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The transfer entropy and the transfer entropy rate are closely related concepts that measure information
exchange between two dynamical systems. These measures allow us to study linear and nonlinear causality
relations and can be estimated through the use of different methodologies. However, some of them assume a data
model and/or are computationally expensive. This article depicts a methodology to estimate the transfer entropy
rate between two systems through the Lempel-Ziv complexity. This methodology offers a set of advantages:
It estimates the transfer entropy rate from two single discrete series of measures, it is not computationally
expensive, and it does not assume any data model. The simulation results over three different unidirectional
coupled dynamical systems suggest that this methodology can be used to assess the direction and strength of the
information flow between systems. Moreover, it provides good estimations for short-length time series.
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I. INTRODUCTION

Transfer entropy (TE) and the transfer entropy rate (TER)
are closely related concepts that measure information trans-
port. The former was proposed by Schreiber [1] and indepen-
dently by Paluš [2]. The latter was described by Amblard et al.
[3,4]. These measures are able to quantify the strength and
direction of the coupling between simultaneously observed
systems [5]. Moreover, they have provoked a general interest
because they can be used to study complex interaction phe-
nomena found in several disciplines [6].

Lempel-Ziv complexity (LZC) is a classical measure that
relates the concepts of complexity (in the Kolmogorov-
Chaitin sense) and entropy rate [7,8]. For ergodic dynamical
processes, the amount of new information gained per unit of
time (entropy rate) can be estimated by measuring the capacity
of this source to generate new patterns (LZC). Because of the
simplicity of the LZC method, the entropy rate can be esti-
mated from a single discrete sequence of measurements with
a low computational cost [9]. This idea has been successfully
applied to measure the entropy rate of neurological signals
[10]. However, the LZC has not been used to estimate either
the TE or the TER.

Recently, several algorithms devoted to estimate the trans-
fer entropy have been reported. In Refs. [11,12] a k-nearest-
neighbor (kNN) methodology is used to estimate joint Shan-
non entropies in different reconstructed spaces, which pro-
vides good estimations of transfer entropy (TE) even though
it is computational expensive. Staniek and Lehnertz [13]

*Corresponding author: jrestrepo@ingenieria.uner.edu.ar; a pre-
print version of this article can be accessed at: http://export.arxiv.
org/pdf/1903.07720.

proposed a faster algorithm founded on the concept of per-
mutation entropy [14]. Nevertheless, because it is built on
the relative frequencies of permutation patterns, the algorithm
is highly dependent of the data length and poses a problem
when there is a small amount of data taken from a high-
dimensional system. As an alternative, we propose to exploit
the advantages of the LZC methodology to calculate the TER
between two ergodic dynamical systems.

In this article, we aim to relate the well-established con-
cepts of Lempel-Ziv complexity and transfer entropy rate. To
be precise, we propose a novel methodology that exploits the
algorithmic advantages of the former to estimate the latter.
This approach reconstructs the joint dynamics of the systems
using a delay-embedding procedure and computes the TER
through the LZC of sequences build in that reconstructed
space. This measure is able to quantify the direction of the
information flow between two systems from short-length time
series, it is not computationally expensive and it does not
assume any data model.

The remainder of this paper is organized as follows.
Section II begins with a brief review of the concepts of
TE, TER, and LZC. In Sec. III, we described the proposed
methodology to estimate the transfer entropy rate through the
Lempel-Ziv complexity. In Sec. IV, we present and analyze
the results of the simulations carried out to evaluate the
performance of our approach. Finally, in Secs. V and VI the
discussion and conclusions are described.

II. METHODOLOGY

In this section, we will briefly review some theoretical
concepts related to the LZC, TE, and TER. Moreover, we will
introduce the notation used along the document.
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Since our intent is to investigate a possible causality con-
nection between two dynamical systems, we need to analyze
the signals that they produce. We will assume the existence
of ergodic probability measures that describe the density
of trajectories in phase space and which can be treated as
probability densities. This allows us to analyze the systems’
dynamics through the construction of random processes from
their signals.

Consider a system X that produces a time series
xt = x1 · · · xT . We can compose samples of an m-dimensional
time-embedded process {X (m)} = {X1, . . . , Xm} by sampling
xt with a frequency of 1/τ [15,16]:

x(m)
n = [xn, xn+τ , . . . , xn+(m−1)τ ],

where n = 1, . . . , T − (m − 1)τ . The process {X (m)} is char-
acterized by the joint probability distribution:

p
(
x(m)

n

) = P
{
(X1, . . . , Xm) = x(m)

n

}
.

We can define the m-order entropy rate as [16]:

h(X (m) ) = H (X (m+1)) − H (X (m) ),

where H (X (m) ) is the entropy of the joint distribution p(x(m)
n ):

H (X (m) ) = H (X1, . . . , Xm),

= −
∑

x1

· · ·
∑
xm

p
(
x(m)

n

)
ln p

(
x(m)

n

)
.

The m-order entropy rate measures the variation of the
total information in the time-embedded process when the
embedding dimension m is increased by 1. Based on this
definition, we can calculate the entropy rate of the system X
as follows [7,17]:

h(X ) = lim
m→∞h(X (m) ), (1)

= lim
m→∞

H (X (m) )

m
. (2)

Equations (1) and (2) relate two different interpretations of
the entropy rate. The first equation shows that h(X ) is a mea-
sure of our uncertainty about the present state of the system
under the assumption that its entire past has been observed.
The second one states that the entropy rate is the average
information gained by observing the system. In this respect,
systems with a higher entropy rate generate information at a
superior scale which makes their dynamics more complex and
difficult to predict.

A. Lempel-Ziv complexity

The concepts of entropy rate and Lempel-Ziv complexity
are closely related, because systems with higher entropy rate
tend to generate more complex sequences (time series). In
that context, the entropy rate of an ergodic system can be
estimated by measuring its capacity to generate new patterns
[9]. Assessing the entropy rate of a system using the Lempel-
Ziv algorithm carries a set of practical advantages: It can
be estimated from a single discrete series of measures, the
algorithm is fast and it does not assume any model for the
data.

Suppose a stationary, discrete stochastic process {Xt } that
generates a sequence xt of length T , where for a fixed t , the

random variable Xt can take values from an alphabet �x of
α symbols. To estimate the complexity of this process, we
will use the Lempel and Ziv scheme proposed in 1976 [18].
In this approach, a sequence xt is parsed into a number Cxt

of words by considering any subsequence that has not yet
been encountered as a new word. For example, the sequence
100110111001010001011 is parsed in seven words: 1 · 0 · 01 ·
101 · 1100 · 1010 · 001011. As a result, the entropy rate can be
computed as [8]:

h(X ) = lim
T →∞

Cxt

[
ln α + ln Cxt

]
T

. (3)

By extending the alphabet size, this approach can be easily
generalized to multivariate discrete processes [19]. Consider
an m-dimensional stationary process {X (m)} that generates the
sequences xt,i = x1,i, . . . , xT,i with i = 1, . . . , m, each one of
them from an alphabet of α symbols. Let zt = z1, . . . , zT to be
a new sequence defined over an extended alphabet of size αm

[19]:

zt =
m∑

i=1

αi−1xt,i

and then the joint Lempel-Ziv complexity Cxt,i = Czt and the
m-order entropy rate can be calculated as [8,19]:

h[X (m)] = h(Z ),

= lim
T →∞

Czt

[
ln (αm) + ln Czt

]
T

.

The same approach can be extended for continuous pro-
cesses using a quantization scheme. The most popular is the
binarization of the time series using its median value. There
exists other approaches like the one proposed in Ref. [20]
that uses permutation patterns to produce a symbolic sequence
from the data. In this article we use an α quantile scheme,
where the symbolic sequence {xt } is built by assigning to each
sample of the time series a number from 0 to α − 1 depending
on which α quantile it belongs. For example, if α = 2, then the
time series will be binarized according to its median value.
This ensures that all symbols in the alphabet have the same
outcome probability which maximizes the Shannon entropy
of the source.

B. Transfer entropy and transfer entropy rate

The transfer entropy is able to assess the amount of infor-
mation transferred from process Y = {Yt } (driver-source) to
process X = {Xt } (driven-target). It is defined as [1,5,6,21]:

T(m)
Y →X = H

(
X (m)

t ,Y (m)
t

) − H
(
Xt , X (m)

t ,Y (m)
t

)
+ H

(
Xt , X (m)

t

) − H
(
X (m)

t

)
. (4)

where X (m)
t = (Xt−mτ , . . . , Xt−τ ) and Y (m)

t =
(Yt−mτ , . . . ,Yt−τ ). The parameter m is commonly called
the history length or embedding dimension and τ is the
lag or embedding lag [6]. T(m)

Y →X quantifies the amount of
information contained in m-past states of process Y (Y (m)

t )
about the current state of the process X (Xt ) that is not already
explained by m-past states of process X (X (m)

t ). This measure
is asymmetric, T(m)

Y →X �= T(m)
X→Y , and increases along with the
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coupling level, allowing us to determine the direction and
strength of the information flow [5]. Despite it is the most
widely used measure, its estimation is sensitive to faulty
observations of the states of the driving system, which can
lead to spurious causality detection [22].

Amblard and Michel suggest that the TE can be considered
as an information flow rate under stationarity conditions [3].
This idea leads to the following definition of transfer entropy
rate [3,4,23,24]:

t(m)
Y →X ≡ h(X ) − h(X |Y ),

= h
(
Xt , X (m)

t

) − h
(
Y (m)

t , X (m)
t , Xt

)
, (5)

where h(X ) is the entropy rate of X and h(X |Y ) is the
conditional entropy rate [23]:

h(X |Y ) ≡ lim
m→∞H

(
Xt

∣∣X (m)
t ,Y (m)

t

)
,

= lim
m→∞

H
(
Y (m)

t , X (m)
t , Xt

)
m

,

= h
(
Y (m)

t , X (m)
t , Xt

)
.

The TER lies between zero and the entropy rate of the target
X , being equal to zero if X and Y are independent [23].

If the processes X and Y had no relationship, then t(m)
Y →X

should be equal to zero. However, in practical applications,
the estimation of t(m)

Y →X could present a bias due to the finite
length of the data. Bossomaier et al. proposed to correct this
bias by empirically finding the distribution of the surrogate
measurement t̂

(m)
Ŷ →X . The surrogate data must be generated

in such a way that the temporal correlation between the
source and the target processes is destroyed but the statistical
properties and the temporal structure of both processes are
preserved [6,24]. Note that only the second term in Eq. (5)
depends on the source, so the surrogate transfer entropy from
Y to X is defined as:

t̂(m)
Ŷ →X

= −〈
hk

(
Ŷ (m)

t , X (m)
t , Xt

)〉
K , (6)

where Ŷ (m)
t is obtained by redrawing with replacement sam-

ples from Y (m)
t , and 〈·〉K is the mean value over the k =

1, 2, . . . , K surrogate realizations.
In order to assess the directionality of the information flow,

we need to analyze the global TER estimator:

T = t(m)
Y →X − t(m)

X→Y − (
t̂(m)
Ŷ →X

− t̂(m)
X̂→Y

)
. (7)

A positive value of T suggests that the information flow goes
from system Y to system X , whereas a negative value suggests
the contrary. Finally, if T = 0, then there is no information
flow between systems.

III. TRANSFER ENTROPY RATE BASED
ON LEMPEL-ZIV COMPLEXITY

In this section, we formalize our approach to estimate the
transfer entropy rate using the Lempel-Ziv complexity. The
intention is to estimate the two joint entropy rates on the
right-hand side of Eq. (5) by means of their associated joint
Lempel-Ziv complexities. To this end, we propose a method-
ology based on the construction of delayed embedding vectors
from quantized time series. To facilitate the description of
the method (see Algorithm 1), we will assume binarized time

Algorithm 1. LeZTER.

MATLAB code:
https://bitbucket.org/jrinckoar/tentropyrate-lzc/src/master/

1: Obtain the symbolic sequences xt and yt by assigning to each
sample of the time series a number from 0 to α − 1 depending
on which α quantile it belongs.

2: Set xt as target-driven series and yt as source-driver series.

3: Set the matrix of embedding vectors according to the given
value of m and τ [Eq. (8)]:

V = [
y(m)

n , x(m)
n , xn

]
,

and obtain the sequence zn (see Fig. 1).
4: Calculate the LZC of zn and the entropy rate h(Y (m)

t , X (m)
t , Xt )

using Eq. (9).
5: Calculate the entropy rate h(X (m)

t , Xt ). Obtain the
corresponding zn sequence considering the last m + 1 columns

of V .
6: Calculate the transfer entropy rate t(m)

Y →X using Eq. (5).
7: Set a number K of surrogate data sets. For k = 1, 2, . . . , K

build the matrices:

Vk = [
ŷ(m)

n , x(m)
n , xn

]
k
.

Calculate hk (Ŷ (m)
t , X (m)

t , Xt ) using Eq. (9) and t̂(m)
Ŷ →X

using
Eq. (6).

8: Set yt as target series, xt as source series and repeat steps 3–7
to calculate t(m)

X→Y and t̂(m)
X̂→Y

.
9: Obtain the global estimation of transfer entropy rate T using

Eq. (7).

series, although this methodology can be extended to higher
quantization levels.

Consider two binarized time series (α = 2) from a cou-
pled system: xt = x1 · · · xT as the target and yt = y1 · · · yT

as the source. Set the parameter m (embedding dimension)
and τ (embedding lag) and create a collection of embedding
vectors {vn} as samples of a multidimensional process V =
(Y (m)

t , X (m)
t , Xt ) (see Fig. 1):

{vn} = {(
y(m)

n , x(m)
n , xn

)}
,

where:

n = 1, 2, . . . , N, with N = T − mτ,

y(m)
n = [yn, yn+τ , . . . , yn+(m−1)τ ],

x(m)
n = [xn, xn+τ , . . . , xn+(m−1)τ ],

xn = xn+mτ . (8)

By construction {vn} is a collection of (2m + 1)-uples,
so we can define the sequence zn = ∑2m+1

i=1 2i−1vn,i, over an
extended alphabet of size 22m+1. Then the joint entropy rate
h(Y (m)

t , X (m)
t , Xt ) can be calculated as [19]:

h
(
Y (m)

t , X (m)
t , Xt

) = h(V ),

= h(Z ),

= lim
N→∞

Czn

[
ln(22m+1) + ln Czn

]
N

, (9)
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FIG. 1. Diagram to obtain the sequence zn to calculate the entropy rate h(Y (m)
t , X (m)

t , Xt ). The matrix V is obtained by embedding (m = 3
and τ = 5) the binarized version of xt and yt . The median values of both time series are shown as horizontal dashed lines.

where Czn is the LZC of the sequence zn. The same proce-
dure can be followed to estimate the first term of Eq. (5),
but considering the process V = (X (m)

t , Xt ), the collection of
embedding vectors {vn} = {(x(m)

n , xn)}, and the sequence zn =∑m+1
i=1 2i−1vn,i.
The surrogate measurement hk (Ŷ (m)

t , X (m)
t , Xt ) can be ob-

tained by taking the collection of embedding vectors:

{v̂n}k = {(
ŷ(m)

n , x(m)
n , xn

)}
k,

where the samples {v̂n}k are obtained by shuffling (or redraw-
ing with replacement) y(m)

n amongst the set of (y(m)
n , x(m)

n , xn)
tuples.

The procedure to estimate the global transfer entropy rate
is summarized in the following algorithm:

IV. RESULTS

We have conducted three simulations using different uni-
directional coupled systems: the Henon-Henon, the Lorenz
driven by Rössler, and the Lorenz-Lorenz. They were chosen
because of their relevance and frequent use in the literature.

The coupled Henon-Henon system is described by the
following equation [2,25]:

y1[n + 1] = 1.4 − y2
1[n] + by2[n]

y2[n + 1] = y1[n]

x1[n + 1] = 1.4 − (εy1[n] + (1 − ε)x1[n])x1[n] + bx2[n]

x2[n + 1] = x1[n]

where b = 0.3. For the simulation, the coupling parameter ε

was varied from zero to 1 in steps of 0.1. For each ε, 200 real-
izations were computed using random initial conditions. The
transfer entropy rate was calculated with m = {2, 3, 4, 5, 6, 7}
and τ = {1, 3, 5, 7, 10}. This procedure was repeated for data
lengths N = {500, 3000, 5000}.

The results are shown in Fig. 2. Each plot presents the
global TER (T ), calculated with m = 4, α = 4, and τ = 1,
as a function of the coupling parameter ε. It can be observed
in Fig. 2(a) (N = 500) that the median value of estimator T is
close to zero for ε = 0. This is an expected result since there
is no information flow between the two systems. Besides, the
median value of T increases along with the coupling param-
eter until ε = 0.6. The positivity of T points out the correct
direction of coupling and its increasing magnitude indicates
a rising strength of the coupling. In contrast, for ε � 0.7 the
median value of T is zero. For these values of the coupling
parameter, the Henon-Henon system is synchronized in such
a way that both systems are statistically indistinguishable. In
this kind of situation, T is unable indicate any information
flow. This behavior has been already observed on other trans-
fer entropy estimators [2,21,25]. Regarding the variance and
bias of the estimations, it can be seen in Figs. 2(b) and 2(c)
(N = 3000 and N = 5000, respectively) that it decreases as
long as the data length is increased. This behavior is confirmed
by the results shown in Fig. 3, where we show the estimation
of T versus data length. Note that the values of T approaches
asymptotically toward ≈0.48 as N increases, which means
that the bias, relative to our measure, is reduced when the data
length is enlarged.

For the second simulation we have chosen the Lorenz
driven by Rössler system (Rössler-Lorenz) [13,21,25]:

ẏ1 = −6(y2 + y3)

ẏ2 = 6(y1 + 0.2y2)

ẏ3 = 6[0.2 + y3(y1 − 5.7)]

ẋ1 = 10(−x1 + x2)

ẋ2 = 28x1 − x2 − x1x3 + εyβ

2

ẋ3 = x1x2 − 8
3 x3
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FIG. 2. Henon-Henon coupled system. Boxplot of global transfer entropy rate as a function of the coupling parameter ε. T was calculated
with m = 4, α = 4, and τ = 1 for different data lengths: (a) N = 500, (b) N = 3000, and (c) N = 5000.

where β = 2 and ε ∈ {0, 0.25, . . . , 5}. We have computed 200
realizations for the values of the coupling parameter, each of
them starting from a different initial condition. The numerical
integration was performed using the ode45 function of Matlab
with step size �t = 0.0217 [21]. For each realization, the first
10 000 data points were discarded. Then T was calculated for
the combination of all parameters: m = {2, 3, 4, 5, 6, 7} and
τ = {1, 3, 5, 7, 10}. We applied the above procedure varying
the data length N = {3000, 5000, 10 000}.

In Fig. 4, the behavior of T as a function of the coupling
parameter for m = 6, α = 6, and τ = 10 is shown. For this
coupled system, the synchronization threshold is ε ≈ 2.1
[25,26]. In Fig. 4(a) (N = 3000) it can be observed that
the median value of T is always positive, even for ε = 0.
This means that the T estimator identifies false coupling
for ε = 0. This phenomenon has also been observed in the
symbolic transfer entropy [13]. However, the T estimator
detects the correct coupling direction. Figures 4(b) and 4(c)
display a similar behavior, but they reveal that the variance of
T decreases as long as the data length is increased.

There already exist two similar methodologies to our ap-
proach that estimate the transfer entropy rate. The first one is
the symbolic transfer entropy [13], which is founded in the
permutation entropy [14]. The second one is based on the
kNN estimation method proposed by Kraskov et al. [11,12].
In order to compare our methodology with the ones mentioned
above, we have implemented both algorithms and calculated
the global TER and the computation time for different pa-
rameters values. The simulation was performed in a cluster
of 10 nodes, each of which has two Intel Xeon E5-2670 v3

0.01 0.1 1 10
0

0.5

1

1.5

2

2.5

3

FIG. 3. Henon-Henon coupled system. Boxplot of global transfer
entropy rate as a function of the data length N for m = 4, α = 4,
τ = 1, and ε = 0.6.

2.5-GHz processors of 12 cores. The chosen system is the
coupled Lorenz-Lorenz [13,25]:

ẏ1 = 10(−y1 + y2)

ẏ2 = ρ1y1 − y2 − y1y3

ẏ3 = y1y2 − 8
3 y3

ẋ1 = 10(−x1 + x2) + ε(y1 − x1)

ẋ2 = ρ2x1 − x2 − x1x3

ẋ3 = x1x2 − 8
3 x3

where ρ1 = 28.5, ρ2 = 27.5, ε ∈ {0, . . . , 15}, and
�t = 0.03 [13].

In Fig. 5 the estimator T is shown as a function of ε

for the Lorenz-Lorenz coupled system and the three different
methods: the LZC-based method (first column), the sym-
bolic transfer entropy (second column), and the kNN-based
approach (third column). The data in the plots have been
normalized to the range [−1, 1] for comparative purposes.

Regarding LZC-based approach, in Fig. 5(d) (N = 1000)
it can be observed that for uncoupled systems (ε = 0) the
median value of T ≈ 0. As the coupling parameter increases,
T is positive and grows until the synchronization threshold is
reached (ε ≈ 8 [25]). From this point, the value of T goes
toward zero despite the systems are coupled. Moreover, in
Fig. 5(g) (N = 10 000) it can be observed that the variance of
T decreases as the number of data points is increased, making
easier to distinguish the direction of the information flow.

It is important to mention that our methodology produces
similar results to the symbolic transfer entropy and the kNN
approach, as it can be observed in Figs. 5(d), 5(e) and 5(f)
for N = 1000 and Figs. 5(g), 5(h), and 5(i) for N = 10 000.
Nevertheless, for N = 200 neither the symbolic transfer en-
tropy nor the kNN method can point out the direction of
the information flow [Figs. 5(b) and 5(c)]. In contrast, the
Lempel-Ziv complexity approach shows the correct path of
the information flow despite the variance of the estimation
Fig. 5(a).

Figures 6(a), 6(b) and 6(c) show a boxplot of the ex-
ecution time of a single realization (N = 10 000), for the
three methods, as a function of the embedding dimension.
Observe that the computational cost of each method increases
with m in different ways. The increasing is linear for our
approach, since the m parameter is linked to the alphabet
size in the Lempel-Ziv algorithm. Comparing with the kNN
approach, both methods present the same linear dependence
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FIG. 4. Rössler-Lorenz coupled system. Boxplot of global transfer entropy rate as a function of the coupling parameter ε. T was calculated
with m = 6, α = 6, and τ = 10 for different data lengths: (a) N = 3000, (b) N = 5000, and (c) N = 10 000.

in the computation time, the scales are very different, being
the computation time of the kNN method much longer than
ours.

Regarding the symbolic transfer entropy, the results shown
in Fig. 6(b) suggest that it is the fastest method for m < 6.
For m = 6, its computation time is similar to the one of our
algorithm. Moreover, for the symbolic transfer entropy, the

embedding dimension is directly related with the size of the
alphabet (factorial of m) used to quantize the time series. For
m = 7, the size of the alphabet is 5040 (number of possible
permutation patterns), this means that to estimate the joint
probability p(Xt , X (m)

t ,Y (m)
t ) we need a three-dimensional ma-

trix of size 50403 that requires ≈238.5 GB of memory (using
int16 precision) and this mount of memory can not be handled
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FIG. 5. Comparison of transfer entropy rate estimation with three different methods. Lempel-Ziv complexity-based method (a) N = 200,
(d) N = 1000, and (g) N = 10 000. Symbolic transfer entropy (b) N = 200, (e) N = 1000, and (f) N = 10 000. The kNN method (c) N = 200,
(f) N = 1000, and (i) N = 10 000. Boxplot of the T as a function of the coupling parameter, calculated for the coupled Lorenz system with
m = 6, τ = 5, and α = 4.

052117-6



TRANSFER ENTROPY RATE THROUGH LEMPEL-ZIV … PHYSICAL REVIEW E 101, 052117 (2020)

2 3 4 5 6
0

1

2

3

4

(a)

2 3 4 5 6
0

2

4

6

8

2 3 4 5

0.02
0.04
0.06
0.08

(b)

2 3 4 5 6
0

20

40

60

80

(c)

FIG. 6. Computation time as a function of the embedding dimension (m) for different transfer entropy rate estimation methods: (a) Lempel-
Ziv complexity-based method, (b) symbolic transfer entropy and (c) kNN method. The simulation was made using the coupled Lorenz system
with parameters N = 10000, τ = 5, α = 4, ε = 3, and K = 30.

by a personal computer. This suggests that our methodology
presents an additional advantage over the symbolic transfer
entropy when the analysis of high-dimensional systems is
needed.

V. DISCUSSION

One of the most widely used estimator of transfer en-
tropy is the one based on the Kraskov-Stögbauer-Grassberger
(KSG) estimator [12], which was implemented in the open
source toolbox TRENTOOL [11]. This kNN methodology
is derived by expressing volumes of neighborhoods of data
points in terms of distances from each data point to other data
points in the neighborhood. Despite it provides an unbiased
estimation of transfer entropy, this approach carries two disad-
vantages. First, it depends on a good reconstruction of the ge-
ometry of the dynamic’s manifold [27]. When the sample size
is limited the local volume elements might not be descriptive
of the geometry of the underlying probability measure, result-
ing in a biased estimation [27]. Second it is computationally
expensive compared with the symbolic transfer entropy or our
Lempel-Ziv-based approach. The symbolic transfer entropy
algorithm is based on the estimation of relative frequencies of
permutation patterns [13]. The main drawback of all methods
based on counting appearance of patterns is that for short-
length series the frequency of appearance of those patters may
not be representative of the underlying probability of being
observed. For short-length sequences just a few patterns are
observed and the reconstructed pdf will be biased to a uniform
distribution [28]. This situation is worsened when the alphabet
length is large and for that reason the parameter m is often
chosen to be small. However, a small m value leads to a poor
quantization of the series and also to a poor embedding. Other
observed issue is that this methodology requires a big amount
of memory when the embedding parameter is large (m > 6),
deteriorating its computational efficiency. In Ref. [29] Lesne
et al. assert that the definition of Shannon entropy rate requires
the knowledge of the invariant measure of the dynamics. Even
under the assumption of ergodicity, the reconstruction of the
probability distribution of the source from the observation of
a typical single sequence is not warranted. On the contrary,
Lempel-Ziv theorems, for stationary and ergodic sources,
ensure two things. First, the Lempel-Ziv complexity coincides
with the Shannon entropy rate up to a constant factor. Second,

almost all symbolic sequences have the same compressibility
features, this means that the estimation of the Shannon en-
tropy rate can be performed with any typical sequence and the
result coincides (in a statistical sense) with the average [30].
Moreover, in the same article [29] they compare four entropy
rate estimators (two based on counting relative frequencies
of patterns and the other two based on the Lempel-Ziv com-
plexity) for short-length sequences. The results suggest that
the Lempel-Ziv approach based on the 76 algorithm [18]
gives better estimations than the other ones. As it was shown
in Fig. 5, all the approaches give similar results as long as
N > 1000. For smaller data lengths we have observed that the
Lempel-Ziv complexity-based approach gives better results.
This strengthens the hypothesis that our methodology can be
used as an information transfer measure. Moreover, it presents
an advantage over the other two methods when short-length
series are available [compare Figs. 5(a), 5(b) and 5(c)].

The results obtained for the greatest embedding dimension
(m = 6) and the longest data length (N = 10 000) show that
our approach is able to estimate transfer entropy rate as well
as the other two methods but in less than 4 s. This lead us
to conclude that the proposed methodology can detect the
direction and strength of the information flow between two
coupled ergodic systems in a time-effective period for online
applications.

As mentioned, our methodology is based on the construc-
tion of embedding spaces from time series. In this direction,
our algorithm has two parameters: the embedding dimension
(m) and the embedding lag (τ ). Like other embedding-based
algorithms, we have found that the best results are achieved
when a good reconstruction of the state space is guaranteed
[31]. In other words, when m is bigger than the minimum
embedding dimension of the system and τ is large enough so
that the various coordinates of the embedding vectors contain
as much new information as possible, without being entirely
independent. For this reason a good choice of embedding
dimension is m = mx + my + 1, where mx and my are esti-
mations of the minimum embedding dimension of X and Y ,
respectively.1 In addition, we propose to use an embedding

1The minimum embedding dimension for the Henon-Henon system
is mx + my = 4 and for the Lorenz-Lorenz and Rössler-Lorenz is
mx + my = 6.
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lag value τ = max(τx, τy), where τx and τy are the lags that
minimize the mutual information function between xt and
xt+τ , and between yt and yt+τ , respectively. Finally, some
authors suggest that the data length, the dictionary size and the
embedding dimension should be related as N � αm+1 [2,32].

VI. CONCLUSIONS

In this article we have presented a methodology to cal-
culate the transfer entropy rate between two systems-based
on the Lempel-Ziv’s complexity. We were able to propose a
computationally fast methodology to estimate the information
flow between two systems because of the properties of the
Lempel-Ziv algorithm. This methodology has been assessed
using three unidirectional coupled systems: the Henon-Henon
system, the Rössler-Lorenz system, and the Lorenz-Lorenz

system. The results reveal two advantages compared to the
standard approaches: First, it estimates better the transfer
entropy rate for short data lengths. Second, its computation
is faster than the other methods for high dimensional embed-
dings (m > 5) and large data lengths. In future studies, we
will address the implementation of our methodology using
different embedding parameters for the source and the target
as well as a nonuniform embedding scheme.
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