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Cassie-Wenzel transition of a binary liquid mixture on a nanosculptured surface
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The Cassie-Wenzel transition of a symmetric binary liquid mixture in contact with a nano-corrugated wall
is studied. The corrugation consists of a periodic array of nanopits with square cross sections. The substrate
potential is the sum over Lennard-Jones interactions, describing the pairwise interaction between the wall
particles C and the fluid particles. The liquid is composed of two species of particles, A and B, which have
the same size and equal A-A and B-B interactions. The liquid particles interact between each other also via A-B
Lennard-Jones potentials. We have employed classical density functional theory to determine the equilibrium
structure of binary liquid mixtures in contact with the nano-corrugated surface. Liquid intrusion into the pits
is studied as a function of various system parameters such as the composition of the liquid, the strengths
of various interparticle interactions, and the geometric parameters of the pits. The binary liquid mixture is
taken to be at its mixed-liquid-vapor coexistence. For various sets of parameters the results obtained for the
Cassie-Wenzel transition, as well as for the metastability of the two corresponding thermodynamic states, are
compared with macroscopic predictions in order to check the range of validity of the macroscopic theories
for systems exposed to nanoscopic confinements. Distinct from the macroscopic theory, it is found that the
Cassie-Wenzel transition cannot be predicted based on the knowledge of a single parameter, such as the contact
angle within the macroscopic theory.
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I. INTRODUCTION

Wetting of solid surfaces by liquids is ubiquitous in nature
[1–3] as well as in various technological applications [4–9].
It is well established that topography, both geometrical and
chemical, plays an important role in controlling the wettability
of a surface [10,11]. With the advent of advanced fabrication
techniques, it is possible to tailor the topography of a surface
down to the nanoscale [12,13]. One observes that changing
the topography, even only on the nanoscale, results in large
changes of macroscopic observables, such as the contact
angle of a sessile drop. This has encouraged the fabrication
of patterned surfaces in order to control wetting. Typical
configurations, which liquids exhibit on textured surfaces, are
either the Cassie-Baxter (CB) [14] or the Wenzel (W) state
[15]. In the CB state (for short also named the Cassie state)
liquid remains suspended above the substrate surface, whereas
in the W state the liquid intrudes the surface cavities, i.e., pits.

The requirement of surface wettability, however, varies
from one application to the other. Several manufacturing,
biological, and agrochemical applications require the liq-
uid to spread rapidly on the surface [16–19], whereas poor
wettability is required in designing liquid-repellent surfaces
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[20–22]. Modifying the surface properties is the most ex-
ploited method to achieve the desired wettability for a given
system. In addition to changing the surface texture, adding a
surfactant to the liquid in order to modify its wetting behavior
provides additional flexibility. Surfactants are widely used to
facilitate wetting of surfaces in many industrial applications
such as agrochemical, textile, chemical, and pharmaceutical
industries [23–26]. In certain circumstances, it is not easy to
change the surface properties, so blending the liquid turns
out to be a more feasible option to control the wettability.
Enhancing pesticide utilization on plant leaves is such an
example, in which surfactants are added to the pesticides in
order to enhance their spreading on leaves [16,19,27–29].

Although wetting of solid surfaces by a liquid mixture is
encountered frequently in many industrial applications and
biological systems, most of the actual studies concerning
wetting focus on one-component liquids. There have been
very few experimental studies regarding the wetting of a
solid surface by liquid mixtures [16,23,30,31] as well as
only a very few theoretical investigations [32–38] thereof.
A microscopic understanding of the Cassie-Wenzel transition
for liquid mixtures is crucial for many application purposes.
Here we present a study of the Cassie-Wenzel transition of
a binary liquid mixture at a corrugated surface. The binary
liquid mixture is composed of two types of particles labeled as
A and B particles. For simplicity the studies here are limited
to symmetric liquids, i.e., the radii of the A and B particles
are the same, as well as the strengths of the A-A and B-B
interactions, whereas the A-B interaction is varied. The wall
is composed of C particles and modeled as a periodically
repeated array of nanopits with square cross sections of width
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w. The depth of the pit is denoted as D, and its side walls
are vertical. Without loss of generality, we consider the case
that the attractive B-C interaction is stronger than the A-C
interaction. Here we use classical density functional theory
(DFT) as a tool to gain a microscopic understanding of the
wetting transition. In order to reduce the number of indepen-
dent thermodynamic variables, the following discussions are
limited to thermodynamic conditions for which the liquid and
vapor phases coexist in the bulk.

Young’s contact angle θY characterizes macroscopically
the wetting behavior of a liquid on a planar and homogeneous
solid surface:

cos θY = σsv − σsl

σlv
, (1)

where σsv , σsl , and σlv are the interfacial tensions of the solid-
vapor, solid-liquid, and liquid-vapor interface, respectively.
According to macroscopic theory, a liquid, which is at bulk
liquid-vapor coexistence and is brought in contact with a
structured wall, as described above consisting of square pits
with vertical sides, remains in the Cassie state if θY > 90◦,
whereas for θY < 90◦ the liquid intrudes the pits. Within
this description and for the geometry considered, the Cassie-
Wenzel transition occurs at the threshold contact angle θi =
90◦ for intrusion, irrespective of which of the various system
parameters has been tuned in order to obtain a contact angle
of 90◦. The condition for intrusion at liquid-vapor coexistence
can be regarded as a special case of the Kelvin-Laplace
law describing intrusion also at pressures off the coexistence
pressure. For a one-component fluid, deviations from this law
for nanometer-sized grooves were studied by using classi-
cal DFT [39]. For the binary fluid studied here, we limit
our computations to liquid-vapor coexistence at which the
macroscopic prediction is particularly simple and transparent.
Already under these special conditions the intrusion scenario
for binary liquids is expected to be much richer than for one-
component liquids. For a one-component liquid one might
lower Young’s contact angle θY by increasing the wall-fluid
interaction strength until intrusion is observed at θi, which
could deviate from the macroscopic prediction. For a binary
liquid one has various options for choosing the protocol used
in order to tune θY until the liquid intrudes the pits. One might
expect that there will be not just one value θi for a given pit
geometry but that θi depends on those fluid properties and
fluid-wall interaction parameters which are not used in the
tuning protocol. Of course these extra dependences can be
there only if the macroscopic prediction fails.

Apart from the Cassie to Wenzel transition (or intrusion
transition), information about the metastability of the Cassie
and Wenzel states is of high interest as well. The metastability
of a liquid on a given surface could be exploited for drug
delivery and for designing superhydrophobic or omniphobic
surfaces [10,40]. If, for given thermodynamic conditions,
the Cassie state is not stable on the surface, but remains
metastable for a desired duration, de facto superhydrophobic-
ity is achieved. This would diminish the challenges to design
superhydrophobic surfaces. The macroscopic equation for the
coexistence of the Cassie and the Wenzel state on a textured
surface yields, at bulk liquid-vapor coexistence, a coexistence
contact angle θ co

Y at which both states have the same grand

canonical potential such that the Wenzel state is stable for
θY < θ co

Y and the Cassie state is stable for θY > θ co
Y . This

coexistence contact angle depends only on the geometrical pa-
rameters of the pits, and not on details of the liquid properties.
Within a macroscopic description, the relative stability of the
Cassie and the Wenzel state is controlled entirely by a single
macroscopic parameter, i.e., the contact angle θY . Although
the same θY can be achieved with a multitude of combinations
of system parameters, on a macroscopic level all these details
are irrelevant concerning the issue of the relative stability of
the Cassie and the Wenzel state. For a surface endowed with
pits of square cross section of width w and depth D as well
as with vertical side walls, at liquid-vapor coexistence θ co

Y can
be derived from macroscopic theory as outlined in Sec. IV
[see Eq. (17); a similar expression for grooves was given in
Ref. [8]]:

cos θ co
Y = − w

4D + w
. (2)

For deep pits, i.e., D/w → ∞, one has θ co
Y = 90◦. How-

ever, for shallow pits θ co
Y may attain values considerably

larger than 90◦. For contact angles θY < θ co
Y , the Wenzel state

is stable. However, if θ co
Y > 90◦, macroscopic theory tells

that within the range 90◦ � θY < θ co
Y the Cassie state is still

metastable, because the liquid can intrude the pits only if θY <

90◦. For θY < 90◦, the Cassie state is unstable. For θY > θ co
Y

the Cassie state is stable and the Wenzel state is metastable up
to a sufficiently large contact angle (depending on the shape of
the pits) above which it is unstable. For a pit with rectangular
corners and at bulk fluid-vapor coexistence, the angle above
which the Wenzel state is unstable is given by cos θu = − 1√

3
(i.e., θY ≈ 125◦). The value of this angle above which the
corner dries follows from simple geometric considerations,
which amount to constructing a planar fluid-vapor interface
meeting the three walls forming the corner at the bottom at the
angle θY (independent of whether the fluid is multicomponent
or not).

The aim of the present study is to test to which extent
the two aforementioned macroscopic predictions, concerning
the two specific contact angles θi and θ co

Y , are valid for
liquids on a nano-corrugated surface. The focus is on binary
fluids rather than one-component fluids, first, because of the
practical relevance of multicomponent fluids, and, second,
because investigating binary fluids provides the opportunity to
produce very different fluid-wall systems, each of them being
tunable throughout the same range of contact angles. This
amounts to a strong test of the general macroscopic prediction
θi = 90◦ at bulk liquid-vapor coexistence. In general, for
fluids in nanoconfinement a macroscopic description becomes
unreliable. Therefore it is expected that the phenomena dis-
cussed above are no longer controlled by a single macroscopic
parameter, such as the contact angle. Instead, one expects that
more details like the fluid composition, the fluid-fluid, and the
fluid-wall interactions eventually become relevant. Therefore,
we have studied the Cassie-Wenzel transition of a binary
liquid mixture on a nanotextured wall using density functional
theory (DFT). We have analyzed extensively the intrusion as a
function of the properties of the liquid (e.g., the composition
of the liquid and the relative strengths of the A-A and A-B
interactions), in order to assess the effect of these properties
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on the Cassie-Wenzel transition and on the relative stabilities
of the two states. The other control parameters considered in
this study are the strengths of the fluid-solid interactions (A-C
and B-C) of the two fluid species and the dimensions of the
pit. We have varied the dimensions of the pit in order to study
the effect of strong confinement on the wetting behavior. For
each set of parameters, we have calculated the number density
profiles for both types of fluid particles for the stable and, if
appropriate, the metastable configurations. Based on them we
have monitored the intrusion at bulk liquid-vapor coexistence.
In order to be able to compare the microscopic results with the
macroscopic predictions, we have calculated the interfacial
tensions at coexistence for each model studied via DFT as
well as the corresponding macroscopic Young contact angle
based on Young’s law [Eq. (1)]. The threshold contact angle
θi, below which the intrusion is observed within DFT, is
compared with the macroscopic predictions. In addition, in
order to determine the relative stability of the Cassie and
the Wenzel states we have calculated the grand canonical
potential � for each number density configuration generated
by DFT. The contact angle corresponding to the coexistence
of the Cassie and Wenzel states is compared with θ co

Y given by
Eq. (2).

The paper is organized as follows. In Sec. II we provide
a detailed description of the system studied here. It is char-
acterized completely by the texture of the surface as well as
by the fluid-fluid and fluid-surface interactions. In Sec. III we
give a brief introduction to the technique used for the present
investigation. In Sec. IV we discuss our results and conclude
in Sec. V.

II. FLUID-FLUID INTERACTION, WALL TOPOGRAPHY,
AND SUBSTRATE POTENTIAL

We have studied binary liquid mixtures in contact with a
nanostructured wall at the bottom and the bulk of the liquid at
the top. The wall is endowed with a periodic array of square
nanopits, with edge length w and depth D (see Fig. 1). The
periodicity length does not play a role in what follows, and
therefore it is not shown in Fig. 1. The liquid is composed of
A and B particles. These particles are considered to interact
via Lennard-Jones (LJ) pair potentials. In the spirit of DFT
as used here and discussed in Sec. III, each pair potential is
replaced by the sum of a hard sphere interaction

U hs
i j (r) =

{∞, r � σi j = Ri + Rj,

0, r > σi j
(3)

and of a soft attractive part [41]

U att
i j (r) = −εi j�(21/6σi j − r) + �LJ

i j (r)�(r − 21/6σi j ) (4)

with the Heaviside function � and

�LJ
i j = 4εi j

[(σi j

r

)12
−

(σi j

r

)6
]
. (5)

Here i and j represent the two species A and B of the
binary liquid mixture, Ri is the radius of species i of the fluid
particles, −εi j is the potential depth for the i j-pair potential at
r = 21/6σi j , r is the center-to-center interparticle separation,
and σi j is the distance of contact between the centers of
two interacting liquid particles. For simplicity, the binary

FIG. 1. (a) Schematic representation of the structured wall stud-
ied here. The structure is modeled by square pits w × w × D of
width w and depth D. The pits are carved out from a planar wall.
In (a) and (b) a single pit is shown. If the pit and a neighboring
part of the wall are considered as a unit cell, which is repeated
periodically in x and y direction, one obtains a two-dimensional
lattice of the pits. The solid substrate is modeled as a simple cubic
lattice occupied densely by particles of type C. The lattice spacing is
az, which equals twice the radius RC of the C particles. The circles
indicate the size of the C particles, which are densely packed. In
(b) the cross section of the pit is shown. For technical convenience
the horizontal lattice planes below the two forming the bottom of the
pit are taken to be the lateral average in the x and y directions of the
discrete lattice structure, maintaining the discrete vertical structure.
These homogeneous planes are indicated by horizontal lines; they
form a half space. The liquid in the pit is sufficiently far from these
homogeneous lattice planes so that their missing lateral corrugation
is quantitatively negligible for the substrate potential. On the other
hand, keeping the full lattice structure at the top, at the sidewalls,
and at the bottom of the pit gives rise to the same local contact angle.
In (c) the reference configuration of the planar substrate is shown,
for which σsv and σsl [see Eq. (1)] are determined. The lengths w

and D are measured between the respective loci of the nuclei of
the C particles. These definitions imply that they encompass the
corresponding depletion zone for the density profiles of the fluid
particles.

liquid mixture is considered to be symmetric with RA = RB

and εAA = εBB, where εi j is the parameter of the interaction
strength of the i j-pair potential. The fluid-fluid interaction is
rendered effectively short-ranged by introducing a cutoff at
r = Rc. In the following we adopt Rc = 5RA = 5RB, which is
implemented by a cutoff function. The interaction parameters
εi j for the cutoff potential are rescaled such that the integrated
interaction is equal to the original one resulting from the
potential in Eq. (5) with Rc → ∞. For further details see
Ref. [42].

The model for the corrugated wall is introduced and de-
scribed in Fig. 1. According to Fig. 1, the very bottom of the
wall consists of laterally homogenous layers (see the horizon-
tal lines in Fig. 1) which form a half-space (see below). These
layers exhibit an interlayer spacing az = 2Rc. The layers are
of a macroscopic extent in the lateral (x, y) directions. This
half-space attracts the fluid particles via van der Waals forces
A-C and B-C:

U half−space
i (r) = −4εi

∑
l

[
σi

2

|r − rl |2
]3

, (6)
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where i = A, B is the fluid particle at the position r, l repre-
sents a half-space particle at position rl , and σi is a (micro-
scopic) length which can be chosen to provide the units of the
number densities. In combination with the energy parameter
εi, it describes the strength of the interaction between a fluid
particle of type i and a wall particle. Since the layers forming
the half-space are homogeneous in the lateral directions, the
summation in Eq. (6) in the x and y directions reduces to
an integration for each layer, and the contributions from
the layers are summed up. For further details, we refer to
Ref. [42].

The solid particles C occupying the remaining fully dis-
crete, simple cubic lattice sites on top of the half-space interact
with the liquid particles via a Lennard-Jones potential:

U structure
i (r) = −4εi

∑
l

[(
σi

|r − rl |
)12

−
(

σi

|r − rl |
)6

]
.

(7)

The parameters εi of the interaction strengths for the solid-
fluid pair interaction are the same as the parameters of the
interaction strengths for the half-space-liquid interaction. The
same holds for σi, where σi = Ri + RC , Ri = RA = RB is the
radius of the liquid particles, and RC is the radius of the solid
particles. In Eq. (7) the sum over l amounts to the sum over
all remaining discrete lattice sites occupied by C particles.

The total fluid-solid (fs) interaction is the sum of both
contributions:

U f s
i (r) = U half−space

i (r) + U structure
i (r), (8)

where i = A, B represents the two species of the binary liquid
mixture.

III. DENSITY FUNCTIONAL THEORY

The grand canonical potential � of a classical system of an
N-component mixture follows from a variational functional

�[{ρi}] = F [{ρi}] +
N∑

i=1

∫
d3rρi(r)[Vi,ext (r) − μi] (9)

of the one-particle number densities ρi(r), i = 1, . . . , N . F is
the free energy functional, Vi,ext (r) is the external potential,
and μi is the chemical potential of species i = A, B, respec-
tively. The equilibrium number densities ρi,0(r) minimize �:

δ�[ρi]

δρi(r)

∣∣∣∣
ρi (r)=ρi,0(r)

= 0. (10)

�[{ρi,0}] is the equilibrium grand canonical potential of the
system [43,44]. The free energy functional consist of two
parts:

F [{ρi}] = Fid [{ρi}] + Fex[{ρi}], (11)

where Fid is the ideal gas part

Fid [ρi] = kBT
N∑

i=1

∫
d3rρi(r)[ln (ρi(r)
i ) − 1], (12)


i = ( h2

2πmikBT )
3/2

is the cube of the thermal wavelength asso-
ciated with a particle of species i and mass mi, h is Planck’s
constant, and kB is the Boltzmann constant.

The excess part Fex arises due to the interparticle interac-
tions. We approximate the excess part as the sum of two dis-
tinct contributions: one arising due to the hard core repulsion
(Fhs), and the other due the attractive part of the interaction
(Fatt ):

Fex = Fhs + Fatt. (13)

Fhs is treated within the framework of fundamental measure
theory (FMT), as described in the next section. Fatt is approx-
imated within a simple random phase approximation.

Fundamental measure theory

The fundamental measure excess free-energy functional
for a mixture of hard spheres, as proposed by Rosenfeld, is
given by [45–47]

βFhs[ρi] =
∫

d3rφ([nα (r)]), (14)

where the excess free energy density φ is a function of scalar,
nα (r), and vectorial, nα (r), weighted densities defined as

nα (r) =
N∑

i=1

∫
d3r′ρi(r′)ωi,α (r − r′). (15)

The short-hand notation in Eq. (15) should be understood such
that scalar weighted densities nα (r) are computed using the
scalar weight functions ωi,α whereas vectorial weighted den-
sities nα (r) are computed by using vectorial weight functions
ωi,α . The weight functions ωi,α , ωi,α characterize the geometry
of the spherical particles of species i. These weight functions
are given by [45,48]

ωi,3(r) = �(Ri − r), ωi,2(r) = δ(Ri − r),

ωi,2(r) = r
r
δ(Ri − r), ωi,1(r) = ωi,2(r)

4πRi
,

ωi,1(r) = ωi,2(r)

4πRi
, and ωi,0(r) = ωi,2(r)

4πR2
i

,

where Ri is the radius of the spherical particles of species i, �

is the Heaviside step function, and δ is the Dirac δ function.
In the present study, a modification of the original Rosen-

feld functional, as proposed by Rosenfeld et al. [49] and
known as the modified Rosenfeld functional (MRF), has been
used. Implementing this functional avoids spurious singular
behaviors in situations with sharply peaked density distribu-
tions which might emerge if the original Rosenfeld functional
[45,47] or refined versions thereof [50] are used. On the other
hand, the high accuracy of these functionals is largely pre-
served for the systems studied here. The free energy density φ

within the MRF framework is

φ = −n0 ln(1 − n3) + n1n2 − n1 · n2

1 − n3

+ (n2)3

24π (1 − n3)2 [1 − ξ 2]
q
, (16)
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where q � 2 and ξ = n2
n2

[note that n2 · n2 �= (n2)2]. We
have chosen q = 3, which reproduces the original Rosenfeld
functional up to the order ξ2. In order to approximate the
contribution to the free energy due to the attractive part of
the interaction, we have used the following truncation of the
corresponding functional perturbation expansion:

Fatt = 1

2

N∑
i, j=1

∫
d3r

∫
d3r′ρi(r)ρ j (r′)U att

i j (r − r′),

with U att
i j defined via Eqs. (4) and (5). Here the minimization

of �[{ρi}] has to be carried out numerically. The number
density is discretized on a regular simple cubic grid, and a
Piccard iteration scheme is used in order to minimize � and
to determine the equilibrium number densities. The weighted
densities are calculated in Fourier space using the convolution
theorem. Further details about these techniques can be found
in Refs. [42,48]. The distributions δ and � have been smeared
out in order to achieve stable convergence for the convolution
(for details see Ref. [42]).

IV. COMPUTATIONAL DETAILS AND RESULTS

In this section we present the results of DFT calculations
concerning the intrusion of a binary liquid mixture at liquid-
vapor coexistence in the bulk into the pits of a corrugated wall.
These calculations have been carried out in a computational
box, the linear dimensions of which in the x, y, and z directions
have been chosen as 26RA × 26RA × 40RA (with the radii RA

and RB = RA of the species A and B, respectively).
The corrugated wall containing pits with a square cross

section (see Sec. II) has been placed at the bottom of the
computational box with the normal of the wall pointing in the
z direction. The radius of the wall particles has been chosen
as RC = RA/3. This choice of the size of the wall particles
turns out to be a sound compromise between minimizing
the effect of wall roughness on interfacial structures and the
computational cost. Periodic boundary conditions have been
applied in the x and y directions. At the upper end of the box
the boundary conditions prescribed for the number densities
ρA and ρB correspond to the liquid side of liquid-vapor coex-
istence of the bulk of the binary liquid mixture. Alternatively
to using the number densities, we also introduce the concen-
trations cA = ρA/(ρA + ρB), cB = ρB/(ρA + ρB), and the total
fluid packing fraction η = ηA + ηB with ηA = (4π/3)R3

AρA,
ηB = (4π/3)R3

BρB; ηA and ηB are the fluid volume fractions
blocked by the hard cores of the A and B fluid particles,
respectively.

In the following calculations at various concentrations cB

(cA = 1 − cB), the concentrations in the bulk liquid adjacent
to the corrugated wall always have been controlled. The wall
in the computational box contains a single pit. The periodic
boundary conditions imposed in the x and y directions imply,
however, that a wall with a periodic array of pits is considered.
But in the calculations presented here, the distance between
the pits in the array is sufficiently large so that de facto liquid
intrusion into isolated pits is studied.

The strength of the interaction between like particles
has been kept fixed in all studies presented here, such that
εAA/(kBT ) = 0.9834 (T is the absolute temperature and kB

is the Boltzmann constant). In most of our studies the pits
have a width of w = 7σ and a depth of D = 4σ (σ = 2RA =
2RB is the diameter of the fluid particles); i.e., in the case
of molecular fluids they are truly nanoscopic. Studying nar-
row and shallow pits reduces the computational costs and
also opens the opportunity to observe specific effects due to
nanoconfinement.

In a first series of computations, a fluid has been studied
which effectively behaves as a one-component fluid with
respect to bulk properties. For this fluid model the fluid-
fluid interaction strengths are all equal, i.e., εAA = εAB = εBB.
However, the A and the B particles are taken to interact with
the solid wall with different strengths. The B particles are
chosen to interact more strongly with the wall than the A
particles. Although such a system might not be realizable in
practice, the model complements the spectrum of fluid-wall
systems.

The model may also be considered to mimic a bona fide
one-component fluid interacting with a wall in a more com-
plex way than via a Lennard-Jones potential characterized by
a single interaction strength. The enrichment of B particles
close to a wall leads to an enhanced effective fluid-wall in-
teraction at short distances. The additional degree of freedom
allows one to study, even for a “one-component” fluid, two
different protocols which can be followed in order to trigger
liquid intrusion and to study the relative stabilities of the
Wenzel and the Cassie states involved.

In Sec. IV A 1 studies are presented for which the interac-
tion parameter εA of the A particles with the wall has been
fixed to such a value that the planar wall is lyophobic for a
pure A fluid, i.e., the macroscopic contact angle characterizing
this fluid-wall system is ≈112◦. The strength εB of the inter-
action of the B particles with the wall has been fixed, too, such
that εB/εA = 2.33. By changing the concentration cB of the B
particles in the fluid, the macroscopic contact angle θY can be
tuned to values smaller than the one for the pure A fluid, due to
the stronger interaction of the B particles with the wall. Thus,
at bulk liquid-vapor coexistence, intrusion of the liquid into
the pits can be studied as function of cB. Furthermore, one can
test the (meta)stability of the intruded Wenzel state versus the
Cassie state, in which the liquid remains above the pit and the
pit is filled with its vapor. In order to test the metastability, the
iterative determination of the density distribution is typically
initialized with two different configurations. The first one is
similar to the Cassie configuration with bulk liquid densities
above the pit and bulk vapor densities inside the pit with the
liquid-vapor interface placed close to the opening of the pit.
The second initial configuration is one with the bulk liquid
occupying the whole accessible space.

Another route to vary θY , within the special fluid model
chosen in the above first series of computations, consists of
changing the interaction strengths εA and εB of the fluid-
wall interaction. The results of these studies are presented in
Sec. IV A 2. In all these studies the outcome of the micro-
scopic DFT calculations concerning the intrusion is compared
with the macroscopic prediction, which, at bulk liquid-vapor
coexistence, simply states that for θY < 90◦ the liquid intrudes
the pit. Furthermore, the relative stability of the Wenzel and
the Cassie states and their free-energy difference [provided
that both states do occur as (meta)stable states] are computed
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FIG. 2. Phase diagrams of the binary liquid mixture in the plane of total packing fraction η and concentration cA of A particles (cB = 1 − cA)
for various ratios εAB/εAA (εAA = εBB in all cases). The temperature is fixed such that εAA/(kBT ) = 0.9834. The black and the red lines show
the packing fractions at bulk coexistence in the vapor and in the liquid phase, respectively, as a function of cA. Panel (a) corresponds to
εAB = εAA = εBB, (b) to εAB = 0.90 × εAA, and (c) to εAB = 0.84 × εAA. For εAB/εAA �= 1, the concentrations cA and cB in the coexisting liquid
(l) and vapor (v) phases, respectively, are different. This is demonstrated by the tilt of the dotted tielines.

using both microscopic DFT as well as the macroscopic the-
ory. The input parameters needed for the macroscopic theory
are readily computed by carrying out independent calculations
of the various interfacial tensions at planar interfaces [using
Young’s law in Eq. (1) in order to determine θY ] for the
very same microscopic model and the identical parameter set
as used in the DFT studies for the full problem of liquid
intrusion.

A key issue is, if, based on the value of Young’s contact
angle alone, one can predict whether a liquid intrudes a pit
or not, or whether additional microscopic parameters, not
explicitly accounted for in a macroscopic theory, play a major
role. In order to shed additional light on this question we
analyze the microscopic details of the fluid structure and how
these change as a result of variations of those parameters
which are used to tune the contact angle θY . For instance, for a
ratio εB/εA substantially larger than one, the concentration of
B particles is considerably enhanced at the walls as compared
to the bulk liquid. On the other hand, for the special fluid
discussed above, which is a one-component fluid with respect
to bulk properties, the concentration of B particles is the same
in the liquid and the vapor phase as well as across a liquid-
vapor interface, away from any wall. One could expect that
such peculiarities, which are specific to a particular fluid-wall
system, should be strongly relevant for determining the intru-
sion conditions, and that the values of pertinent parameters
are needed in addition to the information encoded in Young’s
contact angle θY . This expectation is heightened by the fact
that the surroundings at the opening of the pit, which should
be of particular importance for the intrusion process, are very
different from those implicitly assumed for the computation
of θY . In narrow confinement, the role of microscopic details
is expected to be even more pronounced.

We have carried out further studies along this direction
by conducting another series of computations in which we
consider a bona fide binary liquid mixture. In this series, the
interaction strength εAB between unlike fluid particles is taken
to be different from those between like particles (εAA = εBB).
The other parameters have the same or similar values as in the
first series of computations discussed above. For various ratios
εAB/εAA, the concentration cB has been varied, which leads
to a variation of θY (changing εAB/εAA at fixed cB also leads
to changes in θY ). In the present studies, ratios εAB/εAA < 1

have been considered. In this case, the concentration cB of
the B particles in the vapor phase is enhanced relative to the
prescribed concentration of B particles in the liquid phase (see
Fig. 2). Accordingly, there is a gradient in cB across the liquid-
vapor interface with the higher values of cB occurring at the
side pointing towards the pit filled with vapor. This is distinct
from the situation discussed above; the modified interplay of
such a profile of cB, with cB enhanced at the walls, might
be relevant for liquid intrusion. For various ratios εAB/εAA,
in Fig. 3 we have displayed the corresponding density and
concentration profiles for both the A and the B particles,
respectively, across the free liquid-vapor interface. The results
of these studies, in which the wall fluid interaction has been
varied, are presented in Sec. IV B.

Finally, in Sec. IV C the results of certain studies are
presented, in which the effects are explored due to changing
the width or the depth of the pit. These studies have been

FIG. 3. Number density and concentration profiles for A and B
particles across the free liquid-vapor interface for various values
of εAB/εAA and for the reduced temperature εAA/(kBT ) = 0.9834.
The black line in panels (c) and (d) represents the concentration
profiles across the liquid-vapor interface. This is spatially constant
for the binary liquid mixtures with εAB = εAA, which are effectively
one-component fluids so that the concentrations are the same in the
vapor and liquid phases.
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carried out for the model within which the fluid in the bulk
is de facto a one-component one.

A. Special binary fluid: One-component in the bulk, binary with
respect to the wall interactions

In this subsection we discuss the wetting behavior of a
special liquid, which is a one-component liquid in the bulk
(RA = RB, εAA = εAB = εBB), but a binary one with respect to
the interaction with the wall. The wall-liquid interactions are
chosen such that the B particles are attracted more strongly by
the wall than the A particles. We have varied the wall-fluid
interaction strengths εA and εB as well as the ratio εB/εA.
In the following, the wall-liquid interaction is represented in
terms of the macroscopic Young contact angle θY (cB = 0)
formed by a pure A-type fluid on the corresponding planar
wall. Because the properties of the pure A fluid are kept fixed
in all calculations presented here, θY (cB = 0) uniquely charac-
terizes the changes of the interaction between the A particles
and the wall. This choice of representation has two benefits.
First, it facilitates intuition for the A particle-wall interac-
tion strength. Second, this representation of the interaction
strength is more robust with respect to numerical uncertainties
resulting from discretizing the particle number densities on a
grid which due to practical computational limitations cannot
be refined as much that the values of all quantities have fully
converged. For instance, intrusion of a pure A liquid into
a pit would occur at somewhat different values of εA for
different mesh widths of the grid; however, it occurs at the
same contact angle, calculated for the respective grid width.
First, in Sec. IV A 1 we discuss the intrusion as a function of
composition of the liquid, keeping εA, εB, and εB/εA fixed.
In Sec. IV A 2 we study the influence of the strengths of the
fluid-solid interactions, keeping the composition of the liquid
fixed.

1. Effect of composition

In order to study how the composition of a binary liquid
mixture affects its wetting behavior on a textured wall, we
have fixed εAB = εAA(= εBB) and varied the composition of
the liquid. We have started our analysis by considering a liquid
which consists purely of A particles to which we gradually
add B particles until we observe intrusion. The interaction
strength εA = 0.9834 × kBT has been chosen such that the
pure A liquid forms a contact angle θY (cB = 0) ≈ 112◦. For
the mixture with cB �= 0 a fixed ratio εB/εA = 2.333 has
been used. The composition in the liquid phase is controlled
such that for each composition liquid-vapor coexistence is
maintained. As a prerequisite the macroscopic Young contact
angle θY on a corresponding planar wall has been computed
as a function of composition. Increasing the concentration
of B particles decreases the contact angle (see Fig. 11 in
Appendix A) as a result of the stronger interaction of the
B particles with the wall. In the next step, liquid intrusion
(i.e., the Cassie-Wenzel transition) into pits with square cross
section is studied as function of the composition of the liquid.
In order to detect the intrusion, for various compositions
we have calculated within DFT the density profiles of the
binary liquid mixture, always at liquid-vapor coexistence. In
order to observe the Cassie-Wenzel transition, the iterative

determination of the fluid density profiles is initialized with
a liquid-vapor interface placed at the opening of the pits. The
pits are filled with the coexisting vapor, whereas the liquid
remains suspended on the top of the pits. We have determined
the value of θY below which intrusion occurs; according to the
macroscopic theory this is expected to occur for θY < 90◦. We
also carried out calculations with initializing the system in the
Wenzel state (i.e., the pits are filled with liquid) and computed
the grand canonical potentials of both states, provided both
are (meta)stable. These results are compared with the macro-
scopic predictions. At liquid-vapor coexistence, the difference
between the grand canonical potentials of the Cassie-Baxter
state (�CB) and of the Wenzel state (�W ) can be computed
within the macroscopic theory once the interfacial tensions
are known; for a pit with square cross section of width w and
depth D one has

�CB − �W = �� = σlvw
2

(
1 + 4D + w

w
cos θY

)
. (17)

Both states coexist, i.e., �CB = �W , if

cos θ co
Y = − w

4D + w
(18)

[see Eq. (2) above.
Here we discuss results for w = 7 × σ (σ = 2 × RA) and

D = 4 × σ . For the pure A liquid (cB = 0), the Cassie state
is the stable state. If the iteration is initialized in the Wenzel
state, the latter turns out to be metastable with a higher
grand canonical potential. If the liquid reaches 5% of B par-
ticles (cB = 0.05), the previously stable Cassie state becomes
metastable. The contact angle for this composition is θY ≈ 99◦
(see Fig. 11 in Appendix A). For this composition the Wenzel
state has a lower grand canonical potential. The metastability
of the Cassie state was tested by starting the iteration scheme
with a liquid-vapor interface positioned one σ deep inside the
pit. Once the iteration has converged, the liquid-vapor inter-
face has moved up to the same position as the one obtained by
using the standard Cassie state initialization in the case that
the latter is stable. For cB = 0.09 the contact angle reduces
to θY ≈ 90◦, and the Cassie state still remains metastable.
For cB � 0.10, cB has been ramped up in smaller steps of
ca. 0.01. The Cassie state remains metastable up to cB ≈
0.129, corresponding to θY ≈ 83◦. Figure 12 in Appendix A
shows the density distributions for this liquid composition of
cB ≈ 0.129. If the concentration of B particles is increased
further up to cB ≈ 0.138, which corresponds to θY ≈ 81◦,
the Cassie state becomes unstable. Both initial configurations
(Cassie and Wenzel) eventually converge into the Wenzel state
(Fig. 13 in Appendix A). The number density of B particles
is much higher at the walls as compared with that of the
A particles. In Fig. 4 we show the difference �� of the
grand canonical potentials of the Cassie and Wenzel states,
for compositions between cB = 0 and cB ≈ 0.138, as obtained
from DFT. These values are compared with �� calculated
from Eq. (17) for w = 7 × σ , D = 4 × σ (red line), and for
an alternative convention for defining the width and the depth
of the pit, i.e., w = 6 × σ , D = 3 × σ (blue line). In the
first convention the width is defined as the distance between
the centers of the substrate particles in the topmost layers
of the opposing wall surfaces, i.e., including the depletion
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FIG. 4. Grand canonical free energy difference �� = �CB −
�W for the Cassie-Baxter and Wenzel states as a function of θY . The
contact angle θY is varied by changing cB at fixed εAA = εAB = εBB,
w = 7 × σ , and D = 4 × σ . The value of εA has been chosen such
that for cB = 0 the contact angle is θY (cB = 0) ≈ 112◦. The black
line corresponds to DFT results; the red line represents the macro-
scopic predictions based on Eq. (17), with the pit width w = 7 × σ

and depth D = 4 × σ . The blue line represents the macroscopic
results for a pit with an effective width w = 6 × σ and D = 3 × σ ,
taking into account the depletion zone and the slight intrusion of the
liquid-vapor interface into the pit even in the Cassie state.

zones of the fluid densities; the depth is defined accordingly
[see Fig. 1(b)]. In the second convention the width is defined
as the width of the space inside the pit which is actually
accessible to the fluid particles, thus the zones of strongly
depleted fluid densities are not considered to be part of the pit
volume. The reduced depth in the second convention accounts
for the fact that the liquid-vapor interface in the Cassie state
is not perfectly flat above the pit, but penetrates into the
pit by ca. one σ , thus reducing the effective depth of the
vapor-filled space. The contact angle θ co

Y corresponding to
�� = 0, as predicted by Eq. (18), is 108◦ or 109◦, respec-
tively, whereas θ co

Y found from DFT is 109◦. The macroscopic
results for ��, based on two different conventions for the
geometric parameters width and depth, differ considerably.
The second convention renders a better agreement between
the microscopic and the macroscopic results. However, none
of the two acceptable alternative conventions for defining the
geometric parameters lead to a close agreement between the
macroscopic predictions for �� and the microscopic results
(see Fig. 4).

2. Influence of the strength of the liquid-wall interaction

In this section we discuss the influence of the strength
of the liquid-wall interaction on the wetting behavior of the
liquid and on the relative stability of the Cassie and Wenzel
states. We consider again a particular liquid in the sense that
it is a one-component fluid with respect to its bulk properties.
The bulk composition of this liquid is fixed at cB = 0.05, but
we vary the values of εA, εB, and εB/εA. Here we discuss the
results for w = 7 × σ and D = 4 × σ . We have considered
two values of εA, and for each εA we have varied εB/εA. First,

FIG. 5. Grand canonical free energy difference �� = �CB −
�W for the Cassie-Baxter and Wenzel states as function of θY . The
macroscopic contact angle θY has been varied by changing εA and
εB/εA. The black line shows DFT results, whereas the red and the
blue lines correspond to the macroscopic predictions for the actual
and the effective values of w and D, respectively. We have chosen
two values of εA resulting in θY ≈ 112◦ (shown by filled circles) and
θY ≈ 124◦ (shown by stars) for a pure A liquid. For each of these
two values of εA, εB/εA is varied in order to change θY . The other
parameters are fixed at cB = 0.05, εAA = εAB = εBB, w = 7 × σ , and
D = 4 × σ .

we have taken the same value of εA as in the previous section,
which leads to θY ≈ 112◦ for cB = 0. We have calculated
the fluid number densities and the grand canonical potential
by starting the iteration scheme both from Cassie and from
Wenzel configurations. For εB/εA > 2.833 (i.e., θY < 83◦),
the only stable state is the Wenzel state, whereas the Cassie
state is unstable. For εB/εA = 2.833 (i.e., θY ≈ 83◦), the
Cassie state becomes metastable and the Wenzel state is stable
with a lower grand canonical potential. We have decreased
gradually the ratio εB/εA, keeping εA fixed, and thus increased
the contact angle gradually up to ≈107◦. The resulting values
of �� are represented by the filled circles in Fig. 5. The
Cassie state remains metastable up to the highest contact angle
θY ≈ 107◦ investigated in this series of computations.

In the next step we have changed εA such that θY asso-
ciated with a pure A liquid is ca. 124◦. For this value of
εA, we present results for the two ratios εB/εA = 2.6 and
εB/εA = 2.4, indicated by stars in Fig. 5. For εB/εA = 2.6,
the corresponding contact angle is ca. 113◦. For this value
of θY , the Cassie state becomes stable whereas the Wenzel
state becomes metastable. If εB/εA is reduced to 2.4, the
contact angle increases to ca. 117◦ with the Wenzel state
still remaining metastable. When εB/εA is reduced further, the
Wenzel state becomes unstable and the only stable state is the
Cassie state.

We have compared these results of fully microscopic DFT
computations (data shown in black) with the results obtained
from Eq. (17). The values of ��, obtained both micro-
scopically and macroscopically, are shown in Fig. 5. The
macroscopic calculations are carried out for two sets of values
for w and D, one for the actual pit dimensions (w = 7 × σ ,
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D = 4 × σ ; data shown in red) and one for the effective pit
dimensions (w = 6 × σ , D = 3 × σ ; data shown in blue).
Using the effective pit dimensions improves the agreement
with the DFT results, but there are still considerable discrep-
ancies. The microscopic computations show that the Cassie
and Wenzel states coexist at θY ≈ 110◦. Macroscopically, the
coexistence of the Cassie and the Wenzel states for the actual
(w = 7 × σ , D = 4 × σ ) and for the effective pit dimensions
(w = 6 × σ , D = 3 × σ ) occurs at θY ≈ 108◦ and θY ≈ 109◦,
respectively.

B. Binary liquid

In this subsection, we study the wetting behavior as well
as the metastability of the Cassie and Wenzel states for a
liquid which is a bona fide binary liquid mixture also with
respect to its bulk properties; but as a function of various
parameters it is taken to be symmetric upon interchanging
A and B (RA = RB, εBB = εAA, but εAB �= εAA). In Sec. IV B 1
we discuss the effect of varying εAB, keeping the liquid-wall
interaction and the composition of the liquid fixed. In the
subsequent Sec. IV B 2 we study the intrusion of the liquid as
a function of cB for various values of εAB at fixed liquid-wall
interaction. In Sec. IV B 3 we analyze the influence of the
liquid-wall interaction on the wetting behavior of the binary
liquid mixture.

1. Influence of εAB

In order to study the influence of εAB on the wetting
behavior, we have fixed the composition of the liquid at cB ≈
0.05, the A-A and B-B interaction strengths at εAA/(kBT ) =
εBB/(kBT ) = 0.9834, and decreased the ratio εAB/εAA from
1.0, in steps of 0.05, to εAB/εAA = 0.90, and then from
εAB/εAA = 0.90, in smaller steps of 0.02, to εAB/εAA = 0.80.
For εAB = 0.90 × εAA and εAB = 0.84 × εAA, the phase dia-
gram of the liquid as a function of cA = 1 − cB, is shown in
Fig. 2. For εAB/εAA �= 1.0, the composition of the coexisting
vapor phase is not the same as that of the liquid phase,
i.e., the tielines are not horizontal (Fig. 2). Furthermore the
composition varies across the free liquid-vapor interface as
shown in Fig. 3. The fluid-wall interaction strengths εA and εB

are kept the same as in Sec. IV A 1. As a prerequisite, Young’s
contact angle θY on a planar wall is determined as a function
of εAB. In Fig. 14 in Appendix B, θY is shown as a function of
εAB for fixed composition cB ≈ 0.05. Upon lowering εAB/εAA,
the contact angle decreases from θY ≈ 99◦ at εAB = εAA to
θY ≈ 84◦ for εAB = 0.80 × εAA.

Next, we discuss the conditions for intrusion of the liq-
uid into the pits with w = 7 × σ and D = 4 × σ . From the
studies presented in Sec. IV A 1, it is known that for cB =
0.05 and εAB = εAA the Cassie state is metastable and the
Wenzel state is stable. If εAB is decreased, the Cassie state
remains metastable up to εAB = 0.86 × εAA (corresponding
to θY ≈ 91◦). For εAB = 0.84 × εAA (corresponding to θY ≈
89◦), the Cassie state turns unstable and the Wenzel state
becomes the only stable state, to which the iteration procedure
converges for any initial condition. In Fig. 6 we compare
the grand canonical potential difference �� = �CB − �W

obtained within DFT, with �� calculated from Eq. (17) for

FIG. 6. Grand canonical free energy difference �� = �CB −
�W for the Cassie-Baxter and Wenzel states as function of εAB

(expressed in terms of θY ; see Fig. 14), for εAA = εBB, and cB = 0.05.
The black line interpolates the DFT results, whereas the red and
blue lines represent �� as obtained from the macroscopic theory for
the actual parameter values w = 7 × σ , D = 4 × σ and the effective
ones w = 6 × σ , D = 3 × σ , respectively. The interaction strength
εA = 0.9834 × kBT of the A particles with the wall is chosen such
that the contact angle formed by the pure A liquid on the correspond-
ing planar wall is θY (cB = 0) ≈ 112◦. The relative strength of the
wall interactions is fixed at εB/εA = 2.333.

various values of εAB, expressed in terms of the corresponding
contact angle θY .

2. Intrusion as a function of the concentration cB for various
interaction strengths εAB

In the study presented in this section, we consider various
values of εAB. For each value of εAB we start from condi-
tions for which the Cassie state is metastable and reduce θY

by increasing the concentration cB of B particles until the
Cassie state becomes unstable and the liquid intrudes, i.e.,
the pit is filled with liquid and the Wenzel state is formed.
For εAB = 0.90 × εAA, w = 7 × σ , and D = 4 × σ the Cassie
state is metastable for cB ≈ 0.05 whereas the Wenzel state
is the stable state (Sec. IV B 1). We have increased cB from
ca. 0.05 onwards in steps of ≈0.01. The Cassie state remains
metastable up to cB ≈ 0.075, for which the Wenzel state
is the stable one. The corresponding Young’s contact angle
is ca. 86◦. These values correspond to the number density
profiles shown in Fig. 15 in Appendix B. Upon increasing cB

beyond 0.085 (Fig. 16 in Appendix B), thereby decreasing θY

to 84◦, the Cassie state becomes unstable.
Upon decreasing εAB to 0.87 × εAA and keeping all other

parameters fixed, the liquid intrudes the pits at a lower concen-
tration cB ≈ 0.064 but at a higher contact angle θY (see Fig. 7).
For εAB = 0.84 × εAA, the Cassie state remains unstable for
concentrations of B particles higher than cB = 0.037; at the
next smaller concentration tested, cB ≈ 0.025, it becomes
metastable. The corresponding contact angles are θY ≈ 94◦
for cB ≈ 0.037 and θY ≈ 96◦ for cB ≈ 0.025. In Fig. 7 we
have introduced the threshold contact angle θi for intrusion
as the mean of the largest contact angle θY below which
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FIG. 7. Critical contact angle θi, below which the Cassie state
becomes unstable and liquid intrudes into the pits for four ratios
εAB/εAA. For each ratio the contact angle is varied by changing the
concentration cB such that intrusion occurs at θY = θi. The strength
εA is chosen such that the contact angle formed by the pure A liquid
is 112◦ and εB/εA = 2.333. The pit width is w = 7 × σ and the depth
is D = 4 × σ . The critical contact angles θi ≈ 82◦, 85◦, 89◦, and 95◦

correspond to εAB/εAA = 1.0, 0.90, 0.87, and 0.84, respectively.

intrusion is observed and the smallest angle θY at and above
which the Cassie state is found to be metastable. This gap
amounts to ca. 2◦ in the present studies (the steps in which
θY is varied) and defines the error bars indicated in Fig. 7.
Obviously the threshold contact angle θi of intrusion increases
upon decreasing the ratio εAB/εAA and is not fixed at 90◦ as
predicted by the macroscopic theory.

3. Influence of the strength of the liquid-wall interaction

Here the studies reported in Sec. IV A 2 concerning the
influence of the strength of the liquid-wall interaction on
the relative stability of the Cassie and the Wenzel states are
extended to ratios εAB/εAA �= 1. For all the analyses in the
present section, the pit dimensions are kept fixed at w =
7 × σ and D = 4 × σ , and the concentration of B particles
in the bulk is always taken to be cB ≈ 0.05. Two ratios
εAB/εAA (0.9, Fig. 8) and (0.84, Fig. 9) are considered, and in
each case the fluid-wall interaction strength εA and the ratio
εB/εA of the two fluid-wall interaction strengths have been
varied. We start by discussing the case of εAB/εAA = 0.90
and consider three values of εA and various ratios εB/εA for
each εA.

First, we have chosen εA = 0.9834 × kBT , which was con-
sidered in the previous section, resulting in a contact angle
θY (cB = 0) ≈ 112◦ for a pure A liquid. For εB/εA = 2.833,
the Wenzel state is the stable state, whereas the Cassie state is
unstable and thus �� = �CB − �W is undefined. Therefore,
in Fig. 8 no data point appears at the corresponding contact
angle θY (cB = 0.05) ≈ 84◦. If εB/εA is decreased to 2.766,
so that θY increases to θY (cB = 0.05) ≈ 87◦, the Cassie state
becomes metastable whereas the Wenzel state remains the sta-
ble state (�� > 0). Upon decreasing the ratio εB/εA further
to 2.333, the Cassie state remains metastable (as reported in
the previous section), and the Wenzel state remains stable,

FIG. 8. Grand canonical free energy difference �� = �CB −
�W for the Cassie-Baxter and Wenzel states as function of θY (cB =
0.05) for εAB = 0.9 × εAA and cB = 0.05, calculated both macroscop-
ically (red and blue lines) and microscopically (black line). We have
chosen three values of εA, resulting in θY (cB = 0) ≈ 112◦ (shown
by filled circles), θY (cB = 0) ≈ 124◦ (shown by stars), and θY (cB =
0) ≈ 137◦ (shown by a cross) for a pure A liquid. For each of these
values of εA, εB/εA is varied, represented in terms of a change of θY .
The pit geometry is characterized by w = 7 × σ and D = 4 × σ .

exhibiting the lower grand canonical potential (�� > 0). The
resulting differences �� = �CB − �W between the grand
canonical potentials of the Cassie-Baxter and the Wenzel
states (corresponding to the aforementioned first choice of
εA and to the various values of εB/εA considered) are shown

FIG. 9. Grand canonical free energy difference �� = �CB −
�W for the Cassie-Baxter and Wenzel states as function of θY (cB =
0.05) for εAB = 0.84 × εAA and cB ≈ 0.05, calculated both macro-
scopically (red and blue lines) and microscopically (black line). The
blue line corresponds to the effective (reduced) pit dimensions. We
have chosen three values of εA corresponding to θY (cB = 0) ≈ 112◦

(filled circles), θY (cB = 0) ≈ 124◦ (stars), and θY (cB = 0) ≈ 137◦

(crosses) for a pure A liquid. For each of these values of εA, εB/εA is
varied, represented in terms of a change of θY . The pit geometry is
characterized by w = 7 × σ and D = 4 × σ .
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by filled circles in Fig. 8. In the second step, εA = 0.8195 ×
kBT is decreased such that the contact angle formed by the
pure A liquid on the corresponding planar wall increases to
θY (cB = 0) ≈ 124◦. The resulting values of �� are shown
by stars in Fig. 8. For εB/εA = 2.6, with a corresponding
contact angle θY (cB = 0.05) ≈ 110◦, the Cassie state still
remains metastable and the Wenzel state is the stable state
(�� > 0). For εB/εA = 2.4, so that θY (cB = 0.05) ≈ 113◦,
the Cassie and the Wenzel states coexist (�� = 0). In the
previous studies for a fluid with εAB = εAA and various fluid-
wall interaction strengths (εA, εB/εA), and for the same pit
dimensions, the coexistence of the Cassie and the Wenzel
states has been detected at θY (cB = 0.05) ≈ 110◦ (see Fig. 5).
This implies that the contact angle θ co

Y , at which the two
states coexist, has changed by 3◦ as a result of changing
certain microscopic details of the fluid-wall system, whereas
the macroscopic theory [Eq. (18)] predicts that θ co

Y depends
only on the geometric parameters w and D and not on any
other details.

In the third step, εA = 0.6556 × kBT has been decreased
further, such that the corresponding contact angle for a pure A
liquid increases to θY (cB = 0) ≈ 137◦. For the ratio εB/εA =
3.25, which corresponds to θY (cB = 0.05) ≈ 123◦ for the
mixture, the Wenzel state still remains metastable and the
Cassie state stable (�� < 0). In Fig. 8 the resulting value
of �� is marked by a cross. If θY is increased further, upon
decreasing εB/εA, the Wenzel state becomes unstable, and the
iteration process always converges to the Cassie state, irre-
spective of the initial conditions of the iterative determination
of the equilibrium densities.

This calculation was repeated for εAB = 0.84 × εAA, (keep-
ing cB = 0.05, w = 7 × σ , and D = 4 × σ fixed). For a value
of εA corresponding to θY (cB = 0) ≈ 112◦ for the pure A
liquid, for εB/εA = 2.333, and for a contact angle θY (cB =
0.05) ≈ 90◦ the Cassie state turns out to be unstable, and the
only stable state is the Wenzel state, as reported in Sec. IV B 2.
Keeping εA = 0.9834 × kBT fixed, upon decreasing εB/εA

to 2, i.e., θY (cB = 0.05) ≈ 97◦, the Cassie state becomes
metastable whereas the Wenzel state remains stable; the re-
sulting value of �� is shown by a filled circle in Fig. 9.

In the next step, we reduced εA = 0.8195 × kBT such that
θY (cB = 0) ≈ 124◦ for the pure A liquid, and we consid-
ered two ratios, εB/εA = 2.6 and 2.4, with corresponding
contact angles θY (cB = 0.05) ≈ 103◦ and θY (cB = 0.05) ≈
107◦ for the mixtures, respectively. The Cassie state remains
metastable, and the Wenzel state remains stable. The cor-
responding values of �� are indicated in Fig. 9 by stars.
The strength εA has been reduced further, so that the corre-
sponding contact angle θY (cB = 0), formed by the pure A liq-
uid, increases to θY (cB = 0) ≈ 137◦. Computations have been
carried out for four ratios εB/εA = 3.25, 3, 2.5, and 2.375.
For εB/εA = 3.25 (θY (cB = 0.05) ≈ 111◦ for the mixture) the
Cassie state is still metastable, and the Wenzel state has still
a lower grand canonical potential. For εB/εA = 3.0 (θY (cB =
0.05) ≈ 116◦) both states coexist. The Wenzel state remains
metastable up to εB/εA = 2.5 (θY (cB = 0.05) ≈ 124◦). The
value of �� for this choice of εA [corresponding to θY (cB =
0.05) ≈ 137◦] is indicated by a cross in Fig. 9. If εB/εA

was decreased further to 2.375, the Wenzel state became
unstable.

C. Influence of the pit dimensions

Here the influence of the pit dimensions on the Cassie-
Wenzel transition is discussed for the fluid-wall model studied
in Secs. IV A 1 and IV A 2.

1. Varying the pit depth D

In order to reveal the effect of the depth of the pit on the
Cassie-Wenzel transition, we have fixed the width at w =
7 × σ , whereas the depth D of the pit is changed from 4 × σ to
6 × σ . The other parameters are chosen as in Secs. IV A 1 and
IV A 2, i.e., εA is taken such that the pure A liquid forms a con-
tact angle of θY (cB = 0) ≈ 112◦, with εB/εA fixed at 2.833 and
εAA = εAB = εBB. For D = 6 × σ , the Cassie state remains
metastable up to the value of cB ≈ 0.155, which corresponds
to θY (cB ≈ 0.155) ≈ 78◦ of the mixture and becomes unstable
for cB ≈ 0.165 (θY (cB ≈ 0.165) ≈ 76◦ for the mixture). The
threshold contact angle for intrusion would be thus θi = 77◦,
according to the previously given definition, which has to be
compared with θi = 82◦ obtained for the shallower pits of a
depth of 4 × σ (see Sec. IV A 1).

Equation (18), which is based on the macroscopic theory,
predicts that the coexistence contact angle θ co

Y , at which the
CB and Wenzel states in a pit of finite depth coexist and above
which the CB state turns into the stable state, shifts from
θ co

Y ≈ 108◦ for the pit depth D = 4 × σ and a width of w =
7 × σ , to θ co

Y ≈ 103◦ if the depth is increased to D = 6 × σ

while keeping the width fixed. In order to test this prediction,
the calculations of Sec. IV A 2 for pits of a depth D = 4 × σ

have been repeated for deeper pits with D = 6 × σ . As in
Sec. IV A 2, Young’s contact angle θY is varied by changing
the fluid-wall interactions εA and εB. Furthermore, the same
width w = 7 × σ of the pit, the same concentration cB of
B particles, and the same fluid-fluid interaction parameters
εAA = εAB = εBB = 0.9834 × kBT have been chosen as in
Sec. IV A 2. A set of calculations with two distinct values of
εA have been carried out. For the first set, εA has been chosen
such that Young’s contact angle θY for a pure A liquid is
ca. θY (cB = 0) ≈ 112◦. The contact angle, for the given bulk
concentration cB = 0.05, is tuned by changing the ratio εB/εA.
The chosen ratios are 3, 2.933, 2.833, 2.666, 2.5, 2.333, 2.0,
and 1.666 corresponding to values of θY (cB = 0.05) ranging
from about 81◦ to 107◦. For εB/εA > 2.933, the Cassie state
becomes unstable, and the only stable state for the system
is the Wenzel state. For εB/εA = 2.933 (θY (cB = 0.05) ≈ 81◦
for the mixture), the Cassie state becomes metastable, and the
Wenzel state is the stable one. The value of εB/εA has been
decreased gradually, with keeping εA fixed, down to εB/εA =
1.666. For εB/εA = 2.0 (θY (cB = 0.05) ≈ 104◦), the grand
canonical potentials for the Cassie and the Wenzel states are
almost equal. For εB/εA = 1.666 (θY (cB = 0.05) ≈ 107◦), the
Wenzel state becomes metastable and the Cassie state turns
into the stable state with the lower grand canonical potential.
Large contact angles are modeled by reducing εA to a value
corresponding to θY (cB = 0) ≈ 127◦ for a pure A fluid. Calcu-
lations have been carried out for εB/εA = 2.8, 2.6, and 2.4 cor-
responding to θY (cB = 0.05) ≈ 110◦, 113◦, and 117◦ for the
mixture. The Wenzel state remains metastable up to εB/εA =
2.8 (θY (cB = 0.05) ≈ 113◦). If εB/εA is decreased further, the
Wenzel state becomes unstable. At θY (cB = 0.05) ≈ 117◦, the
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FIG. 10. �� = �CB − �W as function of θY . The contact angle
θY (cB = 0.05) is varied by changing εA and εB/εA. The black line
shows DFT results, whereas the red and the blue line correspond to
the macroscopic predictions. We have chosen two values of εA re-
sulting in θY (cB = 0) ≈ 112◦ (filled circles) and θY (cB = 0) ≈ 124◦

(stars) for a pure A liquid. For each of these two values of εA, εB/εA

is changed in order to vary θY (cB = 0.05). The other parameters are
fixed at cB = 0.05, εAA = εAB = εBB, w = 7 × σ , and D = 6 × σ .

Cassie state is the stable state. The free energy differences
�� are shown in Fig. 10 (DFT: black line). The results
corresponding to the above first choice for εA are marked
by filled circles, whereas the results corresponding to the
second choice for εA are indicated by stars. The red and the
blue lines correspond to macroscopic predictions [Eq. (17)]
for the actual and the effective pit dimensions, respectively.
The effective quantities w and D are smaller than the actual
ones due to the presence of the depletion zone as well as due
to the slight intrusion of the liquid-vapor interface into the
pit, even in the Cassie state. Within DFT, the shift of θ co

Y ,
as predicted by the macroscopic theory, is indeed observed
(compare Figs. 5 and 10) and almost quantitatively agrees
with the DFT results. However, away from the coexistence
of the two states the DFT values of �� deviate considerably
from the macroscopic predictions.

2. Influence of the width

In order to study the influence of the width of the pits on
the stability and metastability of the Wenzel and the Cassie
states, we have fixed cB = 0.05, D = 4 × σ , εAA = εAB = εBB

and decreased w from 7 × σ to 5 × σ . The value of εA has
been chosen such that the contact angle formed by the pure A
fluid is θY (cB = 0) ≈ 112◦. Computations have been carried
out for three distinct ratios εB/εA = 2.333, 2.0, and 1.666,
corresponding to θY (cB = 0.05) ≈ 99◦, 104◦, and 107◦ for the
mixture. For the set of parameters leading to θY (cB = 0.05) ≈
99◦, the Wenzel state is the stable state and the Cassie state
is unstable. For θY (cB = 0.05) ≈ 104◦, the Cassie and the
Wenzel states coexist. For θY (cB = 0.05) ≈ 107◦, the Wenzel
state becomes unstable and the Cassie state turns into the
stable state. We have repeated the same calculation for an
even smaller width w = 4 × σ . For this width, the Wenzel
state is the stable state with θY (cB = 0.05) ≈ 99◦. For the next

FIG. 11. Macroscopic contact angle θY at a planar wall as func-
tion of cB with fixed εAA = εBB = εAB. The strength εA = 0.9834 ×
kBT of the interaction between the wall and the A particles is chosen
such that Young’s contact angle attains the value θY ≈ 112◦, with
εB/εA = 2.333 for cB = 0. The full line is a guide to the eye through
the DFT data points. The absolute values of the deviations of θY from
the converged values, for a given set of interaction parameters, might
be as high as 5◦ for the grid on which the densities are discretized.
The estimate is based on computations for a one component system.
The relative quantity θY (cB ) − θY (cB = 0), with the above fixed value
of θY (cB = 0), is more accurate by roughly one order of magnitude.

FIG. 12. Number densities ρA(r) (a) and ρB(r) (b) for the bulk
liquid with cB ≈ 0.129 and packing fraction ηl = 0.3407, in the xz
plane passing through the middle of the pit. With εAA = εBB = εAB,
εA is chosen such that θY (cB = 0) ≈ 112◦ and with εB/εA = 2.333 for
cB �= 0. For the concentration cB chosen here, one has θY ≈ 83◦. The
depth of the pit is D = 4 × σ and its width is w = 7 × σ (σ = 2 ×
RA). The density distributions shown here correspond to a metastable
Cassie state. Panel (c) shows the densities along a line parallel to the
z axis and passing through the middle of the pit (x = y = 9 × RA).
At contact with the wall the density of B particles is higher than the
density of A particles. There are some density oscillations in ρ(z) at
the opening, which die out quickly. Panel (d) shows the concentration
profile for B particles in the same plane as the one shown in panels
(a) and (b), covering the left half of the pit and focusing on those parts
of the pit where potentially interesting phenomena, due to variations
of cB, occur.
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FIG. 13. Number densities ρA(r) (a) and ρB(r) (b) for the bulk liquid with cB = 0.1378; the other parameters are the same as in Fig. 5. The
corresponding contact angle is θY ≈ 81◦. The iteration scheme has been initialized in the Cassie state, which turns out to be unstable for the
chosen set of parameters. Panel (c) shows the number densities along a line passing vertically through the center of the pit.

tested value θY (cB = 0.05) ≈ 104◦, the Wenzel state becomes
unstable and the Cassie state is the stable one. No metastable
states have been found for w = 4 × σ .

V. SUMMARY AND CONCLUSIONS

We have studied the Cassie-Wenzel transition of a sym-
metric binary liquid mixture at a nano-corrugated surface
which exhibits a periodic array of nanopits with a square
cross section. For sufficiently large periodicity lengths, the
case considered here, periodicity does not play a role. The
liquid is composed of two types of particles labeled as A
and B. The B particles are taken to be attracted by the wall
more strongly than the A particles. The intrusion behavior of
such liquids has been studied as function of their composition,
of the strength of the A-B interaction relative to the A-A
and B-B ones, of the relative strengths of the A-wall and the
B-wall interactions, and of the pit dimensions. Our study has
been restricted to mixed liquids at liquid-vapor coexistence.
In this case the predictions of the macroscopic theory are
very simple; in particular, the threshold contact angle θi for
intrusion is predicted to be always 90◦. The structural prop-
erties of the binary liquid mixtures in thermal equilibrium
and, in case it applies, in metastable equilibrium have been
determined by using density functional theory, which captures

FIG. 14. Contact angle θY as a function εAB/εAA for cB ≈ 0.05
and εAA = εBB. The parameter εA = 0.9834 × kBT is chosen such
that θY ≈ 112◦ for cB = 0, and εb/εA = 2.333. The line is a guide
to the eye for the DFT data points.

the microscopic details of the system. The grand canonical
free energy differences �� between the stable equilibria, i.e.,
the Cassie or the Wenzel configuration and, as far as they oc-
cur, the competing metastable equilibria, i.e., the complemen-
tary Wenzel or Cassie configuration, respectively, have been
calculated as functions of various system parameters. These
results are compared with corresponding predictions from a
macroscopic description in terms of surface tensions only.
We have found that intrusion of the liquid into pits of given
geometry, known as the Cassie-Wenzel transition, cannot be
predicted reliably on the basis of a single parameter, which
is the contact angle, like the macroscopic theory does. For
instance, we have found that liquid intrudes a pit—of given
geometry and fixed fluid-wall interactions—at a variety of
contact angles if the liquid consists of symmetric binary fluids
with various ratios of the A-B and A-A interaction strengths.
Once, in the aforementioned case, the contact angle is reduced
by increasing the concentration of B particles, and the liquid

FIG. 15. Number densities ρA(r) (a) and ρB(r) (b) for the liq-
uid with cB ≈ 0.075 and εAB = 0.9 × εAA, in the xz plane passing
through the center of the pit. Panel (c) shows the number density
along a line parallel to the z axis and passing through the center of
the pit. For the given composition of the liquid phase the bulk liquid
exhibits the packing fraction ηl = 0.3357660, whereas the coexisting
vapor has ηv = 0.0124869. For this composition of the liquid bulk
phase one has θY ≈ 86◦. Panel (d) shows the concentration profile
for the B particles in the same plane as shown in panels (a) and (b),
focusing on those parts of the pit in which potentially interesting
variations of cB occur. The fluid-wall interaction strengths and the
pit dimensions are the ones used in Fig. 10.
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already intrudes at a contact angle substantially higher than
90◦ for a ratio of the 0.84 of the A-B and A-A interaction
strengths, whereas, if this ratio is chosen to be 1.0, the contact
angle has to be reduced considerably below 90◦ until liquid
intrudes the pits. For the shallow pits studied here, the contact
angle, at which liquid intrudes, depends on the depth of the
pit. This threshold contact angle θi for intrusion is smaller for
deeper pits and in some cases even deviates more from the
macroscopic prediction than for the shallow pits. These results
demonstrate how the macroscopic capillary theory, which
is based on interfacial free energies of extended interfaces,
breaks down for nano-confinement. In the example discussed
above, the threshold contact angle θi for intrusion of a binary
liquid depends on the ratio εAB/εAA. For εAB/εAA < 1 the
tendency for demixing in the liquid phase at low temperatures
increases as this ratio becomes smaller. (However, demixing
under the conditions studied here is excluded.) It should be
feasible to conduct experiments in which the composition of
a binary liquid is varied along liquid-vapor coexistence until
liquid intrudes into pits with suitably selected wall material.
By selecting fluids with different “demixing tendencies” one
could test the predicted variation of θi. However, one should
keep in mind that changing the fluid presumably changes the
fluid-wall interactions, too, different from the clear-cut case
studied in theory.

The free energy differences �� between the Cassie and the
Wenzel configuration, determined by using density functional
theory (DFT), deviate quantitatively from the corresponding
macroscopic predictions in terms of surface tensions. An
improved agreement between the macroscopic predictions
and the DFT results can be achieved if in the macroscopic
expression for �� a reduced effective width and a reduced ef-
fective depth of the pits is introduced, which are introduced by
taking depletion zones into account. Nonetheless, substantial
deviations persist. Surprisingly, nevertheless θ co

Y determined
by using DFT is very close to the macroscopic prediction. All
results of the above DFT analysis are not restricted to nano-
sized pits only, but also can be extended to binary colloidal
suspensions intruding into micron-sized pits.

All computations presented here have been carried out at a
fixed ratio εAA/kBT = 0.9834, corresponding to temperatures
well below the critical ones for all ratios εAB/εAA studied. The
influence of temperature on the Cassie-Wenzel transition is
not studied explicitly, but only implicitly and, to a certain
extent, via the dependence of the transition on Young’s contact
angle, which is temperature dependent. More detailed inves-
tigations of this issue are left to future studies. Furthermore,

the present investigations have been limited to liquid-vapor
coexistence. Pressures above the coexistence pressure tend to
stabilize the Wenzel state. The analysis of pressure-induced
Cassie-Wenzel transitions for binary liquid mixtures is also
left to future studies.

At the end we would like to remark that thermally activated
transitions between the Cassie and the Wenzel state could play
a role for the narrow and shallow pits studied here. Although
our results are based on density functional theory, which
captures microscopic details but is of mean-field character, our
results nonetheless provide the conditions in the vicinity of
which thermally activated transitions may become noticeable.

APPENDIX A: SPECIAL BINARY FLUID, CONTACT
ANGLES, AND DENSITY PROFILES

The special binary fluid which is a one-component liquid
in the bulk (RA = RB, εAA = εAB = εBB), but a binary one
with respect to the interaction with the wall, the macroscopic
Young contact angle θY on a corresponding planar wall com-
puted as a function of composition is shown in Fig. 11. The
interaction strength εA = 0.9834 × kBT has been chosen such
that the pure A liquid forms a contact angle θY (cB = 0) ≈
112◦. For the mixture with cB �= 0 a fixed ratio εB/εA = 2.333
has been used. (In contrast to the contact angle measured
from, e.g., a spherical-cap shaped sessile drop of finite size,
the macroscopic Young contact angle θY is independent of
how the location of the interface is defined. For a detailed
discussion of this issue see Ref. [51].) Increasing the concen-
tration of B particles decreases the contact angle (see Fig. 11)
as a result of the stronger interaction of the B particles with
the wall.

Figure 12 shows the density distributions for a liquid
composition of cB ≈ 0.129 corresponding to θY ≈ 83◦. The
configuration corresponds to the metastable Cassie state. If
the concentration of B particles is increased further up to
cB ≈ 0.138, which corresponds to θY ≈ 81◦, the Cassie state
becomes unstable. Both initial configurations (Cassie and
Wenzel) eventually converge into the Wenzel state (Fig. 13).
The number density of B particles is much higher at the walls
compared with that of the A particles.

APPENDIX B: BINARY FLUID, CONTACT ANGLE, AND
NUMBER DENSITY PROFILES

In Fig. 14, θY is shown as a function of εAB for the bona fide
binary liquid mixture at fixed composition cB ≈ 0.05. Upon

FIG. 16. The same as in Fig. 15 for cB ≈ 0.085 in the bulk liquid phase. Packing fractions of the coexisting liquid and vapor phases in
the bulk are ηl = 0.3352940 and ηv = 0.0128612, respectively. The concentration of B particles in the bulk vapor phase is cB ≈ 0.173. The
contact angle for the present system is θY ≈ 84◦.
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lowering εAB/εAA, the contact angle decreases from θY ≈ 99◦
at εAB = εAA to θY ≈ 84◦ for εAB = 0.80 × εAA.

For εAB = 0.90 × εAA, w = 7 × σ , and D = 4 × σ the
Cassie state remains metastable up to cB ≈ 0.075, for
which the Wenzel state is the stable one. The corre-

sponding Young’s contact angle is ca. 86◦. These val-
ues correspond to the number density profiles shown in
Fig. 15. Upon increasing cB beyond 0.085 (Fig. 16),
thereby decreasing θY to 84◦, the Cassie state becomes
unstable.
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