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Time dependence of quantum correlation functions
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In the past few years, the exponential expansion analysis of time autocorrelation functions has provided
profound insight into the leading microscopic processes driving the atomic-scale dynamics and has made it
possible to highlight the presence and the role of various relaxation channels through which the fundamental
correlation functions decay with time. Here we apply this method to the determination of the full time
dependence of a correlation function c(t ) in a quantum system at nonzero temperature, by making explicit
its relationship with its Kubo transform cK(t ), which in some cases can be approximately computed with the
presently available quantum simulation techniques. We obtain an exact expression for c(t ) in terms of the
exponential modes that describe the time behavior of cK(t ). The relative importance of the various modes in
determining the overall shape of c(t ) can then be studied in detail. This work extends to the full time domain
the results of a previous paper [Guarini et al., Phys. Rev. Lett. 123, 135301 (2019)], in which we employed the
same method to calculate the zero time value of the velocity autocorrelation function, to obtain a microscopic
description of the quantum mean kinetic energy in a fluid. In particular, we show that the decay constants and
the frequencies of the dominant microscopic modes of c(t ) are the same as those of cK(t ), but the dynamics of
the quantum system also contains an additional term decaying on a time scale determined solely by temperature
of the system.
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I. INTRODUCTION

In recent years, the study of dynamical properties of con-
densed matter systems, with particular emphasis on the liquid
state, has made significant progress through the application
of the concept of an exponential mode expansion of time
correlation functions. The theoretical basis of this approach
consists in the proof, reported in Refs. [1–3], of a very general
property of correlation functions in many-body Hamiltonian
systems, which states that their exact time dependences can
be expressed as an infinite series of exponential terms. In the
theory, each of these terms, called “modes,” corresponds to a
relaxation process establishing a decay channel through which
the autocorrelation gets weaker and, eventually, either van-
ishes or reaches a nonzero asymptotic value. (In the latter case,
with which we will not be concerned here, the exponential
functionality describes the decay to such a limit value.)

By investigating which modes are present in the exponen-
tial series of a given correlation function of a given system,
one may gain deep insight into the underlying microscopic
processes governing the dynamical behavior. The potential of
such a method has been clearly demonstrated by showing, in
the first case in which a thorough analysis has been carried out
[4,5], that the time dependence of the velocity autocorrelation
function (VAF) of a supercritical Lennard–Jones fluid is the
result of an interplay of both diffusive and oscillatory mo-
tions. The latter exhibited the typical properties of collective
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propagating excitations such as longitudinal and, in a cer-
tain range of thermodynamic conditions, transverse acoustic
waves. The former included also the very slow decay which is
usually referred to as the so-called long time tail phenomenon
[6–10]. However, one of the central results of the works
reported in Refs. [4,5] was that a small subset of modes
provided a consistent description of the VAF over the entire
time range, and that the character of these modes was seen
to change in a smooth way while varying the thermodynamic
state of the fluid.

A further application of the exponential expansion is the
analysis of relationships between the mode properties of
autocorrelation functions of different dynamical variables of
the same system. This is an exclusive achievement of the
mode approach and highlights in a quantitative way the fact
that the same dynamical processes shape the time behavior
of inter-related correlation functions through different pro-
jections onto the respective dynamical variables. A repre-
sentative example is the work reported in Ref. [11], where
the modes describing the self part of the dynamic structure
factor of a liquid metal have been used to determine the
spectrum of the corresponding VAF, in perfect agreement with
its direct evaluation through Fourier transformation of the
VAF obtained from a molecular dynamics simulation [12].
The correspondence between the sets of modes involved in
the description of the two mentioned dynamical quantities
is based on the most common link between autocorrelation
functions of interest in many-body systems, namely, the link
between the autocorrelation of a dynamical variable and the
autocorrelation of the time derivative of the same variable.

2470-0045/2020/101(5)/052110(12) 052110-1 ©2020 American Physical Society

https://orcid.org/0000-0003-3121-4186
https://orcid.org/0000-0001-7150-6517
https://orcid.org/0000-0001-5597-8864
https://orcid.org/0000-0002-5858-1376
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.052110&domain=pdf&date_stamp=2020-05-12
https://doi.org/10.1103/PhysRevLett.123.135301
https://doi.org/10.1103/PhysRevLett.123.135301
https://doi.org/10.1103/PhysRevLett.123.135301
https://doi.org/10.1103/PhysRevLett.123.135301
https://doi.org/10.1103/PhysRevE.101.052110


BAFILE, NEUMANN, COLOGNESI, AND GUARINI PHYSICAL REVIEW E 101, 052110 (2020)

Such a case, given its relevance also for the problem addressed
in this paper, will be treated in more detail in Sec. IV.

The exponential mode description is not limited to classical
systems. For a quantum liquid, it has been proved [2,3] that an
analogous expansion is also able to represent the entire time
dependence of the Kubo transform [13] of an autocorrelation
function of a Hermitian operator. Very recently, we have
exploited this approach in the analysis of the mode expansion
of the Kubo-transformed VAF in fluid parahydrogen, studied
both as a function of temperature [14] and of density [15],
using data obtained with the ring polymer molecular dynamics
(RPMD) simulation technique [16,17].

The relationship between a true quantum autocorrelation
function and its Kubo-transformed version is best expressed
if one considers the respective frequency spectra, which are
connected to each other by the detailed balance asymmetry. In
the time domain, this asymmetry implies that, while the Kubo
autocorrelation function is a real and even function of time,
the standard autocorrelation of the relevant quantum operator
is a complex function of time whose real and imaginary parts
have specific and opposite parity properties.

So far, the question of how the decay processes governing
the dynamical behavior determine the shape of a quantum
autocorrelation function remains a fully unexplored problem.
In view of the above considerations, it appears natural to
investigate it by looking at the way the exponential modes
forming the expansion of the Kubo autocorrelation function
are modified to produce the time behavior of the correspond-
ing quantum correlation. This paper presents the solution to
this problem and provides an explicit and exact expression
for the time dependence of the latter. This theoretical result
is fully general, in that it is valid for the autocorrelation of
any dynamical variable. We can then transfer to the quantum
correlation function all the knowledge the mode expansion of
its Kubo transform provides about the dynamical processes
and the leading decay mechanisms acting in the system at the
atomic scale.

The Kubo transform is a convenient tool not only theoreti-
cally, since it transforms the quantum dynamical information
into a form that looks more like a classical correlation func-
tion, but also in the analysis of simulations, because there are
computational approaches like centroid molecular dynamics
(CMD) [18,19] or RPMD which yield approximations to the
Kubo correlation as their primary output. However, there are
simulation techniques such as forward-backward semiclas-
sical dynamics [20,21] or the Feynman–Kleinert quasiclas-
sical Wigner method [22,23], which produce the quantum
correlation function (or its real part) directly. However, from
the results presented in Sec. V it will appear that the mode
expansion of the quantum correlation function is much more
easily obtained through the expansion of its Kubo transform.

It is worth remarking that in this work we are not concerned
with computational problems related to the calculation of
Kubo correlation functions of quantum systems. Devising
simulation techniques able to provide increasingly better nu-
merical approximations continues to be an active research
field [24]. However, to derive the properties of a quantum
correlation function from the mode expansion of the respec-
tive Kubo transform we will simply assume that the latter is
known. Thus, while the example reported in Sec. VI is, in fact,

a case in which the Kubo correlation function is computable
with a high degree of accuracy, the general result obtained
here is valid independently of the quality of any numerical
computations of correlation functions.

While the Kubo transform has originally been defined for
systems at finite temperatures, it has recently been shown [25]
that the concept can be suitably extended (although not by
a simple T → 0 limit) to describe also correlations at zero
temperature, i.e., in the ground state. However, in this paper
we will not consider the case of systems at temperature zero
or very close to zero (e.g., superfluid helium).

II. EXPONENTIAL MODE EXPANSION

In this section we briefly recall the main concepts of
the exponential mode analysis, as applied, for the sake of
simplicity, to the classical autocorrelation function,

c(t ) = 〈A(0)A(t )〉, (1)

of a dynamical variable A(t ), where 〈· · · 〉 is a statistical av-
erage and we assume that in equilibrium 〈A〉 = 0. The theory
derived in Refs. [1–3] may be summarized by the statement
that the exact solution of the generalized Langevin equation
governing the time dependence of c(t ) may be written in the
form of an infinite sum of (generally complex) exponential
functions, i.e.,

c(t ) =
∞∑
j=1

c j (t ) = c(0)
∞∑
j=1

I j exp(z j |t |), (2)

with Re z j < 0 and
∑∞

j=1 I j = 1. Each term c j (t ) represents
a characteristic decay mode of c(t ) having I j and z j as its
parameters. Equation (2) accounts for two types of decay pro-
cesses: when I j and z j are real quantities, the jth mode is an
exponentially decaying relaxation; other processes contribute
to c(t ) with an exponentially damped, oscillating behavior,
represented by pairs of terms in the sum having complex
conjugate values of I j and z j . The two conjugate modes add
up to a real quantity, and, in the classical case, the total c(t )
is also real. The condition Re z j < 0 incorporates the physical
requirement that the total correlation function, as well as each
of its modes, must decay to zero in the limit of infinite time.
Moreover, each mode is an even function of time.

The spectrum of c(t ) is given by its Fourier transform,

c̃(ω) = 1

2π

∫ +∞

−∞
dt e−iωt c(t ) =

∞∑
j=1

c̃ j (ω)

= c(0)

π

∞∑
j=1

−I jz j

ω2 + z2
j

. (3)

For a real mode, c̃ j (ω) is a Lorentzian line with half-width
−z j . For a complex mode Eq. (3) yields a more complicated
expression which includes an imaginary part but, when taken
together with its conjugate, produces a spectral shape made
up of a doublet of two real, noncentral, asymmetric quasi-
Lorentzian lines. For the sake of conciseness, we will refer
to c̃ j (ω) as a “Lorentzian” line in both cases throughout
this paper [26]. Analogously, we will generally call z j the
“frequency” of the jth mode, even though for real modes −z j
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actually represents a damping constant, while for complex
modes −Re z j is the damping and Im z j is the true oscillation
frequency.

Although Eq. (2) gives the formally exact expression of
c(t ) as an infinite sum, any actual set of data, derived from
either experiments or simulations, always consists of a finite
number of values collected over a finite time domain and with
a limited degree of accuracy. The data, therefore, never allow
for an exact determination of an infinite number of modes,
so that the actual description of the time behavior of c(t )
must be obtained from a suitable truncation of the series in
Eq. (2). This is a standard procedure in dynamics studies, for
instance when the generalized Langevin equation is written in
the form of a truncated continued fraction [6–8,27]. In Ref. [1]
we have shown that the approximation introduced by the
truncation consists in the neglect of higher-order derivatives
of the dynamical variable A(t ). The exponential expansion is
thus implemented by determining, through a fitting procedure,
the parameters of a suitable number of exponential modes
representing the dominant decay channels of the correlation
function under consideration. As discussed in Refs. [4,5],
there is no arbitrariness in the composition of the fit function,
if the set of exponential terms retained in the truncated series
is the smallest one which yields an accurate fitting, depending
on the extent and accuracy of available data. In this way, no
unjustified overparametrization of the fit model is allowed for.
With respect to this point we also note that the application
of Bayesian inference methods can prove very effective in
the determination of the number of modes to be included in
the sum in Eq. (2) by exploiting the information content of the
analyzed data together with any available prior information
[28,29].

In a system of particles interacting via a continuous poten-
tial it is assumed that a physically meaningful autocorrelation
function of a dynamical variable is smooth and well-behaved.
In particular, its time derivatives of any order are assumed
to exist and to be finite. This condition is surely satisfied by
the expansion in Eq. (2), but some attention must be paid to
what happens at t = 0. For an even function of time such
as c(t ), one requires that its first derivative vanishes at the
time origin, which implies that the second derivative is finite;
likewise, a vanishing third derivative at t = 0 leads to a finite
fourth derivative, and so on, so that, provided the complete
expansion is used, that function has a valid Taylor expansion
around time zero. Thus, the above physical requirement of
a well-behaved correlation function translates into a set of
mathematical conditions called “sum rules,” namely,

∞∑
j=1

I jz
k
j = 0, (4)

for all odd values of k. However, when only a finite number of
terms is retained in the exponential series, it is not possible to
satisfy the whole set of sum rules. This is an intrinsic feature
of the approximation entailed by the truncation of the series
or of the corresponding continued fraction [3]. In the follow-
ing, we will consider sums of exponentials consisting of an
unspecified, finite number of terms, constrained by an equal,
or smaller, number of sum rules. Both numbers are chosen
so as to obtain the best fit model according to the criteria

explained above. The sum rules so enforced in the fitting,
together with the obviously necessary condition

∑
j I j = 1,

act as constraints for the determination of the amplitudes I j ,
effectively reducing the number of free parameters to be fitted.
In any case, we will assume that the first sum rule,∑

j

I jz j = 0, (5)

is always obeyed. Note that Re I j is not required to be positive
for all j. This is evident, for example, when only real modes
are present, as Eq. (5) implies that at least one of them must
have a negative amplitude. In the general case, it can well
happen that Re I j < 0 for more than one mode.

In the following, as in Eq. (5), all sums over modes will be
assumed to extend over a finite number of terms, leaving the
range of the index j unspecified.

III. CORRELATION FUNCTIONS
IN A QUANTUM SYSTEM

The standard autocorrelation function of an operator A(t )
in a quantum system at temperature T has the general form

c(t ) = 〈A(0)A(t )〉 = Tr[e−βH A(0)eiHt/h̄A(0)e−iHt/h̄]

Tr[e−βH ]
, (6)

where the angular brackets now denote the quantum statisti-
cal average performed with the canonical partition function
Tr[e−βH ], H is the Hamiltonian operator of the system, de-
pending on the positions and momenta of all particles, β =
(kBT )−1, and kB is the Boltzmann constant.

The corresponding Kubo-transformed correlation function
is [13]

cK(t ) = 1

β

∫ β

0
dλ 〈eλH A(0)e−λH A(t )〉

= 1

β

∫ β

0
dλ 〈A(−ih̄λ)A(t )〉. (7)

As anticipated in the Introduction, c(t ) is a complex-valued
function, whose real and imaginary parts are even and odd
functions of time, respectively, while c(t ) itself obeys the
equation c(−t ) = c∗(t ) = c(t + ih̄β ), with the asterisk denot-
ing complex conjugation. The latter property expresses the
detailed balance principle in the time domain. By contrast,
cK(t ) is a real and even function which, although it contains
information on the quantum dynamics, does so in a form
more similar to a classical correlation function, for which all
the properties discussed in Sec. II, including the exponential
mode expansion, hold true. However, some features of cK(t )
can be markedly different from their true quantum properties,
as exemplified by the case of the VAF, where McK(0)/2 =
3/(2β ) (with M the molecular mass), as dictated by the clas-
sical equipartition theorem, whereas the quantum mechanical
mean translational kinetic energy is generally substantially
higher than its classical counterpart. One advantage of using
cK(t ) is the fact that, for a certain class of autocorrelation
functions, some of the available quantum simulation tech-
niques provide quite reasonable approximations to their Kubo
transform, while c(t ) remains problematic. Here too, the VAF
is a good example, since it has been observed that methods
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such as RPMD or CMD are able to reproduce the Kubo VAF
surprisingly well, at least in liquid hydrogen and deuterium
[30], as confirmed by comparison with neutron scattering
cross section data [31,32] and inelastic neutron scattering
experiments on H2-D2 mixtures [33].

By Fourier transformation of c(t ) and cK(t ) the respective
frequency spectra c̃(ω) and c̃K(ω) are obtained. Both func-
tions are real and, while c̃K(ω) is even, c̃(ω) can be decom-
posed into its symmetric and antisymmetric parts, c̃(ω) =
c̃s(ω) + c̃a(ω), which are the Fourier transforms of Re c(t )
and i Im c(t ), respectively.

The three quantities just defined are all related to
each other by the detailed balance requirement, c̃(−ω) =
exp(−β h̄ω)c̃(ω), and the following relationships hold:

c̃(ω) = β h̄ω

1 − exp(−β h̄ω)
c̃K(ω), (8)

c̃s(ω) = (β h̄ω/2) coth(β h̄ω/2)c̃K(ω), (9)

c̃a(ω) = (β h̄ω/2)c̃K(ω). (10)

The problem of calculating c(t ) from the knowledge of
cK(t ) in the time domain has already been elegantly solved
in Ref. [34], but here, exploiting some results of that work,
we want to obtain an explicit expression for c(t ), starting
from the exponential expansion of its Kubo transform. It will
be convenient to first discuss the problem in the frequency
domain, where the above equations for the various spectral
functions will be used.

IV. MODE EXPANSION OF QUANTUM SPECTRA

As a preliminary step, we first need to consider the relation-
ship between the mode expansion of a generic time correlation
function and that of its second derivative with respect to time.
The relevance of this problem for the determination of a
quantum correlation function will be apparent soon. For our
purposes it is sufficient to consider the classical autocorrela-
tion function of Eq. (1). It is well known [7] that, with overdots
denoting time derivatives,

c̈(t ) = −〈Ȧ(0)Ȧ(t )〉, (11)

which is an autocorrelation function as well. Then, given the
expansion of c(t ) in exponential terms [see Eq. (2)], we seek
the corresponding expansion of c̈(t ). We first establish the
connection between the expansions in sums of Lorentzian
lines of the respective frequency spectra c̃(ω) and c̃(2)(ω),
related by

c̃(2)(ω) = −ω2c̃(ω). (12)

It is clear from the outset that the Lorentzian modes of
c̃(2)(ω) cannot be the same as those of c̃(ω), since the latter,
upon multiplication by ω2, would display a nondecaying,
nonintegrable, behavior. Indeed, using Eq. (3) and rewriting

the Lorentzian as two terms, we have

c̃(2)(ω) = −ω2 c(0)

π

∑
j

−I jz j

ω2 + z2
j

= c(0)

π

∑
j

(
I jz j + −I jz3

j

ω2 + z2
j

)
. (13)

Equation (13) shows that, in the frequency domain, each
exponential mode of c(t ) gives rise to a Lorentzian line with
half-width −z j and amplitude c(0)I jz2

j , to which the nonzero
constant c(0)I jz j/π is added. Since the constant prevents the
jth spectral mode from decaying to zero at large frequency
and causes its integral to diverge, this extra term makes
Eq. (13) an invalid expression for the mode expansion of
the spectrum of the autocorrelation function c̈(t ), which we
require to comply with the form of Eq. (3).

However, the constant term may be eliminated if the con-
dition Eq. (5) is applied. In fact, the first time derivative of the
generic mode of c(t ), given by

ċ j (t ) = c(0)I jz j exp(z j |t |) sign(t ) (14)

for t �= 0, is discontinuous at t = 0 because its left and right
limits for t → 0 are −c(0)I jz j and c(0)I jz j , respectively, and
are in general different from zero. Accordingly, the second
time derivative of c j (t ) is

c̈ j (t ) = c(0)I jz
2
j exp(z j |t |) + 2c(0)I jz jδ(t ), (15)

where the term containing δ(t ) comes from the step discon-
tinuity of ċ j (t ) at the origin and its Fourier transform is just
c(0)I jz j/π . Thus, it appears that removing the ω-independent
part of Eq. (13) amounts exactly to ignoring the singularity in
the second time derivative of c j (t ). A few comments are in
order here:

(i) As mentioned in Sec. II, the sum rule of Eq. (5) is
enforced to ensure that the total c(t ), when approximated by
a finite number of terms, has a continuous first derivative
that vanishes at t = 0, i.e., it has no step there, and that the
second derivative is finite everywhere. It is no surprise that
such a constraint is required whenever a physical property of
the system involves the second time derivative of the given
autocorrelation function. Nevertheless, it is a peculiarity of the
expansion in exponentials that, taken individually, the second
derivatives of the modes have a singularity at the origin.

(ii) To ensure that c̈(t ) and c̃(2)(ω) can still be described
by a proper exponential (or, respectively, Lorentzian) mode
expansion, c̈ j (t ) must be made continuous at t = 0, just as
c j (t ) has to be continuous to represent the zero-time value
of c(t ). This is obtained by exploiting the sum rule Eq. (5)
to remove the singularity in Eq. (15). The application of
this constraint, required for the reasons just explained, is
sufficient to ensure that no divergences occur in c̈ j (t ) and in
the frequency integrals of c̃(2)

j (ω).
(iii) In this way we are actually redefining the exponential

modes of c̈(t ) at t = 0 and the corresponding Lorentzian
modes c̃(2)

j (ω). However, with such a proviso and for the sake
of clarity, we maintain the same notation and, assuming that
the constraint Eq. (5) has been enforced in the determination
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of the parameters (I j, z j ), we replace Eqs. (15) and (13) with

c̈ j (t ) = c(0)I jz
2
j exp(z j |t |) (16)

and

c̃(2)(ω) = c(0)

π

∑
j

−I jz3
j

ω2 + z2
j

, (17)

respectively. However, it is worth stressing that these redefi-
nitions concern the individual modes only, while the total c̈(t )
and c̃(2)(ω) remain unchanged.

Although not of interest here, it is clear that the procedure
could be repeated if correlations of higher-order derivatives of
A(t ) were considered, and that in such cases higher-order sum
rules of the type Eq. (4) must be enforced as well.

The important physical meaning of Eq. (17) is that the
autocorrelation function of the variable A(t ) has the same
decay channels as that of its time derivatives, determined by
the dampings −Re z j and frequencies Im z j , which completely
characterize the microscopic processes driving the global
dynamics of the system. What changes in passing to auto-
correlation functions of time derivatives of increasing order
are the amplitudes of the various modes, which get multiplied
each time by z2

j , so that the faster a mode decays or oscillates,
the stronger is its contribution to the higher order correlation
functions.

A relationship involving an autocorrelation function and
its second derivative is found in the case of some important
quantities relevant for the description of the dynamics of
disordered systems. Besides the example mentioned in the
Introduction and dealt with in Ref. [11], an important quantity
in the theory of liquid state, namely the longitudinal current
autocorrelation function, is proportional to the second time
derivative of the intermediate scattering function, i.e. of the
van Hove autocorrelation function of density fluctuations [7].

The reason why such a kind of relationship has been ana-
lyzed in detail is that it is exactly of the form of the connection
between the quantum spectrum c̃(ω) and the corresponding
Kubo spectrum c̃K(ω) [see Eq. (19) below]. Therefore, it plays
a relevant role in the problem we are dealing with here, that is
to derive the former from the mode expansion of the latter.

We will first consider the symmetric part c̃s(ω), i.e., the
Fourier transform of the real part of c(t ). In place of Eq. (12)
we have now Eq. (9), which we rewrite as

c̃s(ω) = B(ω)c̃K(ω), (18)

and in this case too the spectral modes of c̃s(ω) must differ
from those of the Kubo spectrum. However, since B(ω) =
(β h̄ω/2) coth(β h̄ω/2) grows only as |ω| for |ω| → ∞, the
divergence problem upon multiplication by B(ω) is milder
than that of Eq. (12) where, instead, a factor ω2 is involved.
We first rewrite Eq. (18) as

c̃s(ω) = B(ω) − 1

ω2
[ω2c̃K(ω)] + c̃K(ω), (19)

where no singularity is introduced by the ω2 factor in the
denominator, as the limiting behavior of B(ω) for ω → 0
is given by 1 + (β2h̄2/12)ω2 + O(ω4). The transformation
of Eq. (18) into the form of Eq. (19) has already been
used in Ref. [34], but here we apply it to the expansions in

Lorentzians, taking into account the results Eqs. (3) and (13),
and we obtain

c̃s(ω) = −
(

B(ω) − 1

ω2

)
cK(0)

π

∑
j

(
I jz j + −I jz3

j

ω2 + z2
j

)

+ cK(0)

π

∑
j

−I jz j

ω2 + z2
j

. (20)

Due to the presence of the prefactor [B(ω) − 1]/ω2, the
constant terms in the first sum are now forced to decay to zero
as 1/|ω| at large frequency, but they still remain not integrable.
Then, for the same physical requirement as in the case of
Eq. (13), we again use Eq. (5) to remove the divergence. Thus,
we finally obtain

c̃s(ω) = −
(

B(ω) − 1

ω2

)
cK(0)

π

∑
j

−I jz3
j

ω2 + z2
j

+ cK(0)

π

∑
j

−I jz j

ω2 + z2
j

, (21)

where c̃s(ω) is seen to consist of two sums: the second one is
simply the Lorentzian expansion of the Kubo spectrum, while
the first is a sum of Lorentzian lines with the same half-widths
−z j but different amplitudes I jz2

j , multiplied by a quantity
solely related to the detailed balance factor.

V. TIME DEPENDENCE OF THE QUANTUM
CORRELATION FUNCTION

The real part of the autocorrelation function c(t ) is the in-
verse Fourier transform of Eq. (21), but a direct calculation of
the Fourier integral is not straightforward due to the presence
of the prefactor to the first sum. [The second term simply gives
cK(t ).] In Ref. [34] the problem was solved by applying the
convolution theorem after evaluation of the inverse Fourier
transform of the function [B(ω) − 1]/ω2, which was shown
[34] to be −2πk1(t ), where

k1(t ) = τ log[1 − exp(−|t |/τ )] (22)

and

τ = β h̄

2π
(23)

is a time constant depending on the system temperature only.
Then, the convolution theorem allows one to obtain, from
Eq. (20),

Re c(t ) = cK(t ) +
∫ ∞

−∞
dt ′ k1(t ′) c̈K(t − t ′). (24)

(Analogous methods have also been applied in a somewhat
broader context in Ref. [35].) It has to be noted that k1(t ) has
a singularity at t → 0, but the divergence is of the logarithmic
type and therefore an integrable one. In Ref. [34] Eq. (24) was
only used to obtain the value of an arbitrary autocorrelation
function at time zero, but with c̈K(t ) written as a sum of modes
of the form Eq. (16) the above convolution integral can be
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calculated explicitly for any value of t value to give

Re c(t ) = cK(t ) + cK(0)
∑

j

I jz jτ {[ψ (1 − z jτ )

−ψ (1 + z jτ )]ez j |t | − [ f (z jτ, e−|t |/τ )

+ f (−z jτ, e−|t |/τ )]e−|t |/τ }. (25)

Here ψ (z) is the digamma function [36] and, for a complex
parameter s, we have defined the function

f (s, x) = F (1, 1 + s; 2 + s; x)

1 + s
− F (1, 1; 2; x), (26)

where F (a, b; c; x) = 2F1(a, b; c; x) is the Gaussian hyperge-
ometric function [36]. Equation (25), whose derivation is
outlined in Appendix A, can be conveniently rewritten in a
different form by using the property of the digamma function
ψ (1 − z) − ψ (1 + z) = π cot(πz) − 1/z [37]. In this way
one obtains

Re c(t ) = cK(0)
∑

j

I jz jτ {π cot(z jτπ )ez j |t |

− [ f (z jτ, e−|t |/τ ) + f (−z jτ, e−|t |/τ )]e−|t |/τ }. (27)

As far as the imaginary part of c(t ) is concerned, we make
use of the well-known result

Im c(t ) = −β h̄

2
ċK(t ). (28)

This relationship can be obtained by taking the time deriva-
tive of the definition Eq. (7) and noting that 〈A(−ih̄λ)Ȧ(t )〉 =
−〈Ȧ(−ih̄λ)A(t )〉, which follows from the cyclic invariance of
the trace. Utilizing Eq. (5.20) of Ref. [13],

ċK(t ) = − 1

β

∫ β

0
dλ 〈eλH Ȧ(0)e−λH A(t )〉

= − 1

iβ h̄
〈[A(0), A(t )]〉, (29)

where [· · · , · · · ] is a commutator, Eq. (28) now follows
from 〈[A(0), A(t )]〉 = 〈A(0)A(t )〉 − 〈A(t )A(0)〉 = 2i Im c(t ).
The same result can also been obtained through a different
route starting from Eq. (10), as done in Ref. [34]. The imag-
inary part of c(t ) is an odd function of time that vanishes at
t = 0, so that c(0) is real. By expressing ċK(t ) through a sum
of modes of the form Eq. (14) and adding i Im c(t ) to the real
part given by Eq. (27), one eventually finds

c(t ) = cK(0)
∑

j

I jz jτπ [cot(z jτπ ) − i sign(t )]ez j |t |

− cK(0)
∑

j

I jz jτ [ f (z jτ, e−|t |/τ )

+ f (−z jτ, e−|t |/τ )]e−|t |/τ . (30)

For ease of reference we label the two parts of the right-
hand-side as cA(t ) and cB(t ), respectively, and write c(t ) =
cA(t ) + cB(t ).

From Eq. (30) it is evident that cA(t ) is an exponential
expansion with the same mode frequencies z j as in the ex-
pansion of cK(t ), meaning that the same relaxation processes
determine the decays of both correlation functions. Although

this may seem intuitive, it is not at all obvious, and proving
it is one of the central tasks of the present work. The mode
intensities are different from, though written in terms of, those
pertaining to cK(t ), and contain an imaginary part to account
for the complex nature of c(t ). The overall time dependence
of cB(t ) is determined by the exponential term exp(−|t |/τ ),
both as an explicit factor and through the argument of the
functions f . To cB(t ), each mode of cK(t ) contributes with
a weight proportional to its own intensity, but its frequency
also determines the specific arguments of the functions f .
We will show in Sec. VI that cB(t ) provides a small but
essential correction to the time dependence of cA(t ) to ensure
the correct short-time behavior of Re c(t ), and, in particular,
that this correction is only effective in a time range of the order
of τ .

Equation (30) also shows that, apart from the mode ex-
ponentials exp(z j |t |), in all other occurrences the reduced
frequencies z jτ appear. This means that in a quantum system
1/τ plays an essential role as a frequency unit in determining
the jth amplitude in both cA(t ) and cB(t ).

As shown in detail in Appendix A, c(t ) has the following
expected properties: (a) in the limit as h̄ → 0 or β → 0, i.e.,
in the classical limit, it reduces to cK(t ) (which in turn reduces
to the classical correlation function); (b) it obeys the condition
c∗(t ) = c(t + ih̄β ); and (c) its value at t = 0 is given by

c(0) = Re c(0) = cK(0)

⎧⎨
⎩1 + 2

∑
j

I jz jτ [ψ (1 − z jτ ) + γ ]

⎫⎬
⎭,

(31)

where γ is the Euler–Mascheroni constant. Equation (31) has
very recently been applied [14] to the determination of the
contributions of the modes of the Kubo VAF to the transla-
tional mean kinetic energy per molecule 〈K〉 in dense fluid
parahydrogen at a density above that of the triple point and
at four temperatures decreasing from a slightly supercritical
value to that of a cold liquid state. In fact, if c(t ) represents
the VAF, then one has 〈K〉 = c(0)M/2, i.e., a value known to
exceed the one given by the classical equipartition theorem,
3/(2β ) = cK(0)M/2, by an amount which increases substan-
tially when T is decreased and the quantum character of the
fluid becomes more pronounced. The study in Ref. [14] has
been carried out on the basis of RPMD simulation data, which
will be used in Sec. VI as an example case for the discussion of
the present results. In a similar study [15], Eq. (31) was used
to follow the increase of 〈K〉 over the classical value when
the density is increased from near-critical to close-to-melting
values, at a slight supercritical temperature.

Another application of Eq. (31) is obtained if c(t ) is
identified with the intermediate scattering function F (Q, t ),
i.e., the autocorrelation function of density fluctuations at a
fixed wave vector Q. Its value at t = 0 gives the static structure
factor S(Q), which it is often common, but incorrect, practice
to identify with the zero time value of the Kubo transform, that
is, with the frequency integral of the spectrum symmetrized by
removing the detailed balance asymmetry.

It can also be shown that Eq. (31) reproduces the well-
known result for the temperature dependence of the quan-
tum mechanical mean kinetic energy of a single undamped
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FIG. 1. Real part of the quantum VAF (black circles) u(t ) of fluid
parahydrogen at density n = 26.73 nm−3 (from Ref. [14]) computed
through a forward/inverse Fourier transform and Eq. (18) from
the Kubo VAF uK(t ) (blue dash-dotted line) obtained from RPMD
simulations. The black solid line is the result of the mode expansion,
Eq. (27). The red dashed line displays the real part of uA(t ) alone.
Each frame refers to the temperature indicated.

harmonic oscillator. Although to describe the behavior of
such an ideal model we have to relax the initial assumption
Re z j < 0, it is still possible to use the concept of exponential
modes, as described in Appendix B.

VI. RESULTS IN AN EXAMPLE CASE

We illustrate the representation of Re c(t ) by Eq. (27) in
the case where c(t ) = u(t ) = (1/N )

∑N
k=1〈vk (0) · vk (t )〉 is the

center-of-mass VAF of a system of N particles, and uK(t ) is
its Kubo transform. The latter was obtained from an RPMD
simulation of fluid parahydrogen with N = 864 molecules
interacting through the Silvera-Goldman potential [38] at a
molecular number density n = 26.73 nm−3 and at the highest
(T = 35 K) and lowest (T = 22.5 K) temperature of the four
states investigated in Ref. [14]. The Kubo VAF was numeri-
cally Fourier transformed to provide the spectrum ũK(ω), and,
after applying Eq. (18), an inverse Fourier transformation was
performed to give the real part of the quantum correlation
u(t ), which we treat as reference data to be compared with the
results of Eq. (27). The values of τ are 0.0347 ps at T = 35 K
and 0.0540 ps at T = 22.5 K.

In the case considered here, the time dependence of uK(t )
was very accurately described by the sum of a set of expo-
nential modes including (i) two pairs of complex conjugate
modes, identified with the propagating excitations related to
longitudinal and transverse collective motions [4,5,11,14,15]

FIG. 2. The Kubo VAF obtained from parahydrogen simulations
[14] (blue dash-dotted line) and the real part of the quantum VAF
obtained from Eq. (27) (black solid line) are compared with the
respective contributions provided by the mode pair C2 alone (ma-
genta circles and dashes, respectively). Each frame refers to the
temperature indicated.

and labeled as C2 and C3 for consistency with previous
papers; and (ii) a very fast decaying real mode (R1) with a
very small amplitude. An even weaker, slowly decaying real
mode (R4), accounting for the long time tail, is just visible
at the higher temperature but remains below the detectability
threshold at the lower one, and has not been included in the
fit model for the latter case. The quality of all fits to uK(t ) is
excellent, as was shown in Fig. 1 of Ref. [14].

We show in Fig. 1 that Eq. (27) reproduces the Fourier
transformed data very well in the whole time range, and
therefore provides a correct and effective representation of
Re u(t ). We also note that Re u(t ) differs substantially from
uK(t ), signaling the presence of considerable quantum effects
in the dynamics of the system, and that most of this difference
is accounted for by the real part of uA(t ) alone. However, the
contribution of uB(t ) is seen to be essential for reproducing
the correct behavior of the correlation function at short times,
in particular, the horizontal tangent of Re u(t ) at t = 0.

In Fig. 2, together with uK(t ) and Re u(t ), we display the
respective contributions (including the “A” as well as “B”
parts) provided by the C2 pair alone. While for the Kubo
VAF the contribution of C2 is substantial, it becomes truly
dominant in the case of Re u(t ). This result is related to
the fact that quantum effects on the spectra grow in impor-
tance with increasing frequency, due to the growth of B(ω).
Therefore, modes with larger |z j |, having broader frequency
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TABLE I. Values of z j and Ij for the modes fitted to the Kubo VAF uK(t ) data on liquid parahydrogen of Ref. [14].

T = 35 K T = 22.5 K

Mode(s) z j [ps−1] Ij z j [ps−1] Ij

R1 −52.254 0.0610 −95.808 0.0044
R4 −0.944 0.0050 – –
C2 −12.153 ± 20.723 i 0.2921 ∓ 0.3189 i −10.606 ± 20.355 i 0.2264 ∓ 0.3139 i
C3 −8.547 ± 8.415 i 0.1748 ∓ 0.0039 i −7.838 ± 4.437 i 0.2714 ± 0.3716 i

distributions, will contribute more to the quantum correlation
function, and their importance will increase in passing from
the Kubo to the full quantum correlation function. That C2 is
responsible for most of the excess of u(0) and of the related
mean kinetic energy per molecule over their classical counter-
parts, has already been thoroughly discussed in Refs. [14,15]
where we have proposed a physical interpretation in terms
of the Heisenberg uncertainty principle. To better appreciate
the frequencies involved by each decay mode, we list the
values of the respective parameters I j and z j in Table I. The

FIG. 3. Time dependence of the contributions of the modes of
the exponential expansion of the Kubo VAF of parahydrogen, [14]
to cB(t )/e−|t |/τ according to the following color legend: R1 (orange
diamonds), R4 (cyan squares), C2 (magenta circles), and C3 (green
stars). For each complex pair C2 and C3, the sum of the two modes of
the pair is displayed. The lines with the same colors are the respective
infinite-time asymptotes. The vertical dash-dot black line marks the
value of t = 4τ . In frame (a) the R4 term has so weak an intensity
that to make its time decay visible it has been multiplied by 5 × 105.
This term is absent at the lower temperature [frame (b)]. Also, for the
same reason, in frame (a) the contribution of the C3 pair is multiplied
by 5.

prominent role played by the C2 pair in the quantum dynamics
is evident if one considers that, although R1 has a much larger
decay constant (and thus a broader spectral distribution), it
provides an intrinsically weak contribution. Moreover, Fig. 2
also shows that at the lower temperature C2 is larger than the
total Re u(t ), in agreement with the fact that other modes can
have a negative amplitude, as noted at the end of Sec. II.

As already pointed out, the parameter τ sets a temperature-
dependent quantum mechanical time scale. In Fig. 3 we plot
the time dependence of the contributions of each mode or
pair of modes to the quantity cB(t )/e−|t |/τ , together with their
respective asymptotic long-time limits. It is clearly seen that in
all cases the decay time to the asymptotic value is of the order
of τ , which is also the time scale on which cB(t ) itself decays
to zero. Therefore, because τ depends on the system temper-
ature only, for any system and whatever dynamical variable
is considered, it is tempting to interpret this second term as
the manifestation of a pure quantum property of correlation
functions related to the detailed balance asymmetry.

VII. CONCLUSIONS

In the past few years, the exponential mode expansion
has proven to be a very effective tool for the identification
of physical processes which determine the dynamic behavior
as expressed by autocorrelation functions of fundamental
dynamical variables. In our previous investigations we have
shown how the existence of certain decay mechanisms con-
nected to specific atomic motions, be they single-particle or
collective ones, can be identified in different correlation func-
tions, and we have made explicit the quantitative relationships
between their sets of exponential modes (and between the
sets of Lorentzian modes of their respective spectra). This
work extends the range of applications of these concepts to
quantum systems at nonzero temperature by expressing a
quantum correlation function in terms of the dynamical modes
of its Kubo-transformed counterpart through an explicit and
exact expression. In doing so, we are able to demonstrate
that the quantum nature of a system, which forces it to obey
a fundamental property of fully general character such as
the quantum asymmetry of spectral distributions, plays an
essential role in shaping the high-frequency spectral tail and,
correspondingly, ensuring the correct short-time behavior of
the correlation function in the range of the “quantum corre-
lation time” τ = β h̄/(2π ). At times long compared to τ , the
set of modes required for the Kubo correlation function is also
sufficient (although with modified amplitudes) to provide an
excellent representation of the real part of the full quantum
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correlation function. For the imaginary part of c(t ) this holds
trivially true at all times as, apart from a prefactor, Im c(t ) is
just the first time derivative of cK(t ).

The results of the present work are to be viewed as a
tool applicable to a much wider area than simply that of
semiquantum fluids such as liquid parahydrogen, here used
only as an appropriate example. To support this statement of
generality, we mention the following two points.

(1) The expansion in exponential modes is an approach
fully complementary to the usual Taylor-based short-time
expansion of correlation functions [3], as the former in gen-
eral converges at long times faster than at short ones, so
that a truncation that retains a small number of exponential
terms provides a better approximation to the long-time, or
low-frequency, dynamics. This makes it particularly suitable
for the study of phenomena in which the slowing down of
microscopic dynamics plays a key role such as, for example,
supercooling, freezing processes, glass or sol-gel transitions.
In particular, recent works have made clear that in various
examples of the mentioned processes (e.g., those involving
water molecules) quantum effects are not negligible even at
room temperature [39]. Our results could also lead to a deeper
understanding of the dynamical effects of the hydrogen bond,

where the exponential mode expansion already proved very
effective in a classical treatment [40].

The capability of the method of rigorously incorporating
the quantum properties of a system through the expansion in
exponential modes of its Kubo correlation functions is also
very important according to some recent trends in condensed
matter science. Actually, with increasing evidence [41] the
key role of the zero-point energy (a quantity of a purely quan-
tum nature) is revealed by a series of macroscopic thermody-
namic properties in systems of interest for physical chemistry
and biophysics. Moroever, various spectral properties (essen-
tially of pseudophononic nature) are frequently used [42] as a
very stringent test for the validity of semiempirical potentials
and ab initio methods in various systems, e.g., hydrogen
bonded materials.
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APPENDIX A: DERIVATION OF EQ. (25) AND PROPERTIES OF c(t )

Given the even parity of Re c(t ) we can restrict its calculation to positive values of t . With Eq. (16),

c̈K(t ) = cK(0)
∑

j

I jz
2
j exp(z j |t |), (A1)

k1 given by Eq. (22), and τ defined as in Eq. (23), the convolution integral of Eq. (24) is split into the sum of three terms:

Re c(t ) = cK(t ) + cK(0)τ
∑

j

I jz
2
j

[
ez jt

∫ 0

−∞
dt ′ log(1 − et ′/τ )e−z j t ′

+ ez jt
∫ t

0
dt ′ log(1 − e−t ′/τ )e−z j t ′ + e−z j t

∫ ∞

t
dt ′ log(1 − e−t ′/τ )ez jt ′

]
, (A2)

or, introducing a new variable x = et ′/τ in the first integral and x = e−t ′/τ in the other ones,

Re c(t ) = cK(t ) + cK(0)
∑

j

I j (z jτ )2

[
ez jt

∫ 1

0
dx log(1 − x)x−1−z jτ

+ ez jt
∫ 1

e−t/τ

dx log(1 − x)x−1+z jτ + e−z j t
∫ e−t/τ

0
dx log(1 − x)x−1−z jτ

]
. (A3)

The integrals are evaluated by means of [43]∫
dx log(1 − x)x−1+s = x1+s

s

[
F (1, 1 + s; 2 + s; x)

1 + s
− F (1, 1; 2; x)

]
, (A4)

where both hypergeometric functions are of the type F (1, b; b + 1; x). Since for x → 1 one has [43]

F (1, b; b + 1; x) ≈ −b[log(1 − x) + ψ (b) + γ ], (A5)

both terms in Eq. (A4) have the same logarithmic divergence for x → 1 which cancels out when their difference is taken. Then
the auxiliary function f (s, x) defined in Eq. (26) is everywhere finite, Eq. (A4) becomes∫

dx log(1 − x)x−1+s = x1+s

s
f (s, x), (A6)
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and Eq. (A3) can be rewritten as

Re c(t ) = cK(t ) + cK(0)
∑

j

I j (z jτ )2

{
ez jt

[
x1−z jτ

−z jτ
f (−z jτ, x)

]1

0

+ ez jt

[
x1+z jτ

z jτ
f (z jτ, x)

]1

e−t/τ

+ e−z j t

[
x1−z jτ

−z jτ
f (−z jτ, x)

]e−t/τ

0

}
.

(A7)

The evaluation at x = 0 is carried out by noting that F (a, b; c; 0) = 1 for all a, b and c, which implies f (−z jτ, 0) = z jτ/(1 −
z jτ ), and that x1−z jτ vanishes for x = 0 due to the condition Re (1 − z jτ ) > 0 valid for all modes. For the case x = 1, we use
Eq. (A5) and the property ψ (1) = −γ to obtain

f (±z jτ, 1) = −ψ (1 ± z jτ ) − γ . (A8)

Putting together these results and rearranging terms, Eq. (25) is readily obtained and, proceeding as in Sec. V, one arrives at
the formulation of c(t ) given by Eq. (30).

The classical limit of c(t ) is recovered immediately by letting τ → 0. Then both cB(t ) and the imaginary part of cA(t ) vanish,
while z jτπ cot(z jτπ ) → 1 and c(t ) reduces to

∑
j cK(0) exp(z j |t |), i.e., to cK(t ).

Next, we verify that c∗(t ) = c(t + ih̄β ) at t � 0. For cB(t ), which is a real quantity depending on time through exp(−t/τ )
only, such a condition is satisfied because exp[(−t + ih̄β )/τ ] = exp(−t/τ ). Moreover, evaluating

c∗
A(t ) = cK(0)

⎧⎨
⎩

∑
j

I jz jτπ [cot(z jτπ ) + i ]ez jt

⎫⎬
⎭ (A9)

and

cA(t + i h̄β ) = cK(0)

⎧⎨
⎩

∑
j

I jz jτπ [cot(z jτπ ) − i ]ez jt ei 2πs j

⎫⎬
⎭ (A10)

and taking the difference of the last two expressions, one has

c∗
A(t ) − cA(t + i h̄β ) = cK(0)

⎧⎨
⎩

∑
j

I jz jτπ [cot(z jτπ )(1 − ei 2z jτπ ) + i (1 + ei 2z jτπ )]ez jt

⎫⎬
⎭. (A11)

The terms in square brackets of Eq. (A11) can be written as

−2i [cot(z jτπ ) sin(z jτπ ) − cos(z jτπ )]ei z jτπ = 0. (A12)

An analogous derivation leads to the same result for t < 0.
Finally, remembering that Im u(0) = 0, one can calculate c(0) from the t = 0 value of Eq. (25). It is immediately seen that

cA(0) = cK(0)

⎧⎨
⎩1 +

∑
j

I jz jτ [ψ (1 − z jτ ) − ψ (1 + z jτ )]

⎫⎬
⎭, (A13)

while from Eq. (A8) one finds

cB(0) = cK(0)
∑

j

I jz jτ [ψ (1 + z jτ ) + ψ (1 − z jτ ) + 2γ ], (A14)

and, adding the two formulas, Eq. (31) is obtained.

APPENDIX B: THE QUANTUM MECHANICAL UNDAMPED HARMONIC OSCILLATOR

For treating the idealized case of a three-dimensional isotropic harmonic oscillator with frequency ω0 and zero damping, we
consider a Kubo-transformed VAF uK(t ) composed of two modes with I1 = I2 = 1/2 and z1 = i ω0 and z2 = −i ω0. For this
system, ũK(ω) is a spectrum consisting of two δ functions at positions ω = ±ω0 with equal amplitudes 1/2. Inserting the mode
parameters in Eq. (31) leads to

u(0) = uK(0){1 + iω0τ [ψ (1 − iω0τ ) − ψ (1 + iω0τ )]}, (B1)

which, using again ψ (1 − z) − ψ (1 + z) = π cot(πz) − 1/z together with cot(ix) = −i coth(x), reduces to

u(0) = uK(0)πω0τ coth(πω0τ ). (B2)
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With 〈K〉 = (M/2)u(0) and uK(0) = 3/(Mβ ) this gives for the mean kinetic energy

〈K〉 = 3

4
h̄ω0 coth

(
β h̄ω0

2

)
, (B3)

in agreement with the result reported in Refs. [44,45]. Equation (B2) is the zero time value of the full u(t ), which can also be
obtained by inserting the above values of I j and z j into Eq. (30). One sees immediately that the term containing the f functions
vanishes, leaving

u(t ) = uK(0)
β h̄ω0

2

[
coth

(
β h̄ω0

2

)
cos ω0t − i sin ω0t

]
. (B4)

This expression was given in Ref. [46] as one of the cases in which the so-called “Gaussian approximation” for the self
dynamics is exactly valid.
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