the timescale is determined by, for
example, the spatial density of solid phase domains in lipid
bilayers [4] and many-body volume-exclusion effects upon
the motion of water molecules on the surface of proteins [5].
There, a heavy-tailed distribution of waiting times for jumps
from one trapping site to another is believed to be the cause of
the initially subdiffusive behavior.

Turning now to systems with a periodic background, we
again find transitions over time from subdiffusion to diffusion.
This is well illustrated by the motion of colloids over a sub-
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strate with quasicrystalline-patterned holes [6,7]. In fact, the
transition has two stages: from free diffusion to subdiffusion
and then to diffusion at a reduced rate. This reflects the
existence of multiple timescales: The first to feel the confining
nature of the minima; the second to begin to move between
minima [8,9].

Random potential-energy landscapes, where the energy of
each lattice site—or barrier height between sites—is taken
from an exponential probability distribution, give rise to the
possibility of new phenomena. In addition to the aforemen-
tioned transitions over time [10,11] is the possibility of an
enduring subdiffusive regime brought about by a change in the
parameter controlling the shape of the exponential distribution
[12–17]. We seek to study the diffusive regime, and the
transition to the subdiffusive regime, for piecewise-defined
energy landscapes composed of flat sections, smooth maxima,
and sharp maxima.

The long-time motion in sinusoidal potential energy land-
scapes is diffusive with an effective diffusion coefficient Deff,
where Deff � Dfree [8,18]. Lifson and Jackson derived a gen-
eral expression for Deff applicable in one dimension [19].
(Jackson and Coriell later built upon this work in an effort
to extend the results into two and three dimensions [20]).
Zwanzig extended Lifson and Jackson’s work by proposing
a framework to study the overdamped Brownian dynamics
of systems where the potential energy landscape comprises
a rough component superimposed onto a smooth background
[21]. Both Zwanzig and Lifson and Jackson used a mean
first-passage time formalism to derive their results (see, e.g.,
Ref. [22]), and it is upon this formalism that our work is based.
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To illustrate his work, Zwanzig calculated the effective
diffusion coefficient for two energy landscapes: a sinusoid and
a surface characterized by Gaussian-distributed roughness. In
the second case, a very strong thermal energy dependence
was discovered: Deff = Dfree/e(βε)2

, where ε is the root-mean-
squared roughness and β = 1/kBT . Banerjee et al. built upon
Zwanzig’s work by calculating this same diffusion coefficient,
but without resorting to the spatial averaging which Zwanzig
used [23]. By doing so, they avoided the oversmoothing of the
energy landscape, and hence the loss of the suppressing effect
of the rare, ultratall barriers (the equivalent of what Banerjee
et al. term “three site traps”) on the rate of diffusion. Instead,
by considering a discrete Gaussian lattice and summing over
the transition rates between individual sites, Banerjee et al.
calculated an exact expression for the mean first-passage time,
and hence the effective diffusion coefficient. Chief among
their findings is an enhanced (relative to Zwanzig’s result)
suppression of diffusive motion for all nonzero ε: a feature
confirmed by simulation results presented in the same paper.

We aim to build upon the work of Banerjee et al. by
studying overdamped Brownian motion in one-dimensional,
piecewise-defined energy landscapes, where the barrier
heights {Qi} are taken from the exponential distribution
p(Q) = aβexp(−aβQ), and a > 0 is a constant. In addition to
flat sections, we will also study a range of symmetric barrier
shapes (the asymmetric case will be studied briefly).

To characterize the motion, we will work with averaged
mean first-passage times 〈τ 〉, and averaged effective diffusion
coefficients 〈Deff〉, where the angled brackets denote averages
over the probability distribution p(Q).

A transition between subdiffusive and diffusive behavior
is observed at a = 1 for all energy landscapes considered.
The existence of this transition is concordant with the find-
ings of Bouchaud and others [14–16,24,25]. Writing a =
1 + δ (where δ is small and positive) in the expression for
〈Deff〉 facilitates study of the nature of the transition. Energy
landscapes with smooth barriers exhibit power-law behavior
〈Deff〉 ∝ δη, where η is determined by the order of the first
nonvanishing spatial derivative of the energy landscape eval-
uated at its maxima. In stark contrast, landscapes with sharp
barriers give rise to significantly stronger dependencies.

In the next section, we will derive a general expression for
the averaged effective diffusion coefficient by considering the
mean first-passage time from one end of the energy landscape
U (x) to the other. Thereafter, we turn to study three distinct
cases: case 1, energy landscapes composed of flat sections;
case 2, energy landscapes with smooth barriers; and case 3,
energy landscapes with sharp barriers. Case 1 will be seen to
be a limiting form of case 2, and both are distinct from case 3.
The results of Brownian dynamics simulations performed for
cases 2 and 3 are presented in the relevant sections.

We conclude by discussing the subdiffusive regime cor-
responding to a < 1. Some agreement between the random
barrier model’s predictions and simulations of both the mean
squared displacement and the distribution of mean first-
passage times is observed; the discrepancy is believed to be
a consequence of differing expressions for the mean first-
passage time. Note that by writing a = βg/β = T/Tg, where
Tg is the glass-transition temperature, the connection to glassy
system can be made explicit [15].

II. DERIVING 〈Deff〉
Consider a continuous, piecewise-defined potential energy

landscape U (x) made up of sections of width L and with a
repeat unit of N sections. Each section is symmetric about
the single, central maximum, and starts and finishes at the
same potential. For finite values of N , the effective diffusion
coefficient is given by the Lifson-Jackson expression

Deff = Dfree

〈eβU 〉x〈e−βU 〉x
, (1)

where 〈〉x denotes the spatial average [19]. Each particle’s
motion in this type of potential energy landscape consists of
relatively long periods of time spent around the confining
minima interspersed by relatively short transitions between
adjacent minima. This is reminiscent of diffusion on regular
lattices. Derrida, and others, give the effective diffusion coef-
ficient, up to a factor of the lattice constant squared, as

Deff = N∑N
n=1

1
Wn+1,n

, (2)

where Wn+1,n is the transition rate from site n to site n + 1
[26–28]. When the amplitude of each maximum is distributed
according to some distribution ρ(W ), the expression for the
averaged effective diffusion coefficient in the thermodynamic
limit N → ∞ is

〈Deff〉 =
〈

1

W

〉−1

, (3)

where 〈〉 denotes the disorder average [26].
Building upon work carried out by Kalnin and

Berezhkovskii [29], we will demonstrate equivalence between
Eqs. (1) and (2). Having established the link, we will use (3)
to derive an expression for the averaged effective diffusion
coefficient in terms of an averaged mean first-passage time
and ultimately as a function of disorder and spatial averages
over the energy landscape.

Equation (2) assumes that forward and backward transition
rates between two lattice sites are equal, i.e., Wn+1,n = Wn,n+1.
(For potential energy landscapes, this means that all of the
minima lie at the same potential energy.) This allows us to
rewrite Eq. (2) as follows,

1

Deff
= 1

2N

N∑
i=1

(
1

Wn+1,n
+ 1

Wn−1,n

)
, (4)

where we have chosen the indices on the second term so that
both transition rates in the sum refer to the same starting site:
The first is for a jump in the positive direction, while the
second is for a jump in the negative direction. By identifying
the mean first-passage time τn from site n to either of sites
n − 1 and n + 1 as the reciprocal of the sum of the transition
rates (i.e., 1/τn = Wn+1,n + Wn−1,n), and the probabilities of
jumping to the left P−

L,n and to the right P+
R,n as Wn−1,n/τn and

Wn+1,n/τn, respectively, we may rewrite Eq. (4) as

1

Deff
= 1

N

N∑
i=1

1
τn

P+
R,nP−

L,n

. (5)
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This is a useful expression because the transition rates have
been replaced by jump probabilities and mean first-passage
times, which, for continuous potential energy landscapes, are
easy to calculate.

Equation (1) gives the effective diffusion coefficient in
terms of spatial averages over the (exponential of) the poten-
tial energy landscape. What is the physical equivalent of this
spatial averaging? It is the ensemble of particles exploring
the potential energy landscape. More specifically, it is the
ensemble diffusing over a distance greater than the length of
the repeat unit. Only beyond this stage in the motion will the
diffusive behavior be described by the Lifson-Jackson expres-
sion for Deff. This sets characteristic length- and timescales
for the motion: NL and the time taken for a sufficient fraction
of the ensemble to travel a distance of NL, respectively.

Once this stage of the motion has been entered into, the
relevant lengthscale is NL, which means that the focus is
upon the time taken for a particle to move from one site to
its identical counterpart in either of the adjacent repeat units.
Look now to Eq. (2), the Derrida expression for the effective
diffusion coefficient. Once the effective diffusion regime has
been entered into, it no longer makes sense to characterize
the motion in terms of transitions between lattice sites within
the same repeat unit. Rather, considering transitions between
equivalent sites in adjacent repeat units is more appropriate.
This means that Eq. (2) becomes

1

Deff
= 1

τ
2PRPL

, (6)

where τ is the mean first-passage time from a site in one repeat
unit to the same site in either of the two adjacent repeat units,
and PR and PL are the probabilities that a particle makes
the above transition to the right and left, respectively. For a
particle starting from x = 0 in an energy landscape with a
repeat length of NL, the probabilities are [22]

PR = 1 − PL =
∫ NL

0 dy eβU (y)∫ NL
−NL dy eβU (y)

. (7)

Because of periodicity, we can rewrite the integral currently
defined over the range [−NL, NL] as an integral over the
range [0, NL]:

∫ 0
−NL dy eβU (y) = ∫ NL

0 dy eβU (y). Doing so, we
find that PR = PL = 1

2 .
The mean first-passage time is [22]

τ = PR

Dfree

∫ NL

0
dy eβU (y)

∫ y

−NL
dz e−βU (z)

− PL

Dfree

∫ 0

−NL
dy eβU (y)

∫ y

−NL
dz e−βU (z). (8)

Separating the first integral into two—one where the inner
integral runs over the range [−NL, 0] and one where the
inner integral runs over the range [0, y]—and inserting the

expressions for PR,L, we obtain

τ = 1

2Dfree

∫ NL

0
dy eβU (y)

∫ 0

−NL
dz e−βU (z)

+ 1

2Dfree

∫ NL

0
dy eβU (y)

∫ y

0
dz e−βU (z)

− 1

2Dfree

∫ 0

−NL
dy eβU (y)

∫ y

−NL
dz e−βU (z). (9)

As a result of periodicity, the third double integral in Eq. (9)
can be rewritten over the range [0, NL], and so cancels with
the second double integral. The mean first-passage time is thus

τ = 1

2Dfree

∫ NL

0
dy eβU (y)

∫ 0

−NL
dz e−βU (z). (10)

Using periodicity, we rewrite the second of the two integrals
in Eq. (10) over the same range as the first. Recasting each of
them as a spatial average, we find

τ = (NL)2

2Dfree
〈eβU 〉x〈e−βU 〉x. (11)

Inserting Eq. (11) into Eq. (6), and recalling that PR = PL =
1
2 , we find

Deff = Dfree

(NL)2〈eβU 〉x〈e−βU 〉x
. (12)

Finally, rescaling by the lattice constant (now NL) squared
[28], we find

Deff = Dfree

〈eβU 〉x〈e−βU 〉x
, (13)

which is the same as Eq. (1), the Lifson-Jackson expression
for the effective diffusion coefficient [19].

Having demonstrated equivalence between Eqs. (1) and
(2), we will proceed to use Eq. (3) to derive the averaged
effective diffusion coefficient.

Following the reasoning laid out above, we write〈
1

W

〉
=

〈
1

W +

〉
= 1

2

〈
1

W + + 1

W −

〉
=

〈
W + + W −

2W +W −

〉
, (14)

where we relabeled W to W + to make clear that the disorder
average is being taken over a transition rate in the positive
direction (the symmetry of transition rates between adjacent
sites allows us to do this). Then, to construct the equivalent of
Eq. (4), we introduced a transition rate (from the same lattice
site) in the negative direction. Replacing the transition rates by
the mean first-passage time and jump probabilities, we find〈

1

W

〉
= 1

2

〈
τ

PRPL

〉
= 2〈τ 〉, (15)

where the last equality follows because we are considering
motion from one lattice site to either of the equivalent sites in
the immediately adjacent repeat units.

Using this result in Eq. (3) and rescaling by the lattice
constant (NL) squared, we find the following expression for
the averaged effective diffusion coefficient:

〈Deff〉 = lim
N→∞

(NL)2

2〈τN 〉 , (16)
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where we have relabeled τ to τN to emphasize that we are
considering the mean first-passage time from one site to either
of the equivalent sites a distance of NL away.

We can rewrite Eq. (10) in a form more amenable to the
calculation of the disorder average:

τN = 1

2Dfree

N∑
i=1

∫ L

0
dy eβUi

∫ L

0
dz e−βUi

+ 1

2Dfree

∑
i �= j

∫ L

0
dy eβUi

∫ L

0
dz e−βUj , (17)

where, thanks to the underlying form of the potential energy
landscape being the same in each and every section, we are
able to cast all of the integrals over the same range. The
averaged mean first-passage time is

〈τN 〉 =
∫

dQ1 . . . dQN τN (Q1, . . . , QN )p(Q1, . . . , QN ), (18)

where p is the joint probability distribution. Since the ampli-
tudes are chosen independently of one another, p(Q1, · · ·, QN )
becomes the product of N individual probability distributions
p(Q1) . . . p(QN ). Inserting Eq. (17) into Eq. (18), we find

〈τN 〉 = NL2

2Dfree

∫
dQ1 〈eβU1〉x〈e−βU1〉x + N (N − 1)L2

2Dfree

×
∫

dQ1dQ2 〈eβU1〉x p(Q1)〈e−βU2〉x p(Q2). (19)

Finally, inserting Eq. (19) into Eq. (16), we obtain

〈Deff〉 = Dfree∫
dQ1〈eβU1〉x p(Q1)

∫
dQ2〈e−βU2〉x p(Q2)

. (20)

Note that the spatial averages are taken over individual sec-
tions of the energy landscape, not multiple sections as per
Zwanzig’s approach. This is important for reasons given in
Ref. [23] and described in the introduction.

III. CASE 1: FLAT SECTIONS

We begin by considering the simplest nontrivial energy
landscape: one composed of flat sections. The ith section (i =
1, 2, ..., N ) of the energy landscape is defined over the range
[(i − 1)L, iL] and given by Ui(x) = Qi. An example is shown
in Fig. 1. The spatial averages in Eq. (20) are as follows:

〈eβU1〉x = 1

L

∫ L

0
ex eβQ1 = eβQ1 , (21)

〈e−βU2〉x = e−βQ2 . (22)

Inserting these expressions and the probability distribution
p(Q) = aβexp(−aβQ) into Eq. (20), and relabelling
βQ1,2 = x, y, respectively, we find

〈Deff〉F = 1

a2

Deff∫ ∞
0 dx e−(a−1)x

∫ ∞
0 dy e−(a+1)y

, (23)

where the subscript F denotes the case of “flat sections.”
While the second integral always converges (a > 0), the

first does not: For values of a � 1 it is unbounded, thereby
predicting nondiffusive behavior. However, for a > 1, it is
finite, and the averaged effective diffusion coefficient is

FIG. 1. Example energy landscapes composed of flat sections.
The black (dashed) and red (solid) lines correspond to a = 0.5 and
a = 1.5, respectively (L = 2).

nonzero. This is the first manifestation of the transition
between—as we will come to see—diffusive and subdiffusive
behavior. For the sake of brevity, we will not perform this
analysis of divergence and convergence for every energy
landscape considered. One can show that the result is always
the same: a transition at a = 1. The behavior for a � 1 will be
discussed later. Evaluating the integrals in Eq. (23), we obtain

〈Deff〉F =
(

1 − 1

a2

)
Dfree. (24)

We will now examine the behavior of 〈Deff〉F in two limits.
First, as a increases, the probability distribution p(Q) becomes
ever more skewed toward smaller values of Q. We expect,
therefore, to return to free diffusion as a → ∞. Second, a →
1+ looks at the behavior around the transition.

From Eq. (24), it is immediately clear that lima→0〈Deff〉F =
Dfree, as expected. By writing a = 1 + δ, and examining the
limit δ → 0, the second limit can be studied:

〈Deff(a = 1 + δ)〉F = δ(2 + δ)

(1 + δ)2
Dfree, (25)

⇒ 〈Deff(a = 1 + δ)〉F ∼ δ as δ → 0+. (26)

Around the transition, the averaged effective diffusion coeffi-
cient grows linearly with a.

IV. CASE 2: SMOOTH MAXIMA

We will study two types of potential energy landscape with
symmetric maxima: power law and cosine forms. The behav-
ior of the averaged effective diffusion coefficient around the
transition is studied, and the connection between this behavior
and the energy landscape’s curvature is drawn. Finally, we
generalise our result and consider the case of asymmetric
maxima.

A. Power law forms

The ith section (i = 1, 2, ..., N ) of the potential energy
landscape is defined over the range [(i − 1)L, iL]. An expo-
nent m characterizes the shape of the energy landscape. For

052123-4



OVERDAMPED BROWNIAN DYNAMICS IN … PHYSICAL REVIEW E 101, 052123 (2020)

FIG. 2. Example energy landscapes with smooth maxima: the
black (dashed) and red (solid) lines correspond to a = 0.5, m = 2
and a = 1.5, m = 7, respectively (L = 2).

even values of m, the energy landscape is given by

Ui(x) = Qi

[
1 −

(
2x

L
− (2i − 1)

)m]
, (27)

while for odd values of m, this expression describes the second
half of the ith section: [(i − 1

2 )L, iL] (i.e., from U = Qi to
U = 0); the other half is the mirror image in the line x =
(i − 1

2 )L. An example is shown in Fig. 2.
For the purposes of this calculation, we will assume that

m is even. However, the final result also holds when m is odd:
The only difference in the calculation is in the first line, where,
instead of integrating from 0 to L, we would integrate from
L/2 to L and double the result. The spatial average is

〈eβU1〉x = eβQ1

L

∫ L

0
dx e−βQ1( 2x

L −1)m

. (28)

Hence, the first of the two integrals in Eq. (20)– -the expres-
sion for the averaged effective diffusion coefficient—is

aβ

∫ ∞

0
dQ1

eβQ1

L

∫ L

0
dx e−βQ1( 2x

L −1)m

e−aβQ1 . (29)

Swapping the order of integration, and changing variables to
u = 2x

L − 1, we obtain∫
dQ1〈eβU1〉x p(Q1) = a

∫ 1

0
du

1

a − 1 + um
. (30)

Correspondingly, the second integral is∫
dQ2〈e−βU2〉x p(Q2) = a

∫ 1

0
du

1

a + 1 − um
. (31)

The averaged effective diffusion coefficient is thus

〈Deff〉Sm,P = Dfree

a2
∫ 1

0 du 1
a−1+um

∫ 1
0 dv 1

a+1−vm

, (32)

where the subscript Sm,P denotes the case of “smooth max-
ima: power law forms.” Both of these integrals can be written
in terms of a hypergeometric function:

〈Deff〉Sm,P =
(
1 − 1

a2

)
Dfree

2F1
(

1
m , 1; m+1

m ; −1
a−1

)
2F1

(
1
m , 1; m+1

m ; 1
a+1

) . (33)

FIG. 3. The results of Brownian dynamics simulations (red cir-
cles and blue triangles) are presented alongside the theoretical pre-
dictions (solid and dashed lines) for two “smooth” energy landscapes
characterized by m = 2 and m = 6, respectively.

Brownian dynamics simulations to test the above were
performed as follows: For a given value of m, an energy
landscape stretching from x = 0 to x = 20L (i.e., 20 maxima)
was constructed by sampling the exponential distribution of
barrier heights. Reflecting and absorbing boundary conditions
were imposed at x = 0 and x = 20L, respectively, and a par-
ticle initialized at x = 0. With kBT = γ = 1, the overdamped
Brownian motion was simulated until the particle reached the
absorbing boundary; the time taken—the first-passage time—
was recorded. A new set of amplitudes was then generated and
the above procedure was repeated. First-passage times were
recorded for O(103–104) energy landscapes and the averaged
mean first-passage time was calculated. Finally, Eq. (16) was
used to calculate the averaged effective diffusion coefficient.
Note that the expression for 〈Deff〉 obtained from Eq. (16)
when we impose one reflecting and one absorbing boundary
(as in the simulations) is unchanged compared to the case of
two absorbing boundaries, for which we derived the result.

Figure 3 shows the simulation results and theoretical pre-
diction for power law energy landscapes with smooth maxima
characterized by m = 2 and m = 6. Good agreement is ob-
served.

Before we study the properties of the averaged effective
diffusion coefficient, let us draw the connection between cases
1 and 2. Increasing the value of m flattens out the maxima, as
shown in Fig. 2. Thus, as m → ∞, the maxima becomes flat,
exactly as in case 1. Evaluating Eq. (33) in this limit, we find

lim
m→∞〈Deff〉Sm,P =

(
1 − 1

a2

)
Dfree

2F1
(
0, 1; 1; −1

a−1

)
2F1

(
0, 1; 1; 1

a+1

) ,

=
(

1 − 1

a2

)
Dfree, (34)

where we have made use of standard properties of the hy-
pergeometric function [30]. This is identical to Eq. (24)–the
averaged effective diffusion coefficient for an energy land-
scape composed of flat sections. Case 1 can thus be viewed
as a limiting form of case 2.

By noting that limx→0± 2F1(p, q; r, x) = 1 [30], the reduc-
tion to free diffusion as a → ∞ in case 2 [Eq. (33)] follows
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simply. Looking to the second limit, we investigate the hyper-
geometric functions in turn. First,

2F1

(
1

m
, 1;

m + 1

m
;

1

2 + δ

)
=

∞∑
k=0

(
1
m

)
k (1)k

2k
(

1+m
m

)
k
k!

(
1 + δ

2

)−k

.

(35)

As δ → 0+, we obtain

2F1

(
1

m
, 1;

m + 1

m
;

1

2 + δ

)
∼ C0 + C1δ + · · ·, (36)

where the {Ci} are constants. For our purposes, the most im-
portant feature of this expansion is C0 �= 0, because it means
that this hypergeometric function makes no contribution to the
leading-order term in δ. Hence, we turn our attention to the

other hypergeometric function: 2F1( 1
m , 1; m+1

m , −1
δ

), which can
be written as [30]

δ1

[
	

(
1−m

m

)
	

(
m+1

m

)
21

[
	

(
1
m

)]2 − O(δ) + · · ·
]

+ δ
1
m

[
	

(
m−1

m

)
	

(
m+1

m

)
2

1
m 	(1)	

(
1
m

) − O(δ) + · · ·
]
. (37)

Remembering that m � 2, we see that, as δ → 0+, the above
is dominated by the term in δ

1
m

2F1

(
1

m
, 1;

m + 1

m
;
−1

δ

)
∼ δ

1
m [C ′

0 + C ′
1δ + · · ·, (38)

where the {C ′
i} are constants, and C ′

0 �= 0. The behavior around
the transition can now be determined:

lim
δ→0

〈Deff(a = 1 + δ)〉Sm,P = lim
δ→0

δ(2 + δ)(1 + δ)−2Dfree
δ− 1

m

(C ′
0 + C ′

1δ + · · ·)(C0 + C1δ + · · ·) ,

⇒ 〈Deff(a = 1 + δ)〉Sm,P ∼ δ1− 1
m

Dfree

C0C ′
0

+ O
(
δ2− 1

m
)
, (39)

as δ → 0+. Equation (38) makes clear that the exponent m,
which governs the shape of the sections of the energy land-
scape, determines the behavior around the transition. Sending
m → ∞ in Eq. (39) produces a linear dependence upon δ,
which, in light of the link between cases 1 and 2 drawn earlier,
is as expected.

This analysis makes clear what we noted in case 1: The
existence of the transition, and thus the behavior around it,
is determined entirely by one of the two integrals in the
expression for the averaged effective diffusion coefficient—∫

dQ1〈eβU1〉x p(Q1).

B. Cosine energy landscape

Theith section (i = 1, 2, ..., N ) of the potential energy
landscape is defined over the range [(i − 1)L, iL] and
given by

Ui(x) = 1

2
Qi

[
1 − cos

(
2πx

L

)]
, (40)

where the factor of one half is inserted so that the barrier
height is Qi. The first spatial average is

〈eβU1〉x = e
1
2 βQ1

L

∫ L

0
dx e− 1

2 βQ1cos( 2πx
L ). (41)

Hence, the first integral in the expression for the averaged
effective diffusion coefficient is

aβ

∫ ∞

0
dQ1

e
1
2 βQ1

L

∫ L

0
dx e− 1

2 βQ1cos( 2πx
L )e−aβQ1 . (42)

Changing the order of integration and performing the integral
over Q1, we obtain∫

dQ1〈eβU1〉x p(Q1) = 1

L

∫ L

0
dx

2a

2a − 1 + cos
(

2πx
L

) ,

= 2a√
(2a − 1)2 − 1

. (43)

In the same way, we find the following expression for the
second integral:∫

dQ2〈e−βU2〉x p(Q2) = 1

L

∫ L

0
dx

2a

2a + 1 − cos
(

2πx
L

) ,

= 2a√
(2a + 1)2 − 1

. (44)

Hence, the averaged effective diffusion coefficient is

〈Deff〉C = Dfree

√(
a − 1

2

)2 − 1
4

√(
a + 1

2

)2 − 1
4

a2
, (45)

where the subscript C denotes the case of a cosine energy
landscape.

Figure 5 shows the results of Brownian dynamics sim-
ulations (performed exactly as before) for a cosine energy
landscape; good agreement between simulations results and
our theory is observed.

We will now study the properties of the averaged effective
diffusion coefficient for the cosine energy landscape. When
we send a → ∞ in Eq. (45), the reduction to free diffusion
is immediately apparent. Next, we turn our attention to the
behavior around the transition point, a = 1 + δ, δ → 0+:

〈Deff〉C ∼ Dfree

√
δ[1 + O(δ)]. (46)
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FIG. 4. The averaged effective diffusion coefficient for energy
landscapes with smooth maxima characterized by the following
powers: m = 2, 3, 4, 9 (m = 2 is the uppermost line; m = 9 is the
lowermost). The inset shows the behavior around the transition.

The averaged effective diffusion coefficient behaves as δ1/2,
which is an interesting result when viewed in the context of
previous work on “power law forms.” Equation (39) tells us
that when m = 2 (quadratic energy landscape), the averaged
affective diffusion coefficient also behaves as δ1/2. Expanding
each of the energy landscapes around its maxima:

Ui,m=2 = Qi

[
1 −

(
2δx

L

)2
]
, (47)

Ui,cosine = Qi

2

[
2 − 1

2!

(
2πδx

L

)2

+ · · ·
]
, (48)

we see that the order of the first nonvanishing derivative
(second) is the same. In the next subsection, we will demon-
strate that the behavior of the averaged effective diffusion
coefficient around the transition is determined by the order
of the first nonvanishing derivative in the series expansion of
the potential energy landscape around its maxima.

It is evident from Figs. 3, 4, and 5 that, irrespective of
the value of m, the averaged effective diffusion coefficient

FIG. 5. The results of Brownian dynamics simulations (red cir-
cles) are presented alongside the theoretical prediction (solid line)
for the cosine energy landscape.

saturates quickly to the free diffusive limit. This reinforces the
notion that the most interesting behavior occurs in the region
around the transition.

C. Generalization for smooth maxima

As remarked before, the relevant integral is∫
dQ1〈eβU1〉x p(Q1). Our approach is similar to the

saddle-point approximation used by Kramers [31].

1. Symmetric maxima

Consider a piecewise-defined potential energy landscape
U (x) where each section has the same general form; only
the height of the central, symmetric maximum differs from
one section to the next. Expanding U1(x) about its maximum,
we obtain U1(x) ≈ Q1 − 1

m! |U (m)( L
2 )||x − L

2 |m, where m is
the order of the first nonvanishing derivative, and modulus
signs have been used both to introduce a minus sign and
to account for piecewise defined maxima characterized by
odd exponents. Rewriting U (m)( L

2 ) = Q1V (m)( L
2 ), the relevant

integral is given approximately by

aβ

L

∫ ∞

0
dQ1

∫ L

0
dx eβQ1 e− 1

m! |V (m) ( L
2 )||x− L

2 |m e−aβQ1 . (49)

Swapping the order of integration, evaluating the integral over
Q1, and exploiting the symmetry about x = L/2, we obtain

2a

L

∫ L

L
2

dx
1

(a − 1) + 1
m!

(
L
2

)m∣∣V (m)
(

L
2

)∣∣( 2x
L − 1

)m . (50)

Changing variables to u = 2x
L − 1 and dividing through to

eliminate its prefactor c = 1
m! |V (m)( L

2 )|, we find∫
dQ1〈eβU1〉x p(Q1) ≈ a

a − 1
2F1

(
1

m
, 1; 1 + 1

m
;

−c

a − 1

)
.

(51)

As before, the behavior around the transition is determined by
setting a = 1 + δ and examining the limiting form as δ → 0+.
From Eq. (38), we deduce

1 + δ

δ
2F1

(
1

m
, 1; 1 + 1

m
;
−c

δ

)
∼ (1 + δ)

δ1− 1
m

[C ′
0 + C ′

1δ + · · ·].

(52)

Since the averaged effective diffusion coefficient is inversely
proportional to the above, we find

〈Deff〉 ∼ δ1− 1
m

Dfree

C0C ′
0

, (53)

where C0 is a constant arising from the other integral in the
full expression for Deff. Hence, the link between the curvature
of the potential energy landscape around its maxima and the
behavior of the averaged effective diffusion coefficient around
the transition point is clear.

2. Asymmetric maxima

Suppose instead that the maxima are asymmetric. Then, in
order to evaluate the relevant integral, we must expand the
potential energy landscape on both sides of the maximum.
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Denoting the expansion to the left- and right-hand sides by
UL and UR, respectively, we have

U1,L,R = Q1

[
1 − 1

mL,R!

∣∣∣∣V mL,R

(
L

2

)∣∣∣∣
∣∣∣∣x − L

2

∣∣∣∣
mL,R]

, (54)

Proceeding as in the previous case and evaluating the integral
over Q1, we obtain

a

L

∑
i=L,R

∫ L

L
2

dx

(a − 1) + 1
mi!

(
L
2

)mi
∣∣V mi

(
L
2

)∣∣( 2x
L − 1

)m , (55)

where we have used the symmetry of U1,L about x = L/2
to define both integrals over the same spatial range. From
results established when studying symmetric maxima, the
above evaluates to

a

2(a − 1)

∑
i=L,R

2F1

(
1

mi
, 1; 1 + 1

mi
;

−ci

a − 1

)
. (56)

The behavior of the averaged effective diffusion coefficient
around the transition point is then easily found:

〈Deff〉 ∼ δ

CLδ
1

mL + CRδ
1

mR

, (57)

where CL,R are constants. The denominator of the above is
dominated by the term with the smallest exponent, i.e., by the
larger of mL and mR.

This concludes the proof and demonstrates wider applica-
bility than the simplest case of symmetric maxima.

D. Example: Random powers m

To build upon ideas laid out above and to illustrate their
broad applicability, we will study the case of piecewise-
defined potential energy landscapes where the constituent
sections need no longer have the same shape. A probability
distribution is assigned to m and the expression for the av-
eraged effective diffusion coefficient [Eq. (20)] is modified
accordingly:

〈Deff〉R = Dfree∫
dm1

[∫
dQ1〈eβU1〉x pQ(Q1)

]
pm(m1)

× 1∫
dm2

[∫
dQ2〈e−βU2〉x pQ(Q2)

]
pm(m2)

, (58)

where R denotes the case of “random powers” and pm and pQ

denote the probability distributions for shape and amplitude,
respectively.

Working with the energy landscape given at the start of
“power law forms,” Ui(x) = Qi(1 − [ 2x

L − (2i − 1)]
m

), the av-
eraged effective diffusion coefficient is

〈Deff〉R =
(
1 − 1

a2

)
Dfree∫

dm1
[

2F1
(

1
m1

, 1; m1+1
m1

; −1
a−1

)]
pm(m1)

× 1∫
dm2

[
2F1

(
1

m2
, 1; m2+1

m2
; 1

a+1

)]
pm(m2)

. (59)

By way of example, we choose a δ-function distribution
for m: pm(m) = ∑

i αiδ(m − mi ), where
∑

i αi = 1 ensures

FIG. 6. Example energy landscapes with sharp maxima: The
black (dashed) and red (solid) lines correspond to a = 0.5, m = 2
and a = 1.5, m = 7, respectively (L = 2).

normalization. In Eq. (59), we find

〈Deff〉R =
(
1 − 1

a2

)
Dfree∑

i αi
[

2F1
(

1
mi

, 1; mi+1
mi

; −1
a−1

)]
× 1∑

j α j
[

2F1
(

1
mj

, 1; mj+1
mj

; 1
a+1

)] . (60)

Note that we have assumed that there are only a finite number
of different powers mi. As a → ∞, the usual reduction to free
diffusion takes place. In a manner similar to the one before,
the expression for the averaged effective diffusion coefficient
around the transition point (as δ → 0+)

〈Deff(a = 1 + δ)〉R ∼ Dfree
δ∑

i αiC ′
i,0δ

1
mi

∑
j α jC j,0

. (61)

The denominator of the above will be dominated by the term
with the largest value of m, which we shall denote by mmax.
Hence, we find

〈Deff(a = 1 + δ)〉R ∼ Dfreeδ
1− 1

mmax

C , (62)

where C is a constant. Larger values of m correspond to flatter
energy landscapes, so the behavior around the transition is
determined by the flattest section of the energy landscape.

The behavior for other probability distributions pm is
harder to determine analytically.

V. CASE 3: SHARP MAXIMA

The ith section (i = 1, 2, ..., N ) of the potential energy
landscape is defined over the range [(i − 1)L, iL] in a piece-
wise manner. The first half from x = (i − 1)L to x = (i − 1

2 )L
(i.e., from U = 0 to U = Qi) is given by

Ui(x) = Qi

[
2x

L
− (i − 1)

]m

, (63)

where m � 2. The second half is the mirror image in the
line x = (i − 1

2 )L. An example is shown in Figure 6. We
will employ the same methodology as in the case of smooth
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FIG. 7. The results of Brownian dynamics simulations (red cir-
cles and blue triangles) are presented alongside the theoretical pre-
dictions (solid and dashed lines) for two energy landscapes charac-
terized by m = 2, and m = 6, respectively.

maxima to derive the averaged effective diffusion coefficient.
The integrals in the expression for the averaged effective
diffusion coefficient are

2aβ

L

∫ ∞

0
dQ1

∫ L/2

0
dx e−[a−( 2x

L )m]βQ1 ,

2aβ

L

∫ ∞

0
dQ2

∫ L/2

0
dx e−[a+( 2x

L )m]βQ2 ,

(64)

where the factors of 2 come from exploiting the symmetry
of the integrand about the maxima. Swapping the order of
integration and changing variable enables us to write the
averaged effective diffusion coefficient as

〈Deff〉Sh = Dfree

a2
∫ 1

0 du 1
a−um

∫ 1
0 dv 1

a+vm

, (65)

where the subscript “Sh” denotes the case of “sharp maxima.”
Finally, evaluating these integrals in terms of hypergeometric
functions, we find

〈Deff〉Sh = Dfree

2F1
(

1
m , 1; m+1

m ; 1
a

)
2F1

(
1
m , 1; m+1

m ; − 1
a

) . (66)

Note that as a → ∞ the system returns to free diffusion.
Figure 7 shows the results of Brownian dynamics simulations
for two energy landscapes with sharp maxima. Good agree-
ment between the simulations and our theory is observed.

As in the case of smooth maxima, the averaged effective
diffusion coefficient saturates quickly to the free diffusive
limit. In fact, the saturation takes place more rapidly for sharp
maxima. This can be seen in Fig. 8.

Setting a = 1 + δ in Eq. (66), the averaged effective diffu-
sion coefficient becomes

〈Deff〉Sh = Dfree

2F1
(

1
m , 1; m+1

m ; −1
1+δ

)
2F1

(
1
m , 1; m+1

m ; 1
1+δ

) . (67)

The first of the above hypergeometric functions—
2F1( 1

m , 1, m+1
m ; −1

1+δ
)—is equal to some constant C0 for

δ = 0; it does not contribute to the leading-order behavior
around the transition.

FIG. 8. The averaged effective diffusion coefficient for energy
landscapes with sharp maxima characterized by the following pow-
ers: m = 2, 3, 6, 7, 2000, 2001 (m = 2 is the lowermost line; m =
2001 the uppermost). The inset shows the region around the transi-
tion point (δ = 10−4 to 10−1), and highlights the linear behavior for
small values of δ.

Turning to the second hypergeometric function, it is possi-
ble to show that, as δ → 0, it becomes

1

m

[
ln

(
1 + 1

δ

)
− ψ (0)

(
1

m

)
− γ

]
[1 + O(δ)], (68)

where ψ (0)(x) = d
dx ln(	(x)) is the Digamma function and γ is

the Euler-Mascheroni constant [30]. As δ → 0, the logarithm
diverges towards plus infinity. Clearly, therefore, the behavior
of the averaged effective diffusion coefficient around the
transition point is considerably stronger than in the case of
smooth maxima. Furthermore, as m → ∞, − 1

m ψ (0)( 1
m ) →

∞. Therefore, energy landscapes with sharper maxima will
be characterized by averaged effective diffusion coefficients
that display a steeper behavior around the transition.

Inserting these limiting forms into Eq. (67), we find

〈Deff〉Sh ∼ mDfree

C0
[
ln

(
1 + 1

δ

) − ψ (0)
(

1
m

) − γ
] . (69)

This behavior around the transition—[ln(1/δ)]−1 at the
weakest—stands in stark contrast to the power-law dependen-
cies observed for smooth maxima: δ

1
2 to δ1 (for m = 2 and

m → ∞, respectively).

VI. SUBDIFFUSION

The averaged effective diffusion coefficient—Eq. (20)– -is
only nonzero for values of a > 1. When a � 1, one of the
integrals in the denominator diverges, indicating a change in
the system’s behavior from diffusive to subdiffusive.

The random barrier and random trap models offer a frame-
work to study the subdiffusive regime. The former considers
the hopping motion of particles over potential energy barriers
and is characterized by transition rates; the latter considers the
escape from potential energy minima and is characterized by
trapping times. In one dimension, provided that one identifies
the reciprocal of the transition rates with the mean trapping
time, then the models predict identical behavior [16].
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By assuming a simple exponential relationship between
barrier height (trap depth) Q and mean first-passage (trapping)
time τ , τ = τ0 exp(βQ), and the usual exponential distri-
bution of barrier heights (trap depths) across lattice sites,
p(Q) = aβ exp(−aβQ), the distribution of mean first-passage
(trapping) times can be calculated:

ψ (τ ) = p(Q)

dτ/dQ
= aτ a

0

τ 1+a
. (70)

Consequently, the evolution of the mean squared displacement
can be derived:

a < 1 : 〈x2(t )〉 ∼ t2ν,

a = 1 : 〈x2(t )〉 ∼ t/ln(t ),
(71)

where ν = a/(1 + a) [13,15,16].
In this work, rather than specifying the relationship be-

tween the barrier height and the mean first-passage time, we
specify the form of the potential energy barrier and subse-
quently derive the mean first-passage time. For the energy bar-
riers considered in this work, the double-integral expression
for the mean first-passage time cannot be evaluated analyti-
cally. As such, the above expressions for the distribution of
mean first-passage time and the mean squared displacement
are not expected to hold true. Nonetheless, it is instructive
to compare their predictions with the results of numerical
simulations. We will consider the distribution of mean first-
passage times, before studying the evolution of the mean
squared displacement.

A. Distribution of mean first-passage times ψ(τ )

For U (x) = Q[1 − | 2x
L |m], the mean first-passage time

from x = − L
2 to x = L

2 is [22]

τ = L2

4D

∫ 1

−1
du e−βQ|u|m

∫ u

−1
dv eβQ|v|m . (72)

The distribution of mean first-passage times is calculated as
before: Differentiating Eq. (72), we find that

ψ = 2Dm

L2
aβQe−aβQ

[
eβQ

∫ 1

0
du e−βQum + e−βQ

∫ 1

0
du eβQum

−
∫ 1

−1
du e−βQ|u|m

∫ u

−1
dv eβQ|v|m

]−1

. (73)

Unlike the random barrier (trap) model, where the mean first-
passage time is a simple exponential, the derivative dτ/dQ
cannot be expressed in terms of τ alone. Consequently, the
distribution ψ is not a power law, though it is well approxi-
mated as such for values of βQ � 1. In fact, for a given value
of a, as βQ increases, the characteristic exponent approaches
the βQ-independent value of 1 + a. For tall barriers (large
βQ), the mean first-passage time is approximately

τ ≈ L2

2D

	
(

1
m

)
eβQ

m(βQ)1+ 1
m

, (74)

while the distribution of mean first-passage times is

ψ ≈ 2D

L2

am2

	
(

1
m

) (βQ)1+ 1
m

e(1+a)βQ
. (75)

FIG. 9. The power-law exponent α is calculated for different
amplitudes Q over a range of values of a for a quadratic maximum
(m = 2). The results of numerical simulations are also shown for
comparison.

Studying the limiting form of the natural logarithm of
Eqs. (74) and (75), it is possible to establish the following,
approximate, relationship,

lnψ ∼ −(1 + a)lnτ + const., (76)

which confirms that, in the large-amplitude limit, the distribu-
tion of mean first-passage times obeys the power law predicted
by the random barrier model.

In order to test this prediction, we simulated as follows
using unit values of thermal energy and damping throughout:
For a given value of a, the distribution of barrier heights
p(Q) was sampled until 105 values of Q larger than some
large threshold value (we used QT = 15) were obtained. The
corresponding mean first-passage times over the quadratic
(m = 2) maximum were calculated [22], their distribution
analyzed, and the characteristic exponent, α, extracted [32]. A
threshold was used because large amplitudes are less probable
than small amplitudes, but more important in determining the
exact behavior of the distribution’s heavy tail.

Figure 10 shows the results of these numerical simulations.
Also presented are the results of a separate analysis of the
behavior of the distribution of mean first-passage times: Using
Eqs. (72) and (73), it is possible to calculate the characteristic
power-law exponent α for a given value of Q, over a range of
values of a.

Figure 9 demonstrates that, for a given value of a, as the
value of Q at which the exponent α is calculated is increased,
the deviation from the random barrier model’s prediction
decreases, so lending support to Eq. (76).

Choosing a constant threshold for Q affects the simulation
results: The probability of obtaining a value of Q larger
than a threshold QT is e−aβQT . For unit thermal energy and
QT = 15, these probabilities are 0.22 and 1.4 × 10−6 for
a = 0.1 and a = 0.9, respectively. This means that the barrier
heights, and hence the mean first-passage times, obtained for
a = 0.1 will be distributed over a large range, thus allowing
the characteristic exponent to be calculated accurately. By
contrast, the barrier heights obtained for a = 0.9 will be
relatively tightly distributed above the threshold, so giving rise
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FIG. 10. The hopping probabilities for a section of an example
energy landscape are calculated according to Eq. (69). The particles
make transitions based upon these probabilities and a mean first-
passage time calculated for each minimum.

to a characteristic exponent greater than that predicted by the
random barrier model.

Increasing the number of samples would, eventually, un-
doubtedly produce a characteristic exponent very close to
the value predicted by the random barrier model: Figure 9
indicates that good agreement is observed for Q ∼ 75, which,
for a = 0.9, has a probability of occurrence of roughly 5 ×
10−30. Were a Brownian particle to move in such a landscape
it is clear that the mean time elapsed before encountering a
barrier of this height would be vast. Hence, we believe that the
subdiffusive dynamics differ from the random barrier model’s
predictions on possibly substantial timescales.

B. Evolution of the mean squared displacement

In order to investigate the behavior of the mean
squared displacement, we performed two types of numerical
simulations.

The first were Brownian dynamics simulations: An en-
semble of particles was initialized at x = 0 in a piecewise-
defined cosine energy landscape, where the amplitude of
each section was obtained from the exponential distribution
p(Q) = aβ exp(−aβQ). With unit values of thermal energy
and damping, the system evolved until the mean squared
displacement was at least 1000L2. For a given value of a,
this procedure was repeated for 500 energy landscapes, with
ten particles per landscape. After combining the trajectories
〈x2(t )〉, the exponent 2ν was extracted.

The second was a coarse-grained version of the above.
Instead of advancing the position of each particle according
to a simulation scheme based upon the overdamped Langevin
equation, we constructed a scheme based upon the random
barrier model: The minima were regarded as lattice sites,
between which particles could hop. Consider the following
part of an energy landscape:

U (x) =
{

Q1
[
1 − cos

(
2πx

L

)]
, −L � x � 0,

Q2
[
1 − cos

(
2πx

L

)]
, 0 � x � L.

FIG. 11. The exponents characterizing the growth of the mean
squared displacement with time extracted from Brownian dynamics
(BD) and coarse-grained simulations are plotted as a function of a.
The inset is an enlargement of the region around a = 1.

For a particle starting from x = 0, the probabilities of exiting
the region [−L, L] to the left, and to the right, are given
by [22]

PL =
∫ L

0 dx eβU∫ L
−L dx eβU

= eβQ2 I0(βQ2)

eβQ1 I0(βQ1) + eβQ2 I0(βQ2)
,

PR =
∫ 0
−L dx eβU∫ L
−L dx eβU

= eβQ1 I0(βQ1)

eβQ1 I0(βQ1) + eβQ2 I0(βQ2)
,

(77)

respectively, while the mean first-passage time to move from
the central minimum to either of the adjacent minima is [22]

τ = PR

∫ L

0
dy eβU

∫ y

−L
dz e−βU − PL

∫ 0

−L
dy eβU

∫ y

−L
dz e−βU .

(78)

Figure 10 illustrates the hopping process laid out above.
In particular, it makes clear that the same energy barrier has
different probabilities of being crossed depending upon the
direction in which the particle is moving.

Simulations were carried out as follows: 103 particles
were initialized at x = 0 in a piecewise-defined cosine energy
landscape Ui(x) = Qi

2 [1 − cos(nπx)], where the amplitude of
each section was taken from the usual exponential distribu-
tion. Each particle made 500 jumps, with the direction of
each jump determined in accordance with the probabilities
given above. The time associated with each jump was taken
from an exponential distribution whose mean was the above
mean first-passage time [15]. This process was repeated for
103 energy landscapes, and the resulting trajectories used to
calculate the evolution of the mean squared displacement with
time. The exponent 2ν was then extracted.

We decided to use this coarse-grained simulation scheme
because it is much faster than conventional Brownian dy-
namics simulations. That it cannot replicate the short-time
behavior as the ensemble spreads out within a single min-
imum before particles make their first transition is unim-
portant, because we are interested only in the long-time,
interwell behavior.
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Figure 11 shows the results of both types of simulations,
and the random barrier model’s prediction.

Good agreement between the results of Brownian dynam-
ics simulations and coarse-grained simulations is observed.
However, significant disagreement with both the random bar-
rier model’s and Eq. (20)’s predictions is also apparent: The
sharp transition from subdiffusion to diffusion at a = 1 is not
borne out by the simulations. Rather, a gradual change occurs,
with subdiffusive behavior persisting well into the (predicted)
diffusive regime. We do not have a concrete explanation
for this observation. However, we believe that it is possible
that the system’s behavior is transient, becoming diffusive
only at very long times, beyond those for which motion was
simulated.

VII. CONCLUSIONS

In this paper, we used the concept of an averaged effec-
tive diffusion coefficient 〈Deff〉 to build upon work done by
Banerjee et al. and Zwanzig. The (one-dimensional) mean
first-passage time formalism was used to derive an expression
for 〈Deff〉 in terms of the piecewise-defined energy landscape
U (x) and the probability distribution p(Q) from which the
amplitudes of each section of the landscape were taken. We
calculated the averaged effective diffusion coefficient for an
exponential probability distribution p(Q) = aβexp(−aβQ)
for energy landscapes characterized by flat sections, smooth
maxima, and sharp maxima. In every case, a transition from
subdiffusive to diffusive behavior was observed at a = 1. The

behavior of 〈Deff〉 around the transition was found to depend
heavily upon the nature of U (x). For energy landscapes with
smooth maxima, 〈Deff〉 scales as (a − 1)1− 1

m , where m � 2 is
the order of the first nonvanishing derivative of U (x) evaluated
at its maxima. Conversely, energy landscapes with sharp
maxima displayed strongly divergent, nonanalytical behavior
around the transition; the sharper the energy landscape, the
stronger the divergence. We also studied two aspects of the
subdiffusive (a < 1) regime: the growth of the mean squared
displacement with time 〈x2(t )〉 and the distribution of mean
first-passage times ψ (τ ). The shapes of the maxima here
considered resulted in a nonanalytic expression for the mean
first-passage time. As a direct consequence, predictions made
within the framework of the random barrier model, where
τ ∼ exp(βQ), were no longer expected to be accurate. Cor-
respondingly, only limited agreement was found between the
exponent characterizing subdiffusion obtained from Brownian
dynamics simulations and that predicted by the random barrier
model. Additionally, the distribution of mean first-passage
times was found no longer to be a power law. However, in the
limit of large barriers, a reduction to power-law behavior—
with the same characteristic exponent as that predicted by the
random barrier model—is observed.
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