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We show that Hermitian matrix models support the occurrence of a phase transition characterized by dispersive
regularization of the order parameter near the critical point. Using the identification of the partition function with
a solution of the reduction of the Toda hierarchy known as the Volterra system, we argue that the singularity is
resolved by the onset of a multidimensional dispersive shock of the order parameter in the space of coupling
constants. This analysis explains the origin and mechanism leading to the emergence of chaotic behaviors
observed in M6 matrix models and extends its validity to even nonlinearity of arbitrary order.
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I. INTRODUCTION

Random matrix models, originally introduced as an at-
tempt to model the complex structure of the energy spectra
of heavy nuclei, have since become a universal paradigm for
modeling complex phenomena. They naturally arise in con-
nection with different areas of mathematics and physics, from
quantum field theory to the theory of completely integrable
dynamical systems [1–3].

For instance, in the context of quantum field theory, Her-
mitian matrix models can be introduced as a discrete approx-
imation of two-dimensional (2D) quantum gravity. Based on
this result, a celebrated conjecture of Witten [4], proven by
Kontsevich [5], establishes the connection between the free
energy of 2D quantum gravity and a particular solution of
the Korteweg–de Vries (KdV) equation. The KdV equation,
a prototypical example of soliton equation [6], first appeared
in water wave dynamics to model small-amplitude elevation
waves in shallow water. Along with solitons, another im-
portant class of solutions of the KdV equation consists of
dispersive shock waves [7,8]. Dispersive shock waves occur
as a universal regularization mechanism of singularities in dis-
persive hydrodynamics and effectively explain the emergence
of a variety of complex behaviors in hydrodynamic systems
[7–12]. The remarkable mathematical structure of completely
integrable systems, of which the KdV equation is possibly
the most celebrated example, such as the existence of an
infinite number of conservation laws, allows for an effective
and detailed description of dispersive shock waves (see, e.g.,
[8–11]). The above-mentioned Witten conjecture established
an unexpected connection between quantum field theory and
dispersive hydrodynamics via the identification of correlators
of 2D gravity with conserved densities of a particular solution
of the KdV equation. Thereafter, a similar correspondence
between different matrix models on Hermitian, unitary, sym-
metric, and symplectic ensembles and completely integrable
dynamical systems was discovered (see, e.g., [13–17] and
references therein). The relevance of these connections lies
in the fact that methods developed for solving completely

integrable dynamical systems are indeed effective for the
study of the associated matrix models and reveal further
intriguing mathematical structure and elegance. Moreover,
extensive studies of properties of partition functions for matrix
models led to remarkable connections between the theory
of integrable systems, statistical mechanics, quantum field
theory, and algebraic and enumerative geometry [4,14,16–
19]. In this paper we investigate Hermitian matrix models and
observe a type of phase transition resulting from a dispersive
regularization mechanism of the order parameter in the space
of coupling constants and the consequent onset of a dispersive
shock. We provide the physical conditions and scaling regime
under which this phenomenon occurs. In particular, we find
that, unlike classical mean-field models, multivalued solutions
at the leading order of the asymptotic expansion do not
necessarily correspond to a phase transition. For the sake of
simplicity, we focus on the case of a Hermitian matrix model
with even nonlinear interaction terms and its formulation in
terms of the 1D Toda hierarchy. However, our considerations
can be extended to other matrix ensembles. The Toda lattice
is an important example of completely integrable nonlinear
dynamical system which, in the continuum limit, contains
as a particular case several examples of soliton equations,
including the KdV equation. We also note that asymptotic
properties of partition functions in the thermodynamic limit
of one-matrix models with even and odd nonlinearity and
their relation to the Toda lattice were previously considered in
[20,21]. A key point in our analysis is that the sequence of par-
tition functions Zn for the one-matrix model of n × n matrices
can be expressed in terms of a particular solution of a suitable
restriction of the Toda lattice equations, known as the Volterra
lattice (or discrete KdV equation). The complete integrability
of the Volterra lattice system implies the existence of infinitely
many conservation laws. The Volterra lattice, together with
its set of symmetries associated with the conservation laws,
constitutes the Volterra hierarchy. We show that the identifica-
tion of the Volterra hierarchy with the matrix model is based
on a one-to-one correspondence between coupling constants
and equations of the hierarchy. Each equation of the hierarchy
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provides the evolution of the order parameter of the theory
as a function of the associated coupling constant, which is
interpreted as the time variable of the chosen equation. The
partition function Zn is therefore specified by the state of
the nth point of the lattice for the corresponding values of
the coupling constants, i.e., time parameters of the hierarchy.
Most importantly, the dynamics on the lattice is uniquely
specified by the initial conditions that are given in terms of the
partition function of the free model, i.e., where all coupling
constants vanish. In this respect, the model is simpler than the
case of 2D gravity studied in [4], where the initial condition
is specified by additional symmetries that are compatible with
the hierarchy, namely, the Virasoro constraints [14,19].

We thus exploit the relation between the matrix model
under consideration and the Volterra lattice in order to explore
the phase diagram of the model. In his pioneering work [22],
Jurkiewicz observed that a natural order parameter can be in-
troduced by using orthogonal polynomial decompositions and
combinatorial considerations [23]. Such an order parameter
develops, in the thermodynamic limit, a singularity that is
regularized by oscillations revealing an apparent underlying
chaotic behavior of the system [22,24]. A rigorous proof
of the occurrence of asymptotic oscillations of the partition
function was found in [25,26]. In this work we explain the
oscillatory behavior of the order parameter as the occurrence
of a dispersive shock. Using the fact that the thermodynamic
limit (n → ∞) of the random matrix model is equivalent
to the continuum limit of the Volterra lattice, given by a
system of partial differential equations of hydrodynamic type
[27–29], we show that the order parameter evolves in the
space of the coupling constants as a shock wave solution
of the associated hydrodynamic system. The chaotic phase
is therefore interpreted as a dispersive shock propagating
through the chain in the continuum (thermodynamic) limit.
The intriguing complexity of its phase diagram can hence be
explained in the context of dispersive hydrodynamics. The
physical constraint on the signature of the order parameter
determines whether a catastrophe evolves into a dispersive
shock.

Considerations above outline the following general sce-
nario: When a thermodynamic system undergoes a phase
transition, some specific quantities, the order parameters,
develop singularities. In the context of conservation laws
of hydrodynamic type, when a singularity (hydrodynamic
catastrophe) occurs, viscosity and dispersion underpin two
different mechanisms of regularization of such singularity. In
the presence of low viscosity the solution develops a sharp
but smooth wavefront [7]. If low viscosity is replaced by
weak dispersion, when the wavefront approaches the point of
gradient catastrophe the dispersion induces initially small os-
cillations that further evolve into a dispersive shock [8,9,11].
In classical mean-field fluid and spin models, phase transitions
are associated with classical shocks of order parameters in the
space of thermodynamic parameters [30–32]. In this work we
show that the chaotic behavior observed in [22] is indeed a
phase transition where the order parameter develops a singu-
larity that is resolved via dispersion rather than viscosity as in
classical spin models. The observation that phase transitions
in matrix models are explicitly connected to the occurrence of
a dispersive shock in the order parameter paves the way to the

application of current methods of dispersive hydrodynamics
in the context of quantum field theories.

II. HERMITIAN MATRIX MODEL

We study the model defined by the partition function

Zn(t) =
∫
Hn

eH (M )dM, (1)

where M are Hermitian matrices of order n,

H (M ) = Tr

⎛
⎝−M2/2 +

∞∑
j=1

t2 jM
2 j

⎞
⎠

is the Hamiltonian, with t = {t2 j} j�1 the coupling constants,
and dM is the Haar measure in the space of Hermitian
matrices Hn. Based on a classical result by Weyl [33], the
partition function (1) is proportional to an integral over the
eigenvalues of the matrix M, that is, Zn(t) = cnτn(t), where cn

is a constant and

τn(t) = 1

n!

∫
Rn

�n(λ)2
n∏

i=1

(eH (λi )dλi ), (2)

with �n(λ) = ∏
1�i< j�n(λi − λ j ) the Vandermonde determi-

nant. A theorem by Adler and van Moerbeke [14] implies that
the quantity (2) can be interpreted as a τ function of the Toda
hierarchy restricted to the even flows

∂L

∂t2k
=

[
1

2
(L2k )s, L

]
, k = 1, 2, . . . , (3)

with L the tridiagonal symmetric Lax matrix of the form

L =

⎛
⎜⎜⎝

0 b1 0 0 · · ·
b1 0 b2 0 · · ·
0 b2 0 b3 · · ·
...

. . .
. . .

. . .
. . .

⎞
⎟⎟⎠, (4)

where bi =
√

τi+1τi−1/τ
2
i and (L2k )s denotes the skew-

symmetric part of the matrix L2k (see, e.g., [14]). The solution
of interest is specified by the initial conditions bi(0) = √

n
obtained via a direct calculation of Gaussian integrals for the
quantities τn(0) = (2π )n/2 ∏n

j=1 j!/n!. We note that the Lax
matrix of type (4), originally considered in [34] and more
recently in [20], corresponds to a reduction of the even Toda
hierarchy known as the Volterra hierarchy. The description of
the Volterra hierarchy in terms of the matrix resolvent, its τ

structure, and application to ribbon graphs and Hodge inte-
grals has been recently studied in [35]. Incidentally, we also
mention that the model with odd nonlinearities is different
from the present case and its relation with the Toda hierarchy
has been considered in [21].

Writing the equations of the hierarchy (3) in terms of lattice
variables bn, we have

∂bn

∂t2k
= bn

2
[bn+1(L2k−1)n+1,n+2 − bn−1(L2k−1)n−1,n]. (5)
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Introducing the notation Bn = b2
n and V (2k)

n = bn(L2k−1)n,n+1

and multiplying both sides by bn, Eq. (5) reads

∂Bn

∂t2k
= Bn

(
V (2k)

n+1 − V (2k)
n−1

)
, k = 1, 2, . . . . (6)

One can simply prove by induction that V (2k)
n is a linear com-

bination of products of the variable Bn evaluated at different
points on the lattice. For instance, for the first three nontrivial
flows we have

V (2)
n = Bn,

V (4)
n = V (2)

n

(
V (2)

n−1 + V (2)
n + V (2)

n+1

)
,

V (6)
n = V (2)

n

(
V (2)

n−1V
(2)

n+1 + V (4)
n−1 + V (4)

n + V (4)
n+1

)
.

In the following we refer to Bn as the order parameter of
the theory. Based on a result in [36], we have proven that
the required solution to the above reduction of the even Toda
hierarchy is given by the recursive formula (string equation)

n = Bn −
∞∑
j=1

2 jt2 jV
(2 j)

n . (7)

Indeed, Eq. (7) follows from the string equation for the Toda
lattice

[L, P] = 1, (8)

where

P = −1

2
Ls +

∑
k�1

kt2k (L)2k−1
s

by considering its restriction to even times only [36]. Equation
(7) allows us to evaluate the order parameter of the M2q

model for arbitrary q and generalizes the formula obtained by
Jurkiewicz for q = 3 [22,37].

III. THERMODYNAMIC LIMIT

We analyze the matrix model in the large-n (thermody-
namic) regime via the continuum limit of the solution (7) of
the reduced Toda hierarchy. Introducing the scale given by a
suitably large integer N and the rescaled variables un = Bn/N
and T2k = Nk−1t2k , Eq. (7) reads

n

N
= un −

∞∑
j=1

2 jT2 jW
2 j

n , (9)

where W 2 j
n = V (2 j)

n /N j . We then define the interpolating
function u(x) such that un = u(x) for x = n/N and un±1 =
u(x ± ε) with the notation ε = 1/N . Expanding in a Taylor
series for small ε, we obtain an ordinary differential equation
as a formal series

�ε = 0, (10)

where �ε has the form

�ε := − x + (1 − 2T2)u − 12T4u2 − 60T6u3

+ ε2
(
p1uxx + p2u2

x

)
+ ε4

(
q1uxxxx + q2uxuxxx + q3u2

xx

) + O(ε6). (11)

Here, for simplicity, we have fixed T2k = 0 for k > 3, with pi

and qi as follows:

p1 = −4T4u − 60T6u2, p2 = −30T6u,

q1 = −T4

3
u − 11T6u2, q2 = −22T6u, q3 = −33T6

2
u.

At the leading order we have the polynomial equation in u of
the form

�0 := −x + (1 − 2T2)u − 12T4u2 − 60T6u3 = 0. (12)

In order to obtain further insight into the behavior of the
solution of the recurrence equation (9) in the thermodynamic
limit, it is interesting to study the continuum limit of the
Volterra hierarchy (6). Proceeding as above, i.e., introducing
the interpolating function u(x) in (6) and expanding u(x ± ε)
in a Taylor series, one obtains a compatible hierarchy of
dispersive partial differential equations of the form

uT2k =
∞∑

n=0

εng(k)
n

(
u; ux, . . . , ∂

n
x u

)
, (13)

where functions g(k)
n are differential polynomials of u. For

instance, the first member of the hierarchy (for k = 1), which
gives the flow with respect to T2, takes the compact form

uT2 = 2u

[
1

ε
sinh(ε∂x )

]
u, (14)

where the operator stays for the formal Maclaurin expansion
of sinh. In the thermodynamic limit, i.e., ε → 0, Eq. (14)
gives, at the leading order, the Hopf equation

uT2 = 2uux. (15)

Similarly, higher flows in T2k lead to higher members of the
so-called Hopf hierarchy

uT2k = Ckukux (16)

for suitable constants Ck , the solution of which, for the as-
signed initial condition, is implicitly given by the polynomial
equation (12). The effect of the corrections in the parameter ε

will be discussed in the following section.
For illustrative purposes, we consider the case t2k = T2k =

0 for k > 3, i.e., Eq. (12) is a cubic equation for the order
parameter u. In this case, Eq. (12) provides the condition for
extremizing the free-energy functional F = ∫ β

0 f0(u)dx, for
some β > 0, of density

f0[u] = −xu + 1
2 (1 − 2T2)u2 − 4T4u3 − 15T6u4. (17)

In particular, local minima and maxima depend on the signa-
ture of the discriminant �(x, T2, T4, T6) of the cubic equation
(12). If � > 0 the free energy has two local minima and one
local maximum; if � < 0 the free energy presents one local
minimum only. The set in the space of parameters such that
� = 0 corresponds to the critical set where a phase transition
occurs. For example, in Fig. 1 we plot the set � = 0 in the
x-T6 plane for a given choice of T2 and T4 [note that in order to
ensure convergence of the integral (1), we have T6 < 0]. The
convex sector corresponds to the region where the equation
of state (12) admits three real solutions that correspond to the
stationary points of the free-energy density. Figure 2 shows
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T6 = − 0.0051
T6 = − 0.0067

x = 0.22

0.00 0.05 0.10 0.15 0.20 0.25 0.30

−0.008

−0.006

−0.004

−0.002

0.000

T 6

FIG. 1. Critical set � = 0 in the x-T6 plane. The convex sector
identifies the region � > 0 where Eq. (12) admits multiple roots for
the chosen values of parameters.

the free-energy density as a function of u for two different
values of T6, with fixed T2, T4, and x. For these values of the
parameters the discriminant of the cubic is positive and the
free energy has three extremal points. We see that for T6 =
−0.0051 the difference in the values of the free-energy density
at its local minima is particularly pronounced compared with
the case T6 = −0.0067.

The above scenario is compatible with the well-known fact
that the generic solution of the Hopf hierarchy (16) develops
singular behavior for finite value of the time variables T2k [7].
In the next section, we study these singularities in relation
to the occurrence of phase transitions. A phase transition is
associated with the occurrence of a dispersive shock induced
by dispersive corrections to the Hopf hierarchy. Equation (10)

T6 =− 0.0051

T6 = − 0.0067

−1 0 1 2 3 4
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

f 0

T

T

FIG. 2. Free-energy density for chosen fixed values of the pa-
rameters in the region � > 0. The chosen values of T6 and x
correspond, respectively, to the intersection of the line x = 0.22 and
the lines T6 = −0.0067 (dashed line) and T6 = −0.0051 (dotted line)
as shown in Fig. 1.

un
u(x)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.5

1.0

1.5

x

T2 = 0, T4 = 0.1, T6 = − 0.01, Ε = 0.01

un
u(x)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.5

1.0

1.5

2.0

(a)

(b)
x

T2 = 0, T4 = 0.1, T6 = − 0.008, Ε = 0.01

0.26 0.28 0.30 0.32 0.34 0.36 0.38

0.6

0.8

1.0

1.2

1.4

FIG. 3. Comparison of the order parameter evaluated using
Eqs. (9) and (12). (a) � < 0 for all x. (b) � = 0 at the point of
gradient catastrophe x = 5/18 � 0.28 of the solution u of Eq. (12).
The inset shows a close-up around x = 5/18. As T6 increases we
observe a steepening of the profile of the order parameter un and
the onset of oscillations in the vicinity of the point of gradient
catastrophe.

obtained as the continuum limit of (9) provides quasitrivial
deformations of the Hopf hierarchy and the behavior near the
singularity that are universally described by a solution of the
fourth-order analog of the Painlevé I equation [38–40].

IV. DISPERSIVE REGULARIZATION

In the thermodynamic limit, the evolution of the order
parameter in the space of coupling constants is governed
by Eq. (16) provided derivatives of u are bounded. In the
vicinity of the gradient catastrophe, dispersive corrections in
Eq. (13) induce fast oscillations responsible for a rich and
interesting phenomenon known as a dispersive shock wave
[8,10]. In this section we illustrate the general phenomenology
by considering the particular case T2k = t2k = 0 for all k > 3
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FIG. 4. Comparison of the order parameter evaluated by using
Eq. (9) and Eq. (12) for different values of T6. The choice of values
of the coupling constants coincides with the ones in Fig. 2; the dotted
vertical line marks the value x = 0.22 where the free-energy density
shows two local minima.

so that T2, T4, and T6 are the only nonzero coupling con-
stants. This choice allows for a simple but sufficiently general
analysis demonstrating that chaotic behaviors observed in
[37] correspond to a type of phase transition consisting of a
dispersive shock of the order parameter. The shock occurs as
a dispersive regularization mechanism of a particular solution
of the hierarchy (6) in the continuum limit.

In Fig. 3 we compare the order parameter u(x) obtained
as the solution of the recurrence equation (9) and the limit
equation (12). The values of T2, T4, and T6 are chosen in such
a way that the solution of the cubic equation (12) is single
valued. Figure 3(a) shows that the two solutions fully overlap
for sufficiently small ε, but, as shown in Fig. 3(b), a relevant
deviation is observed in the vicinity of the point of gradient
catastrophe of the solution to Eq. (12).

Figures 4(a) and 4(b) show a comparison between the cubic
solution (12) and the exact solution (9) for different values

0.0 0.2 0.4 0.6 0.8
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

x

u

T2 = 1, T4 = − 0.25, T6 = − 0.25

un
u(x)

0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

0.5

x

T2 = 1, T4 = − 0.25, T6 = − 0.25, Ε = 0.01

(a)

(b)

FIG. 5. (a) Multivalued solution of Eq. (12). (b) Comparison
of the order parameter evaluated by using Eq. (9) and Eq. (12).
The catastrophe occurs at x < 0 and generates a dispersive shock
propagating across the origin and for x > 0.

of T6 within the convex region shown in Fig. 1, where the
solution of (12) is multivalued. Both figures demonstrate the
onset of a dispersive shock wave. This behavior is intriguing
as, unlike classical statistical mechanical systems, e.g., mag-
netic and fluid models [41], the order parameter u(x) develops
oscillations in the form of a dispersive shock in conjunction
with the existence of additional stationary points for the free
energy such as unstable and metastable states. The emergence
of such oscillations is therefore explained as a result of higher-
order corrections in the string equation (10) of which the
cubic equation (12) is the leading-order approximation. Based
on the results in [38–40,42], the mechanism of formation of
such oscillations in the vicinity of the critical points of the
solution to Eq. (12) is universal and it is given by a particular
real analytic solution of the second member of the Painlevé I
hierarchy, known as the Painlevé I2 equation.
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(b)

FIG. 6. (a) Multivalued solution of Eq. (12). (b) Comparison of
the order parameter evaluated by using Eq. (9) and Eq. (12) for the
same values of the thermodynamic parameters. The dispersive shock
is generated by a gradient catastrophe at x > 0.

V. ANALYSIS OF SCENARIOS

As discussed above, a dispersive shock in the order param-
eter develops for values of the couplings such that the density
of free energy admits multiple stationary points. Hence, the
signature of the discriminant of the cubic in Eq. (12) deter-
mines a necessary condition for the occurrence of a dispersive
shock and therefore a phase transition. We now focus on the
different scenarios in regimes where the discriminant � is
positive and Eq. (12) admits three real and distinct solutions.
In particular, different cases need to be considered depending
on whether the coefficients of the cubic equation (12) are neg-
ative or positive. Necessarily, in order to ensure convergence
of the integral (1), it is T6 < 0. Hence, we have four distinct
cases, depending on the signs of the coefficient 1 − 2T2 and
−12T4 in Eq. (12).

0.0 0.2

(a)

(b)

0.4 0.6
−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

x
u

T2 = 0.25, T4 = − 1, T6 = − 0.5

un
u(x)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.00

0.05

0.10

0.15

x

T2 = 0.25, T4 = − 1, T6 = − 0.5, Ε = 0.01

FIG. 7. (a) Multivalued solution of Eq. (12). (b) Comparison of
the order parameter evaluated by using Eq. (9) with the nonnegative
branch of the solution of Eq. (12) shows a perfect overlap. In this
case, the presence of only one local minimum of the free-energy den-
sity, where the order parameter is positive, suppresses the formation
of a dispersive shock.

Scenario 1: T2 < 1/2 and T4 > 0. This choice corresponds
to the case analyzed in [22,37]; hence it allows for a direct
comparison. As by definition u(x) � 0, only non-negative
branches of u(x) correspond to admissible states of the sys-
tem. In fact, in both Figs. 4(a) and 4(b), the three branches of
the cubic equation which correspond to stationary points of
the free energy are positive.

Scenario 2: T2 > 1/2 and T4 < 0. In this case, as illustrated,
for example, in Fig. 5, the solution to Eq. (12), shown in
Fig. 5(a), is multivalued but one root associated with a local
minimum is negative and therefore does not correspond
to a state of the system. However, two concurrent states,
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although of different nature, one stable and one unstable,
underlie a dispersive shock, shown in Fig. 5(b). Notice that
for x > 0 the solution to Eq. (12) has one non-negative branch
only.

Nonetheless, u(x) develops a dispersive shock profile at
positive x, although this is originated by a catastrophe located
at x < 0. The solution to Eq. (12) is multivalued with two non-
negative branches for a small interval of negative values of x.

Scenario 3: T2 > 1/2 and T4 > 0. Similarly to case 2, u(x)
has only one positive solution for x > 0 [see Fig. 6(a)] and
as shown in Fig. 6(b), a dispersive shock arises in correspon-
dence to two non-negative roots for negative x.

Scenario 4: T2 < 1/2 and T4 < 0. The last scenario is given
by the case, illustrated in Fig. 7(a), where the cubic solution
is multivalued with one positive branch for all values of x
and therefore only one solution corresponds to a state that is
accessible by the system. Interestingly, as shown in Fig. 7(b),
the solution of the recurrence equation (9) overlaps with
the cubic solution and no oscillations occur. This suggests
that the dispersive regularization in the form of a dispersive
shock of the order parameter is related to the existence of
accessible (meta)stable or unstable states. This phenomenon is
rather unexpected as, from the point of view of the governing
hierarchy of dispersive partial differential equations of Eq.
(13), one would expect that for a generic initial condition
multivaluedness would be replaced by a dispersive shock
originated by the gradient catastrophe.

VI. CONCLUSION

We have analyzed the Hermitian matrix model with an
even degree of nonlinearity for which the order parameter of
the model is obtained as a particular solution of the Volterra

hierarchy. The critical properties of the model are obtained
in terms of a solution to the continuum limit of the Volterra
hierarchy. We have shown that the chaotic behavior observed
in previous literature can be described as a dispersive shock
propagating in the space of thermodynamic parameters. Also,
the profile of the order parameter, specifically the form of the
envelope, appears to be highly sensitive to the choice of the
parameters T2k . For instance, Figs. 4(a), 4(b), 5(b), and 6(b)
show the onset of dispersive shocks whose envelope displays
very distinctive features.

A further detailed study of this intriguing behavior will
involve the construction of the asymptotic genus expansion
of the solution (9) and the Whitham modulation theory for
solutions of related integrable hierarchy. We finally anticipate
that the rich phenomenology described in this paper reflects
the fact that the dispersive shock given by the solution (9)
is an intrinsic multidimensional object arising from the si-
multaneous solution of equations of the hierarchy (6) in the
continuum limit. In fact, the solution to the Volterra hierarchy
(6) satisfies the modified Kadomtsev-Petviashvili hierarchy
similarly to how the solution of the Toda hierarchy satisfies
the Kadomtsev-Petviashvili hierarchy. Hence, the description
of the dispersive shock solution entails the development of
the Whitham modulation theory of a (2 + 1)-dimensional
integrable dispersive equations. This further development will
be presented elsewhere.
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