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Under certain conditions, a counterintuitive behavior—an initially hotter sample freezes faster when quenched
to a cold bath than an identical system initialled at a lower temperature—is known as the Mpemba effect (ME).
Here we identify the existence of the ME in mean-field systems (MFS). Specifically, the thermal contact between
MFS and a large thermal reservoir is built up using the microcanonical Monte Carlo algorithm. The simulation
results unambiguously demonstrate that an initial hotter system undergoes the paramagnetic-ferromagnetic phase
transition faster than the initial cooler one. The ME here originates from the back-reaction of the MFS system on
the reservoir, which is thus an embodiment of non-Markovianness in relaxation. In addition, we confirm that the
ME survives in the thermodynamic limit. And the significance of reservoir size is also explored: A smaller heat
reservoir facilitates the overall relaxation process. In general, this work establishes a theoretical non-Markovian
ME framework, which may shed light on widening the understanding of the mechanism behind the ME in other
substances, including water.
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I. INTRODUCTION

Considering putting two beakers of water with different
initial temperatures to a cold bath, intuitively, one may expect
that less time is needed for the colder one to freeze. Surpris-
ingly, it has been observed that this is not always the case
[1]. The records about this counterintuitive phenomenon can
be traced back to antiquity like Aristotle, Roger Bacon, Fran-
cis Bacon, and Descartes [2,3]. Nowadays, this paradoxical
behavior is named the “the Mpemba effect” (ME). It refers to
the effect that occurs when two samples of the same substance
identical in all macroscopic states except for their initial
temperatures, the initially high-temperature substance relaxes
faster when quenched to lower temperatures. However, there
is no agreement on the exact underlying mechanism of the
Mpemba effect in the water, and even its existence has been
recently called into question after careful analysis of the
experimental data by Burridge et al. [4]. Several possible
postulations were proposed during the past several decades
pointing to evaporation and convection [5–10], dissolved
gases [11–13], the relationship between intramolecular polar-
covalent bonds (O-H), and intermolecular hydrogen bonds
(O:H) [14], etc.

This nonequilibrium process [15,16] is not only specific
to water. Recently, a renewed theoretical interest in the effect
emerged, after a rather general statistical-physics framework
has been put forward: the “Mpemba-like” effect. And it has
been reported that the effect may occur in many Markov pro-
cesses (“the Markovian Mpemba effect”) where hot systems
cool faster than colder ones (or vice versa, cold systems heat
faster than hotter ones). Typical systems include nanotube
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resonators [17], spin glasses [18], granular fluids [19], and
Ising model [16]. The underlying mechanisms of the Marko-
vian ME vary. For example, the ME in granular fluids and spin
glasses originate from the additional factors that control the
temperature relaxation [18,19]. While in the Ising model and
three-state system, Klich reported that systems with different
carefully chosen initial preparations quench along different
trajectories [16]. However, fewer studies have identified that
the existence of Mpemba-like effect in a non-Markov process.
Meanwhile, the studies have to date only regarded the quench-
ing rate and thus lacked a description of the effect in a system
undergoing a phase transition akin to the freezing of water.

In this work, we identified the occurrence of the ME
in mean-field systems (MFS) undergoing a paramagnetic-
ferromagnetic phase transition. Completely distinct from the
previous studies, the mechanism of the ME here is an embod-
iment of non-Markovianness in relaxation. In addition, this
work not only provides another interpretation of a prototypical
system where the ME occurs but also is the first study to
examine the effect across a phase transition, which brings such
studies closer to the original effect in freezing water.

II. MEAN-FIELD MODEL

We consider a mean-field model composed of N fermions
and placed in a staggered magnetic field. The Hamiltonian
reads [20–23]
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FIG. 1. Thermodynamic properties of our mean-field system. (a) The entropy diagram of our mean-field model in the m-ε plane, where
the blank regions are inaccessible. The equilibrium states and metastable states are highlighted by the solid and dotted lines, respectively. The
black and gray of those lines indicate the nonmagnetized state and the ferromagnetic state, respectively. The dashed line is the dividing of
spontaneously evolving region and nonspontaneously evolving region. (b) The corresponding final entropy s as a function of energy ε. (c) The
corresponding caloric curve.

where Si = ±1. The first two terms on the right-hand side of
Eq. (1) represent the interaction with a staggered magnetic
field, and K is the intensity of the magnetic field. The third and
the fourth terms are the long-range mean-field coupling terms,
which are common in magnetic materials with easy magnetic
axes. It is worth mentioning that many novel features can
be encountered when manipulating the values of I , J , and
K [20–23]. Here we choose the setting {K = −0.95, J =
1, I = 0.5} for the following discussion. The simplicity of
the spin chain model makes it an ideal and apt benchmark for
other, more complex, MFS.

The main thermodynamic properties of this model, includ-
ing entropy, energy, temperature, heat capacity, and phase
diagram, can be fully solved via the microcanonical approach.
Suppose N+

L and N−
L are the numbers of upward and down-

ward spins in the left part of the system. Correspondingly, N+
R

and N−
R are upward and downward spins on the right side. The

compliance number U and the magnetization of the system
M can be defined as U ≡ N−

L + N+
R and M ≡ 2(N+

R − N−
L ),

respectively. The magnetization per spin and diamagnetic
susceptibility per spin thus are m ≡ M/N and u ≡ U/N . Then
the entropy and the energy per spin can be obtained as
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and
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4
m4, (3)

respectively. See the Supplemental Material [24] for the de-
tailed derivation. Accordingly, the temperature is

T = 1

∂s(ε)/∂ε
. (4)

Figure 1(a) is the entropy s diagram in the m-ε plane,
where the colorful regime is accessible to the MFS. While the
existence of inaccessible region (i.e., blank region) causes the
magnetization of this system cannot vary within the interval
[−1,+1] for any given energy ε. The ergodicity of the MFS
is thus broken. In the thermodynamic limit N → ∞, the final
entropy s(ε) for any given energy ε is obtained by maximizing
s(m, ε) with respect to the magnetization m. And the sponta-
neous magnetization m(ε) can be obtained at the same time.
Alternatively, the global maximum of s(ε) at any given energy
corresponds to the equilibrium state, which is highlighted as
the thick solid black and gray lines in Fig. 1(a). Moreover, the
local maximum entropy values, marked as the dotted black
and gray lines, can be regarded as the metastable states. Fol-
lowing the solid lines in Fig. 1(a), as the energy ε decreases,
the system evolves from the paramagnetic state (m = 0, solid
black line) to ferromagnetic state (m �= 0, solid gray lines)
through a first-order phase transition at ε = −0.787. It is
useful to introduce an energy threshold, named the “transition
threshold,” which is corresponding to the topmost boundary of
the inaccessible area 3 in Fig. 1(a). Here the transition thresh-
old is −0.842. Naturally, for the MFS in region −0.842 < ε <

−0.787, it is possible to evolve from the paramagnetic state to
the ferromagnetic state spontaneously. Conversely, an isolated
nonmagnetized MFS with ε < −0.842 can only be trapped
in this the metastable state permanently since the existence
of the inaccessible region creates an insurmountable energy
barrier. See the Supplemental Material [24] for simulation.
Figures 1(b) and 1(c) shows the corresponding final entropy
evolution (s − ε) track and caloric (T − ε) curve, respectively.
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FIG. 2. The microcanonical Monte Carlo simulation of the heat exchange between the thermal reservoir and two MFSs with different initial
temperatures. (a) The schematic diagram of the simulation. (b) The simulation result of (absolute value of) magnetization evolution, where the
initial hotter and cooler system are represented by the black and gray lines, respectively. (c) The simulation result of energy evolution. (c) Inset:
The energy changing near the phase transition point. (d) The evolution paths for two MFSs in the m-ε plane. (d) Inset: The illustration of energy
barriers �ε1 and �ε2 for HTMFS and LTMFS, respectively. And white star and square markers represent the corresponding metastable states.

III. MONTE CARLO SIMULATION AND
MPEMBA EFFECT

We investigate the ME by simulating the quenching pro-
cesses of two MFSs initialled at different temperatures.
Specifically, microcanonical Monte Carlo (MC) numerical
simulations proposed by Creutz [28] is performed to examine
the thermal contact between a thermal reservoir and two MFSs
with different initial temperatures. To simplify the calculation,
we adopt the noninteracting two-level thermal system with the
energy difference ε0 as the thermal reservoir. Without loss of
generality, ε0 is set to be unity. The numbers of the spins of
MFS and the reservoir are simply set as N = 400 and Nbath =
20N . By carefully manipulating the ratio of the spin up and
spin down, we can initialize the MFS to any temperature.
Here we choose the temperature and corresponding energy
configurations {T = 22.56, ε = −0.4845} and {T = 7.51,
ε = −0.5035} to represent the initial “hotter” and “cooler”
system, respectively, and we refer to them as “HTMFS” and
“LTMFS,” respectively. In addition, the two-level bath is
initially set to 0K, which suggests that all the spins of the
reservoir stay at the lowest energy state.

Figure 2(a) shows the sketch of the details of our simula-
tion process [29]. The thermal contact is achieved by an addi-

tional degree of freedom, named as “demon.” Such a demon is
introduced to carry a small amount of energy εD, which must
always be non-negative. Moreover, εD is initially set as 0 and
without upper energy limit. In each MC step, we randomly
select a spin in the system MFS or the reservoir based on the
ratio of N to Nbath, and flip it. The change of the energy of
the full system is �E . If �E < 0, then the trial movement is
accepted, and the energy of the “demon” is increased by |�E |.
If 0 � �E � εD, then the trial move is also accepted but
energy of the “demon” is decreased by |�E |. Otherwise, the
trial move is rejected, and the energy of the demon does not
change. Consequently, the heat exchange between the MFS
and the thermal reservoir can be conducted with the help of
the demon. The probability of the thermal contact between
demon-MFS and demon-reservoir only depends on N : Nbath.

The simulation results of the absolute values of magnetiza-
tion |m| and energy ε of the MFS changing with the number
of the MC steps are plotted in Figs. 2(b) and 2(c), respectively.
The black lines represent the simulation results of the HTMFS
(T = 22.56, ε = −0.4845), while the gray lines are on be-
half of the LTMFS (T = 7.51, ε = −0.5035). The inset in
Fig. 2(c) details the energy changes near the phase transition
point. The sudden jump of |m| declares the occurrence of
the first-order phase transition from the paramagnetic to the
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ferromagnetic state. The abscissa MC steps are proportional
to the evolution of time [30,31]. In this diagram, the emerge
of the ME is clearly demonstrated as less relaxation time is
needed for the HTMFS system.

To visualize the underlying mechanism of the occurrence
of the ME here, the behaviors of MFS as a function of
time is investigated. The evolution paths of m and ε can be
mapped onto the theoretic entropy map, shown in Fig. 2(d)
(see videos 1 and 2 in the Supplemental Material [24] for
the animations of the evolution processes). By exchanging
the heat with the thermal bath, two MFSs first cool rapidly
alone the paramagnetic line. The finiteness of the system
leads to the non-Markovianity of the dynamic, where the
back-reaction from the MFS heats the original 0K reservoir
during this process. Then the MFS reaches the temporary
equilibrium, i.e., metastable state, with the heated reservoir.
The locus of the metastable states for HTMFS and LTMFS
are marked as the white star and square markers in Fig. 2(d),
respectively. As discussed, the free-energy barrier caused by
the inaccessibility prevents spontaneous evolution from such
a metastable state to equilibrium. However, with the help of
the thermal reservoir, the MFS may draw sufficient energy
from the reservoir through a thermal fluctuation and cross
the transition threshold to the final ferromagnetic state after
a certain period of time. According to Mukamel et al. [30],
the lifetime τ of the metastable state satisfies the Arrhenius
law as

τ ∼ exp (N�ε). (5)

The initially hotter system dumps more energy to the reser-
voir, and consequently heats it up more, than the initially
colder system. Thus, when the two systems are trapped in
the metastable state, the system initialled at a hotter state is
effectively coupled to a hotter reservoir, reducing the energy
barrier to the final ferromagnetic state. That is, the energy
barriers for HTMFS �ε1 is smaller than that of LTMFS
�ε2. As a consequences, the non-Markovian ME (τ1 < τ2)
emerges.

Note that the precise amount of the energy barrier can be
obtained by calculating the exact location of the metastable
state. The interaction energy εint between these two sub-
systems can be neglected under the weak-coupling condition
(εint � ε, εint � εbath), and the full system thus remains iso-
lated. Therefore, the total energy equals to the sum of the
energies of two subsystems, i.e., εfull = αε + (1 − α)εbath,
where α = N/(N + Nbath ). The entropy per spin of the full
system becomes sfull(ε, εbath ) = αs(ε) + (1 − α)sbath.

According to the Eqs. (2) and (3), the entropy of the MFS
that trapped in the metastable states (m = 0) can simplified as

s(ε) = − ε

K
ln

( ε

K
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−
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ln

(
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)
.

It is well known that the entropy the two-level system ex-
presses as

sbath(εbath ) = ln2 − 1
2 (1 + εbath )ln(1 + εbath )

− 1
2 (1 − εbath )ln(1 − εbath ).
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FIG. 3. The average lifetime of the metastable state, shown in log
scale, as a function of the full system size. The black and gray circles
represent the transition time of the MFSs initialled at {T = 22.56,
ε = −0.4845} and {T = 7.51, ε = −0.5035}, respectively. Two
solid lines are the guides to the eye. The ratio α = N/(N + Nbath ) =
1/21.

Based on the second law of thermodynamics, the equilibrium
state is the state in which the total entropy reaches its maxi-
mum. Thus the total entropy per spin is

sfull(εfull ) = max
ε

sfull (ε, εfull )

= max
ε

[
αs(ε) + (1 + α)sbath

(
εfull − αε

1 − α

)]
. (6)

By solving the optimization Eq. (6), the values of energy,
entropy, and temperature of each subsystem can be found.
Therefore, when the initial energy of the full system and the
size of each subsystem are given, the amount of the energy
barrier can be obtained.

Coupling such a MFS to the reservoir is tricky [32].
According to Eq. (5), the lifetime τ of the metastable state
scales exponentially with the number of particles in the sys-
tem, indicating that the system can be trapped in the out-
of-equilibrium metastable for sufficiently long time and thus
cannot relax to the equilibrium [33]. Figure 3 illustrated the
measured metastable state lifetime τ (or the transition time)
as a function of the full system size, where the black and
gray circles represent the average MC steps measured by 150
independent simulations of the initial hotter and cooler sys-
tem, respectively. Two solid lines are a guide to the eye. Here
we fix the ratio α = 1/21, and the initial hotter and cooler
systems inherit the configurations {T = 22.56, ε = −0.4845}
and {T = 7.51, ε = −0.5035} for consistency. Apparently,
the rate of increase of the transition time vary for systems
with different initial temperatures, and the hotter system can
always accomplish the phase transition faster than the cooler
one. That is, the ME survives in the thermodynamic limit.

Another related issue is the impact of heat reservoir size on
ME. Figure 4 demonstrates the relationships between average
metastable state lifetime τ and energy barrier �ε versus the
initial temperature T when Nbath/N = 15 and = 20. Here
we keep N = 400. τ is again measured by 150 independent
MC simulations and plotted as discrete yellow circle markers
(mean values) with vertical error bars. The �ε, obtained by
theoretically solving Eq. (6), is shown as continuous solid
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As shown in Fig. 4, a smaller reservoir will be heated to a
higher temperature by a MFS with a given initial temperature.
As a consequence, a moderate decrease of the reservoir size
leads to smaller energy barriers and thus significantly reduce
the phase transition time.

IV. SUMMARY

In summary, we have shown that the non-Markovian ME
naturally appears in the mean-field system using microcanoni-
cal MC simulation. Specifically, by simulating thermal contact
between a large thermal reservoir with the MFSs with differ-
ent initial temperatures, it takes less time for the initial hotter
system to finish the first-order paramagnetic-ferromagnetic
phase transition. The occurrence of the ME here is a result
of the back-reaction of the system on the reservoir, which is
thus an embodiment of the non-Markovianness. Although two
MFSs with different initial temperatures cool along the same
route, the initial hotter MFS heats the finite 0 K reservoir more
than the initial cooler one, and consequently, the free-energy
barrier is reduced and less time is spent in the metastable state.
In addition, our results also indicate that such strong effect
survives in the thermodynamic limit. That is, although the
transition time increases with the size of the full system, the
rate of increase varies for the systems initialled at different
temperatures. We have also discussed the effects of the size of
the reservoir on the ME: A smaller reservoir yields a smaller
energy barrier and consequently a faster transition.

Compared with previous “Markovian Mpemba effect”
studies in nonwater substances [15,16], it is not necessary
to choose the initial condition delicately in our model. Ap-
parently, the ME emerges in any two MFSs initialled at
different temperatures. Moreover, instead of just focusing on
the cooling rate as in previous studies [16,18,19,34], our work
embodies a phase transition, i.e., from paramagnetic to ferro-
magnetic, during the relaxation process, which highly resem-
bles the water freezing in the original Mpemba experiment [1].
From this perspective, we have provided a general theoretical
non-Markovian ME framework. This is enough to expand the
understanding of the ME. Generally, discovering the explicit
cause of the ME in water freezing is still a puzzling open
problem. In the relaxation process of water, the metastable
state is manifestly present, such as supercooled water, and
hence the ME in water might be related to the mechanism
described in this paper.
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