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Wavelet-based detection of scaling behavior in noisy experimental data
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The detection of power laws in real data is a demanding task for several reasons. The two most frequently
met are that (i) real data possess noise, which affects the power-law tails significantly, and (ii) there is no solid
tool for discrimination between a power law, valid in a specific range of scales, and other functional forms like
log-normal or stretched exponential distributions. In the present report we demonstrate, employing simulated
and real data, that using wavelets it is possible to overcome both of the above-mentioned difficulties and achieve
secure detection of a power law and an accurate estimation of the associated exponent.
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I. INTRODUCTION

Scaling relationships of the form

F (x) = cx−p for �max > x > �min, (1)

characterized as power laws with characteristic exponent p,
valid between the �min and the �max scales, are widespread
in the analysis of signals occurring in measuring processes.
They usually apply as a statistical property related to the tail
of a distribution (x � �min), describing the “weight” of the
value x in a measurement of a physical property X . Specific
examples offer the power spectrum S( f ) of a signal with f
the underlying frequency, encountered in the 1

f noise phe-
nomenon, the statistical distribution N (τ ) of the waiting times
τ between beats in a heartbeat time series, the distribution of
avalance sizes s in self-organized criticality, the distribution of
laminar lengths in the (spatial and temporal) order parameter
fluctuations in critical systems, etc. [1–3]. In experimental sig-
nals, where the statistics are strictly limited, it is often the case
that the tail of a calculated distribution is affected by random
fluctuations, overriding the expected signal. Thus, although
theoretically the presence of the power law is expected to
hold in the tail of a distribution, in experimental observations
it is restricted to the body of the distribution. This leads
to enhanced uncertainty in the characterization of a specific
distribution as a power law. In addition, in physical systems,
due to the finite size, it is often the case that the condition
�max � �min, necessary for a clear signature of power-law
behavior, becomes a simple inequality (�max > �min) so that
the range of validity of Eq. (1) is shrinks significantly. Thus,
there is only a small part of the related distribution which
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follows a power law. Since the region where the power law
applies is usually not strictly known, this significantly affects
the estimate of the exponent p. Furthermore, in this case other
functional forms like log-normal or stretched exponential
distributions may describe the recorded data equally well,
particularly if both factors (noisy tails, finite-size effects) are
present [4].

In this work we demonstrate that the difficulties in the
detection of a power law in experimental data can be over-
come using wavelets. The idea to apply wavelets for the
detection of power laws is not new. There is an extensive
literature on this subject [5–12]. The common point of view
is to use wavelets for analysis of the time series on which the
calculation of an emerging distribution, supposed to follow
a power law, is based. The priority in such a search is the
recognition of self-similar patterns in the considered time
series. Within this framework the use of wavelets as a tool
to reduce noise effects is also attempted [13–18]. Here we use
the wavelets in a later phase, once the targeted distribution
is determined. We show that the information for the appear-
ance of a power law is already contained in the lower-scale
coefficients, which turn out to be insensitive to a mixture
with noise. Furthermore, we demonstrate that one can locate
zones in which scaling behavior applies and the calcula-
tion of the associated scaling exponent is safely performed,
even in the presence of noise, using these low-scale wavelet
coefficients.

In fact, our treatment inverses the problem concerning the
search for power-law behavior in experimental data. Instead
of fitting with a power law and applying suitable tests to
the fitting results, here we consider the imprint of power-law
behavior on the properties of low-scale wavelet coefficients
and we test the appearance of these properties in the statistical
distributions obtained from the measured data. There are two
significant advantages of the proposed method: (i) robustness
against the admixture of noise and (ii) accurate determination
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of windows of scales in which the power-law description
applies.

In the following, we first extract the wavelet-coefficient
properties we use as a benchmark for the power-law appear-
ance. These properties form the theoretical platform for the
subsequent analysis. Then we apply the developed criteria
to a noise-infected power-law distribution, at various noise
amplitudes, demonstrating the robustness of the proposed
approach. Next we apply the proposed method to simulated
data, in particular, to the distribution of the waiting times
in the neighborhood of 0 (stable fixed point of the effective
potential) in a three-dimensional (3D) Ising magnetization
time series at the corresponding (pseudo)critical temperature.
This distribution attains a power-law form as shown in [19].
Finally, we show the practical use of the proposed scheme,
applying it to a variety of distributions originating from ex-
perimentally determined time series.

II. POWER-LAW-INDUCED CONSTRAINTS
TO WAVELET COEFFICIENTS

We start our discussion with the presentation of some
properties of the wavelets which are relevant for the following
analysis. In general, the translation and scaling properties of
the mother wavelet are given by [20]

ψs,t (x) ≡ ψs(x − t ) = s−mψ

(
x − t

s

)
,

with s and t the scaling and the translation parameters, re-
spectively. In discrete form, using the scaling exponent m = 1

2
and expressing scaling and translation parameters in powers
of 2, using s = 2− j and t = 2− jk, an arbitrary element of the
wavelet basis is written as

ψ j,k (x) = 2
j
2 ψ (2 jx − k), j, k ∈ Z, (2)

with j = . . . ,−1, 0, 1, . . . and k = − j, . . . ,−1, 0, 1, . . . , j.
Any function F (x) can be expanded in such a wavelet basis as

F (x) =
∞∑

j=−∞

∞∑
k=−∞

d j,kψ j,k (x), (3)

with

d j,k =
∫ ∞

−∞
dxψ j,k (x)F (x). (4)

In the following we consider a power law of the form, valid
for a finite system,

F (x) =
{

0, x /∈ [�min,�max),
cx−p, �max > x � �min,

(5)

with p ∈ R and c a normalization constant since F (x) is
assumed to be a distribution. Consequently, F (x) has finite
support and the sums in Eq. (3) are restricted to j � 0 and
k � 0. For p < 1 one can further assume �min = 0 since the
function, (5), is integrable around 0 in this case. Then F (x)
possesses the scaling property

F
(x

b

)
= bpF (x), (6)

which, combined with Eq. (2) holding for the mother wavelet,
leads to

d j′,k′ = 1√
b

∫ ∞

−∞
dx2

j
2 ψ

(
2 j x

b
− k

)
b−pF

(x

b

)
, (7)

with j′ = j − ln b
ln 2 and k′ = k. Changing variable x′ = x

b we
find

d j′,k′ = b−p+ 1
2

∫ ∞

−∞
dx′ψ j,k (x′)F (x′) = b−p+ 1

2 d j,k (8)

as the scaling property of the wavelet coefficients when F (x)
is of the form of (5) with p < 1. Particularly, using j′ = j + 1,
which means b = 1

2 , we find

d j+1,k = 2p− 1
2 d j,k . (9)

Defining the ratio Rj,k = d j,k

d j+1,k
we find

Rj,k = 2
1
2 −p, (10)

which is independent of j and k. Thus an inherent property of
the wavelet decomposition of an ideal power law is that

λ = Rj,k

R j+1,k
= 1 for all j, k. (11)

Our proposal is to use this property for the characterization of
a power law obtained from a noisy experimentally observed
signal. We argue that at coarse scales (small j) the influence
of the high-frequency noise is suppressed and relation (11) can
filter the power-law behavior. This is clearly demonstrated in
the following by calculating λ for several sets of simulated
and experimentally measured data. The notion of an “ideal
power law” indicated above includes the constraints p < 1
and �min = 0. It is still necessary to clarify how relation (11)
is modified when p > 1 and �min > 0. Note that the con-
dition p > 1 necessarily implies that �min > 0 for F (x) in
Eqs. (1) and (5), representing a distribution. Additionally,
the modification of Eq. (11) when F (x) is replaced by a
discrete power-law distribution of the form Fd (i) ∼ i−p for
i = imin, imin + 1, . . . , imax should be checked. Such a situa-
tion will frequently occur in the examples considered in the
following. Then one can bridge the difference in the two
descriptions, writing

F (x) = c
imax∑

i=imin

δ(x − i)x−p, (12)

and the integral in Eq. (4) leads to the sum

d j,k = c
imax∑

i=imin

ψ j,k (i)i−p, (13)

where imin and imax are determined by the support of ψ j,k (x),
i.e., the x interval for which ψ j,k (x) is different from 0.
To simplify the notation, in the following, we use uniquely
�min (�max) to denote the minimal (maximal) value of the
distributed variable for both discrete and continuous cases.
Obviously �min and �max will be integers in the discrete case.
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III. HAAR ANALYSIS OF POWER-LAW DISTRIBUTIONS

To proceed we continue our study using Haar wavelets [21]
for the expansion of a power-law function of the form of
Eq. (5), assuming �min � 0 and p > 0. We choose the Haar
basis since it is convenient for analytical calculations and
it enables the derivation of wavelet coefficient conditions in
closed expressions. Nevertheless, all the properties as well as
the key property in Eq. (11) presented in the previous section
are valid for any choice of the wavelet basis. In the case of
the Haar basis the mother wavelet, with nonvanishing values
in the interval (0,�], is given as

ψH (x) = θ

(
�

2
− x

)
θ (x) − θ

(
x − �

2

)
θ (� − x), (14)

leading to the Haar wavelet basis,

ψ j,k (x) = θ

(
k
�

2 j
+ �

2 j+1
− x

)
θ

(
x − k

�

2 j

)

− θ

(
x − k

�

2 j
− �

2 j+1

)
θ

(
(k + 1)

�

2 j
− x

)
, (15)

with θ (z) the Heaviside step function [22]. Employing Eq. (4)
it is straightforward to calculate the coefficients dj,k for the
expansion of F (x), given in Eq. (5), in the Haar basis. We
start our calculations for the case p < 1 and �min = 0, which
is discussed in a more general framework in the previous
section. We find

d j,k = c

1 − p

√
2 j

�

[
2

(
k
�

2 j
+ �

2 j+1

)1−p

−
(

k
�

2 j

)1−p

−
(

(k + 1)
�

2 j

)1−p
]
. (16)

Clearly, for p < 1 and �min = 0 the coefficients d j,k obey the
general scaling relations in Eqs. (9)–(11) as expected. As the
next step we calculate the coefficients dj,k and the ratios Rj,k ,
λ for p > 1 and �min > 0. Obviously, for �min < k �

2 j+1 the
expression in Eq. (16) is still valid and therefore the scaling
laws, (9)–(11), are obeyed. In fact, whenever the condition
�min 	 � is satisfied there exists a maximum jmax for which
the constraint:

�min

�
<

k

2 j+1
(17)

is fulfilled. Then, provided that k � 1, Eq. (9) is valid for
j < jmax − 1, Eq. (10) is valid for j < jmax − 2, and Eq. (11)
is valid for j < jmax − 3. Since j � 0 we find that jmax � 3,
which leads to the constraint � � 16�min, i.e., the scaling law
must hold for at least one and a half decades, a reasonable
range for physical systems. Note that for the applicability of
our approach, we need to consider only the coarse-grained
scales (small j), which are less sensitive to the presence
of noise, thus the existence of a single set { j, j + 1, j + 2}
fulfilling condition (17), i.e., j = 0, is sufficient. In this case
we have that λ = d0,0d2,0

d2
1,0

= 1 is the relevant condition for the

appearance of a power law between the �min and the � scales.
Unfortunately, a complication occurs for k = 0 since condi-
tion (17) is violated. Thus, it requires more effort to handle

this case. Focusing on this, the Haar wavelet coefficients,
when k = 0 and �min > 0, become

d j,0 = c

1 − p

√
2 j

�

[
2

(
�

2 j+1

)1−p

− �
1−p
min −

(
�

2 j

)1−p
]
,

(18)

leading to

Rj,0 = 2
1
2 −p

[
2
(

�
2 j+1

)1−p − �
1−p
min − (

�
2 j

)1−p

2
(

�
2 j+1

)1−p − 2�
1−p
min − (

�
2 j

)1−p

]
. (19)

Equation (19), after some algebraic manipulations, becomes

Rj,0 = 2
1
2 −p

[
1 − 1

2p−1

(
�

�min2 j

)p−1

1 − 2
2p−1

(
�

�min2 j

)p−1

]
, (20)

which now depends on j. However, for � � �min and low
values of j the term in brackets is close to 1

2 and consequently
the relation

λ = Rj,0

Rj+1,0
≈ 1 (21)

is still valid.
Particularly for the discrete case, the coefficients dj,k can

be written as

d j,k = c

√
2 j

�

⎛
⎜⎝

[k �

2 j + �

2 j+1 ]∑
i=max([k �

2 j ],1)

i−p −
[(k+1) �

2 j ]∑
i=[k �

2 j + �

2 j+1 ]+1

i−p

⎞
⎟⎠, (22)

where [z] means the integer part of a variable z. Note that
although � is an integer, the ratio �

2 j is in general not. First,
we consider the case k > 0. Then, for � � 1 and low values
of j, in which we are interested, max([k �

2 j ], 1) = [k �
2 j ] holds

and the sum in Eq. (22) can be performed, leading to

d j,k = c

√
2 j

�

{
ζ

[
p,

(
k
�

2 j

)]
+ ζ

[
p,

(
(k + 1)

�

2 j

)]

− 2ζ

[
p,

(
k
�

2 j
+ �

2 j+1

)
+ 1

]}
, (23)

where ζ (p, s) is the Hurwitz zeta function [22]. For j � jmax

with jmax such that �
2 jmax � 1 we can use the asymptotic

expansion of ζ (p, s) for s → ∞,

ζ (p, s)
s→∞≈ 1

2
s−p + s1−p

p − 1
, (24)

to rewrite d j,k as

d j,k ≈ c

p − 1

(
2 j

�

)p− 1
2
(

k1−p − (k + 1)1−p

+ (p − 1)2 j

2�
(k−p − (k + 1)−p)

)
. (25)

Since 2 j

2�
	 1 Eq. (25) simplifies to

d j,k ≈ c

p − 1

(
2 j

�

)p− 1
2

(k1−p − (k + 1)1−p), (26)
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and therefore

Rj,k ≈ 2
1
2 −p ⇒ λ ≈ 1. (27)

When k = 0 we find

d j,0 = c

√
2 j

�

{
ζ (p, 1)+ζ

[
p,

(
�

2 j

)]
− 2ζ

[
p,

(
�

2 j+1

)
+1

)}
,

(28)

and employing the asymptotic expansion of ζ (p, s) for s � 1
we obtain

d j,0 ≈ c

√
2 j

�
ζ (p), (29)

which in turn leads again to λ ≈ 1. Thus, we have shown that
for a power law the quantity λ approaches 1 for � → ∞ in a
range of scales which necessarily includes the lowest j values.
We show in the following that this property characterizes
in a unique manner the presence of power-law behavior in
a general data set, constituting the backbone of the search
method proposed in the present work. Our strategy is based
on the use of the functional dependence of the wavelet coef-
ficients d j,k on � (for a power-law distribution) to construct
quantities, like λ in Eqs. (11) and (21), which in the limit
� � 1 become independent of �. Within this framework, we
have to analyze the experimentally recorded signal employing
its transforms with Haar wavelets of variable range � with
�min 	 � � �max. Note that in practice �max is the maximal
� value for which the considered distribution (often referred
to also as the “signal” in the following) is different from 0.

IV. APPLYING THE WAVELET PROTOCOL TO DATA

Based on the analysis in the previous section we present
here an algorithm which can be directly applied to experi-
mentally determined distributions, searching for the presence
of scaling behavior. To be consistent with the forthcoming
applications, we restrict the presentation to the discrete case.
The extension to the continuous one is trivial. The proposed
algorithm comprises the following steps:

(i) We numerically estimate the ratio λ, based on Eq. (21)
for j = 0, k = 0, obtained using the formula

λ =
d00
d10

d10
d20

= d00d20

d2
10

=

(∑[ �
2 ]

i=1Fd (i) − ∑�
�
2
Fd (i)

)(∑[ �
8 ]

i=1Fd (i) − ∑[ �
4 ]

i=[ �
8 ]

Fd (i)
)

(∑[ �
4 ]

i=1Fd (i) − ∑[ �
2 ]

i=[ �
4 ]

Fd (i)
)2 ,

(30)

where Fd (i), i = 1, 2, . . . , denotes the measured distribution
values, and 8 < � < �max (�max is the length of the signal).
According to Eq. (30), we expect that, when the signal pos-
sesses a scaling behavior, λ will approach the value λ ≈ 1 for
sufficiently large �, i.e., � � imin. We denote as Iλ(ελ) the
interval of � values within which λ converges to 1 with a
prescribed accuracy ελ.

(ii) For the interval Iλ(ελ) we calculate the ratio R, defined
through the following formula (again using j = 0, k = 0):

R = d00

d10
= 1√

2

(∑[ �
2 ]

i=1Fd (i) − ∑�
�
2
Fd (i)

)
(∑[ �

4 ]
i=1Fd (i) − ∑[ �

2 ]

i=[ �
4 ]

Fd (i)
) . (31)

(iii) We locate the interval IR ⊆ Iλ in � space, for which
the R values stabilize around a mean value 〈R〉 with accuracy
εR, and we calculate this mean value.

(iv) For estimation of the p exponent we use the discrete
version of the test function in Eq. (5), Fd (i) = ci−p, i =
1, 2, 3, 4, . . . , and we solve Eq. (31) numerically for the given
〈R〉 value with respect to p.

At this point some important remarks are in order. First, it
is crucial in the analysis to use the k = 0 coefficients of the
wavelet basis for the lowest values of j. The reason for this is
the following: A low j implies a coarse-grained description,
which is less sensitive to high-frequency fluctuations of the
measured distribution, while higher j values are strongly
influenced by these fluctuations. Since the possible k values
are bounded by j, when j is low, k is also restricted to
low values. The coefficients dj,0 for small j describe the
bulk of the distribution and therefore are less sensitive to
the details of the distribution tail, which is usually affected
by statistics and noise. Thus, the choice k = 0 reduces the
influence of noise and finite statistics on the determination of
the quantities λ and R. Second, when the signal is particularly
noisy, one may observe dispersed λ values close to 1. In this
case, the scaling behavior is only approximate and the noise
generates exponential tails which suggest the use of a test
function, F̃ (i) = ci−pe−qi, i = 1, 2, 3, 4, . . . , in Eq. (31) for
the description of the noisy signal. As in the pure power-law
case we solve Eq. (31) for the pair (p, q) with the condition
q 	 1, which guarantees that the power law, at least approx-
imately, holds, allowing the use of Eq. (31). In practice, the
additional parameter q, introduced to estimate the divergence
from scaling behavior, leads to a self-consistent description
for q values in the interval 0.001–0.01 (empirical result). A
more quantitative discussion of these two issues is given in
the Appendix.

To demonstrate how this algorithm works in practice, we
provide a series of examples, starting from simulated data and
extending up to experimentally measured signals. The simu-
lated data are generated as a sequence of uncorrelated random
numbers sampled from a specific distribution P(r). Let us
denote such a time series by {rn} (with n = 1, 2, . . . , N). We
consider three cases: (i) exponentially, (ii) log-normally, and
(iii) power-law-distributed rn. In all cases the length of the
corresponding time series is N = 150 000. Noise is added to
the considered time series in two ways: (a) multiplicatively,
i.e., by transforming rn to r̃n = rn(1 + aξn) at each step, or (b)
additively, with the transform r̂n = rn + aξn with ξn uniformly
distributed in [0,1). We use the term amplitude noise for case
(a) and the term additive noise for case (b).

In Fig. 1(a) we show the function λ(�) in the noiseless
scenario, comparing the result for a power-law distribution
with exponent p = 1.67 (red circles) to the result correspond-
ing to a slow exponential decay (exponent 0.05; blue stars)
and to that for a log-normal distribution with variance σ = 1
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FIG. 1. Synthetic data with amplitude noise. (a) The function λ(�) given in Eq. (30), calculated from time series of random numbers
distributed exponentially (blue stars), log-normally (green triangles), and as a power law (red circles). The solid black line at λ = 1 is a guide
for the eye. (b) The functions λ(�) for similar time series obtained from the time series in (a) adding amplitude noise with a = 0.9. (c) The
function R(�) for the power-law case in the noiseless (black line) and the noisy (upper, red line) case. Both lines converge to R ≈ 0.71, leading
to p = 1.68. (d) Distributions of the time-series values used in (b).

(green triangles). We observe that, for the power law, λ(�)
converges quite rapidly to 1 and it is clearly distinguished
from the other two cases. Note that, since the time series
is finite, the distribution P(r) of the rn values is truncated
at �max, becoming 0 for larger r values. In the log-normal
distribution we observe a tendency of λ to approach 1 as �

increases, however, P(r) (not shown in Fig. 1) becomes 0
before reaching it, due to the smaller value of �max (�max ≈
65) in this case. Note that the steplike dependence of λ on
� is due to the presence of the “integer part” function in
Eq. (30). In Fig. 1(b) we show the functions λ(�) for the
three cases (exponential, log-normal, power law) presented in
Fig. 1(a), now with the inclusion of amplitude noise with a =
0.9. We observe that the time series with {rn} originating from
a power distribution is practically unaffected by the presence
of noise, in contrast to the exponentially generated rn. The
time series generated by rn distributed according to the log-
normal distribution is affected less than the exponential case.
A remarkable difference is that, in the presence of noise, the
distribution P(r) for rn containing a log-normal component is
nonvanishing for a wider range of � values, i.e., noise leads to
an increase in �max. This is clearly shown in Fig. 1(d), where

we plot the distributions P(r) for the three considered cases
in the presence of amplitude noise with a = 0.9. Finally, in
Fig. 1(c) we show the behavior of the function R(�) for the
time series containing a power-law component in the noiseless
(black line) as well as in the noisy (amplitude noise with
a = 0.9; upper, red line) case; we observe the saturation of
R(�) for � � 8. Setting the asymptotic value of R in Eq. (31)
we solve for p, finding R = 1.68 for both the noiseless and
the noisy case. Due to finite statistics a small value of q
(here q ≈ 0.01) is required for the description of the simulated
data. Note that the required q value decreases with increasing
statistics and simultaneous decreasing size of the bin �r used
in the calculation of P(r).

To explore further the insensitivity of λ(�) to noise effects
in the case of power-law-distributed {rn}, we consider also
the influence of strong additive noise with a = 5. In this
case the P(r) distributions are strongly disordered as one can
see in Fig. 2(a). No clear evidence of power-law behavior
is observed in the distribution of rn values containing a
power-law component (red circles). Furthermore, the noise-
affected distribution with a log-normal component vanishes
quite rapidly at r = �max ≈ 100. In Fig. 2(b) we observe
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FIG. 2. Synthetic data with additive noise. (a) Distributions of
the time-series values in the presence of additive noise with a = 5
for exponentially (blue stars), log-normally (green triangles), and
power-law (red circles) distributed rn. (b) Corresponding λ(�) func-
tions for the log-normal (green triangles) and the power-law (red
circles) cases. Note that the exponential does not fit at all in the
presented window of λ. (c) The function R(�) for the power-law
case comparing the noiseless (black line) with the noisy (upper, red
line) case.

that, despite the damaged profile, the function λ(�), in the
power-law case (red circles), still converges to 1 for � > 80.
In the same plot (Fig. 2(b)), it is shown, similarly to Fig. 1(a),
that for the time series with a log-normal component (green
triangles), the function λ(�) shows a tendency to approach
the line λ(�) = 1 but remains at a distance from it, since
the corresponding distribution P(r) becomes 0 before and
the green points (triangles) stop when � = �max ≈ 100. In
fact the decay of P(r) is strongly influenced by the noise
amplitude. Upon increasing a the maximally allowed value
of �, i.e., the maximum value of r for which P(r) �= 0 (in
fact �max), decreases significantly. Furthermore, Fig. 2(c)
displays the remarkable stability of the function R(�) in
the power-law case. We have considered also cases with
even stronger additive noise and the observed robustness is
sustained. However, with increasing a the range of allowed
� values shrinks and the distributions P(r) vanish rapidly,
preventing the applicability of the proposed wavelet-based
algorithm for a > 10.

FIG. 3. Three-dimensional Ising simulated data. (a) Waiting-
time distribution P(τ ) for the 3D Ising model at T = 4.545 (red
circles; pseudocritical) and T = 4.45 (blue stars). (b) The functions
λ(�) for each case. (c) The function R(�) for both temperatures.

Continuing with the applications of our approach we
present one more characteristic example allowing the detec-
tion of power-law behavior in distributions obtained from sim-
ulated time series. It is obtained from the magnetization time
series in the 3D Ising model simulation with the Metropolis
algorithm. As shown in [19], the waiting times τ (measured
in sweeps) in a narrow region around zero magnetization
are power-law distributed with an exponent p = 1 + 1

δ
, when

T = Tc. For the 3D Ising model δ ≈ 5 (isothermal critical
exponent), while Tc is the corresponding (pseudo)critical tem-
perature for the ferromagnetic transition depending on the
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FIG. 4. Various experimental data. Waiting-time distribution P(τ ) for (a) human ECG time series of healthy individuals (red circles),
(b) membrane potential fluctuations of pyramidal neurons in the CA1 region of the rat hippocampus, and (c) preseismic electromagnetic
emission in the MHz channel. (d)–(f) Corresponding functions λ(�). The black line at λ = 1 is a guide for the eye. (g)–(i) The function R(�)
in the convergence region. A dotted line is used in each case to guide the eye.

lattice size. For T < Tc the waiting-time distribution P(τ )
attains an exponential tail. In Fig. 3(a) we plot P(τ ) for T ≈ Tc

(red circles) and T < Tc (blue stars) using a simulated magne-
tization time series in a cubic lattice with L = 20. We observe
a clear difference in the two distributions. This difference is
clearly reflected also in the behavior of the corresponding
functions λ(�) shown in Fig. 3(b). For T = 4.545 ≈ Tc the
power-law behavior is imprinted in the property λ ≈ 1 for
a wide range of � values, while a deviation from criticality
leads to the removal of the value 1 for T = 4.45 < Tc. In
Fig. 3(c) we also show the function R(�) for the two cases.
Clearly, for T = 4.545 there is no convergence. Using R(�)
for T ≈ Tc in Eq. (31) we find the exponent p = 1.18, which is
very close to 1 + 1

δ
for the 3D Ising universality class (δ ≈ 5).

Before closing this section we present some examples
demonstrating the application of the wavelet-based power-law
detection (WBPLD) method to experimentally measured time
series. In all examples the waiting-time distributions P(τ )
around the most frequent value of the corresponding time
series are calculated. In Figs. 4(a)–4(c) we plot these distri-
butions. In Fig. 4(a) we show the distribution obtained from
ECG time series for humans characterized as healthy [23]. In
Fig. 4(b) is displayed the waiting-time distribution around the
most frequent value of the membrane potential fluctuations

of pyramidal neurons in the CA1 region of a rat hippocam-
pus [24]. Finally, Fig. 4(c) shows the waiting-time distribution
around the most frequent value of the preseismic electromag-
netic emission in the MHz channel [25]. In Figs. 4(d)–4(f)
we show the corresponding λ(�) functions. The approach to
1 is evident, supporting the presence of power-law behavior
in all three cases. The corresponding power-law exponents,
calculated through R in Eq. (31), coincide with the values
calculated in the literature with an accuracy of < 1%. For
completeness, in Figs. 4(g)–4(i) we show R(�) in the con-
vergence region for each of the considered cases.

All the results of our analysis, including the estimation
of the associated power-law exponents, are summarized in
Table I.

V. CONCLUSIONS

We have developed a computational tool for the efficient
detection of power-law behavior in distributions generated
from experimentally recorded data. In contrast to the standard
fitting procedures like least squares or maximum likelihood,
which requires the adjustment of the parameters of the sim-
ulating function to optimally describe the observed distribu-
tion, in our method we first derive a number of properties
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TABLE I. �max, saturating R value, and power-law exponent
p obtained from the waiting-time distributions in time series of
simulated and experimentally recorded data. In the final column we
also list the results obtained from a power-law fit neglecting the tail
of the distribution.

Signal �max R p (fit) p (WBPLD)

3D Ising 139 0.8082 1.18 1.18
Human ECG 180 0.7305 1.32 1.32
Rat neuron 115 0.7496 1.55 1.53
Earthquake 150 0.7753 1.31 1.31
Synthetic power law

(with additive noise) 492 0.70784 1.81 1.68

characterizing the wavelet transform of the target distribution
(power law in our case) independently from the value of
the associated exponent and we subsequently search for the
appearance of these properties in the experimental data. Using
the Haar basis we can formulate the derived conditions ana-
lytically in terms of the analyzed signal. Having verified the
presence of power-law behavior, the corresponding exponent
is obtained solving an algebraic equation. The great advantage
of this procedure is that due to the scaling properties of the
wavelet basis, it is possible to observe power-law behavior
which is valid only between two arbitrary scales which do not
need to differ significantly. Finally, we have shown that the
proposed scheme is capable of filtering windows of power-law
behavior, at the same time allowing the safe estimation of
the corresponding exponent, even in the presence of intensive
noise. We have demonstrated the efficiency of our approach
in a number of examples with increasing complexity. Thus,
the proposed treatment introduces a novel strategy in the
model description of experimentally observed data, providing
an alternative to the standard fitting procedures. It would
be interesting to perform our analysis employing different
wavelet bases and checking their convergence properties for
a wide set of experimental data, in an attempt to optimize
the proposed scheme. This task will be considered in a future
work.

APPENDIX: INFLUENCE OF NOISE

The influence of noise in the proposed wavelet analysis
protocol for the detection of power laws is quantified by the
small-scale fluctuations of R(�) in Eq. (31) in the saturation
regime. In fact the function R(�) calculated from real data
never becomes constant. The mean value 〈R〉 over an interval
of � values saturates to a sufficient degree. The associated
standard deviation (δR)2 = 〈R(�)2〉 − 〈R(�)〉2 offers a suit-
able measure for quantification of the influence of noise on
power-law data. This is clearly demonstrated in Fig. 5, where
we plot the measure δR as a function of the noise amplitude
for a power-law distribution contaminated with additive noise.

However, deformation of a power-law distribution is at-
tributable not just to noise. As discussed in Sec. IV the noise
induces exponential tails in a power-law distribution but the
inverse is not always true. Exponential tails can also originate
from other sources of deterministic origin like finite-size
effects. This fact prevents the quantifibulletcation of noise ef-

FIG. 5. Effect of noise. Dependence of the variance δR on the
noise amplitude for the case of a power-law distribution contami-
nated with additive noise.

fects based on the magnitude of the characteristic exponent q
in the function h(i) = ci−p exp(−qi), leaving the quantity δR
as the suitable one for the description of the influence of noise
on a power-law distribution. Nevertheless, the use of h(i) for
the description of a power law deformed by an exponential tail
turns out to be very efficient, despite the fact that there is no
possibility of decoding the noise influence through the value
of q. The latter is the reason why a theoretical link of the q
value to the noise amplitude is lacking and we are left with
empirical estimates.

A final remark in this Appendix concerns another aspect
related to the influence of noise, namely, the exclusive use of
k = 0 wavelet coefficients in the calculation of the quantities
λ(�) and r(�) within our approach. An explanation is given
in the paragraph below Eq. (31). Here we complete this line
of argument, presenting in Fig. 6 a plot of the function λ(�)
calculated using j = 1 and k = 1 in Eq. (11). The power-law

FIG. 6. Advantage of the j = 0, k = 0 description. The function
λ(�) calculated using wavelet coefficients dictated by the choice
j = 1, k = 1 in Eq. (11) (red circles). The calculation is based
on a power-law distribution describing the waiting-time distribution
of the magnetization time series in the 3D Ising model at the
(pseudo)critical point. For comparison, λ(�) calculated using j = 0,
k = 0 (green triangles) is also shown.
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distribution, on which the calculation of λ(�) is based, is
determined by the waiting times of the magnetization time
series of the 3D Ising model at the critical temperature (see

Fig. 3). We clearly observe the inability of the j = 1, k = 1
calculation (red circles) to reproduce the saturation at λ = 1
observed for the j = 0, k = 0 (green triangles) case.

[1] M. Schroeder, Fractals, Chaos, Power Laws: Minutes from an
Infinite Paradise (Dover, Mineola, NY, 2009).

[2] P. Bak, How Nature Works: The Science of Self-organized
Criticality (Springer, Berlin, 2013).

[3] B. Mandelbrot, The Fractal Geometry of Nature (Henry Holt
and Company, New York, 1983).

[4] A. Clauset, C. R. Shalizi, and M. E. J. Newman, Power-law
distributions in empirical data, SIAM Rev. 51, 661 (2009).

[5] M. Farge, J. C. R. Hunt, and J. C. Vassilicos, Wavelets, Fractals,
and Fourier Transforms (Clarendon Press, Oxford, UK, 1993).

[6] E. Foufoula-Georgiou and P. Kumar (eds.), Wavelets in Geo-
physics (Academic Press, New York, 1994).

[7] P. Abry, P. Goncalves, and J. L. Véhel, Scaling, Fractals and
Wavelets (Wiley, New York, 2002).

[8] G. Rangarajan and M. Ding, Processes with Long-Range
Correlations: Theory and Applications (Springer, Berlin,
2003).

[9] J. Pando and L.-Z. Fang, Discrete wavelet transform power
spectrum estimator, Phys. Rev. E 57, 3593 (1998).

[10] A. Arneodo, G. Grasseau, and M. Holschneider, Wavelet Trans-
form of Multifractals, Phys. Rev. Lett. 61, 2281 (1988).

[11] P. C. Ivanov, M. G. Rosenblum, C.-K. Peng, J. Mietus, S.
Havlin, H. E. Stanley, and A. L. Goldberger, Scaling behaviour
of heartbeat intervals obtained by wavelet-based time-series
analysis, Nature 383, 323 (1996).

[12] S. Janjarasjitt and K. A. Loparo, Examination of scale-
invariant characteristics of epileptic electroencephalograms us-
ing wavelet-based analysis, Comput. Electr. Eng. 40, 1776
(2014).

[13] D. L. Donoho and I. M. Johnstone, Ideal spatial adaptation by
wavelet shrinkage, Biometrika 81, 425 (1994).

[14] M. Lang, H. Guo, J. E. Odegard, C. S. Burrus, and
R. O. Wells, Noise reduction using an undecimated dis-

crete wavelet transform, IEEE Signal Process. Lett. 3, 10
(1996).

[15] B. Walczak and D. L. Massart, Noise suppression and signal
compression using the wavelet packet transform, Chem. Intel.
Lab. Syst. 36, 81 (1997).

[16] J. E. Fowler, The redundant discrete wavelet transform and
additive noise, IEEE Signal Process. Lett. 12, 629 (2005).

[17] M. Srivastava, C. L. Anderson, and J. H. Freed, A new wavelet
denoising method for selecting decomposition levels and noise
thresholds, IEEE Access 4, 3862 (2016).

[18] U. Tanyeri and R. Demirci, Wavelet-based adaptive anisotropic
diffusion filter, Adv. Electr. Comput. Eng. 18, 99 (2018).

[19] Y. F. Contoyiannis, F. K. Diakonos, and A. Malakis, Intermittent
Dynamics of Critical Fluctuations, Phys. Rev. Lett. 89, 035701
(2002).

[20] G. Kaiser, A Friendly Guide to Wavelets (Birkhäuser, Boston
1994).

[21] C. K. Chui, An Introduction to Wavelets (Academic Press, New
York, 1992).

[22] M. Abramowitz and I. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables,
9th ed. (Dover, Mineola, NY, 1972).

[23] Y. F. Contoyiannis, S. M. Potirakis, and K. Eftaxias, The Earth
as a living planet : Human-type diseases in the earthquake
preparation process, Nat. Hazards Earth Syst. Sci 13, 125
(2013).

[24] E. K. Kosmidis, Y. F. Contoyiannis, C. Papatheodoropoulos,
and F. K. Diakonos, Traits of criticality in membrane potential
fluctuations of pyramidal neurons in the CA1 region of rat
hippocampus, Eur. J. Neurosci. 48, 2343 (2018).

[25] Y. F. Contoyiannis, P. G. Kapiris, and K. A. Eftaxias, Monitor-
ing of a preseismic phase from its electromagnetic precursors,
Phys. Rev. E 71, 066123 (2005).

052104-9

https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://doi.org/10.1103/PhysRevE.57.3593
https://doi.org/10.1103/PhysRevE.57.3593
https://doi.org/10.1103/PhysRevE.57.3593
https://doi.org/10.1103/PhysRevE.57.3593
https://doi.org/10.1103/PhysRevLett.61.2281
https://doi.org/10.1103/PhysRevLett.61.2281
https://doi.org/10.1103/PhysRevLett.61.2281
https://doi.org/10.1103/PhysRevLett.61.2281
https://doi.org/10.1038/383323a0
https://doi.org/10.1038/383323a0
https://doi.org/10.1038/383323a0
https://doi.org/10.1038/383323a0
https://doi.org/10.1016/j.compeleceng.2014.04.005
https://doi.org/10.1016/j.compeleceng.2014.04.005
https://doi.org/10.1016/j.compeleceng.2014.04.005
https://doi.org/10.1016/j.compeleceng.2014.04.005
https://doi.org/10.1093/biomet/81.3.425
https://doi.org/10.1093/biomet/81.3.425
https://doi.org/10.1093/biomet/81.3.425
https://doi.org/10.1093/biomet/81.3.425
https://doi.org/10.1109/97.475823
https://doi.org/10.1109/97.475823
https://doi.org/10.1109/97.475823
https://doi.org/10.1109/97.475823
https://doi.org/10.1016/S0169-7439(96)00077-9
https://doi.org/10.1016/S0169-7439(96)00077-9
https://doi.org/10.1016/S0169-7439(96)00077-9
https://doi.org/10.1016/S0169-7439(96)00077-9
https://doi.org/10.1109/LSP.2005.853048
https://doi.org/10.1109/LSP.2005.853048
https://doi.org/10.1109/LSP.2005.853048
https://doi.org/10.1109/LSP.2005.853048
https://doi.org/10.1109/ACCESS.2016.2587581
https://doi.org/10.1109/ACCESS.2016.2587581
https://doi.org/10.1109/ACCESS.2016.2587581
https://doi.org/10.1109/ACCESS.2016.2587581
https://doi.org/10.4316/AECE.2018.04012
https://doi.org/10.4316/AECE.2018.04012
https://doi.org/10.4316/AECE.2018.04012
https://doi.org/10.4316/AECE.2018.04012
https://doi.org/10.1103/PhysRevLett.89.035701
https://doi.org/10.1103/PhysRevLett.89.035701
https://doi.org/10.1103/PhysRevLett.89.035701
https://doi.org/10.1103/PhysRevLett.89.035701
https://doi.org/10.5194/nhess-13-125-2013
https://doi.org/10.5194/nhess-13-125-2013
https://doi.org/10.5194/nhess-13-125-2013
https://doi.org/10.5194/nhess-13-125-2013
https://doi.org/10.1111/ejn.14117
https://doi.org/10.1111/ejn.14117
https://doi.org/10.1111/ejn.14117
https://doi.org/10.1111/ejn.14117
https://doi.org/10.1103/PhysRevE.71.066123
https://doi.org/10.1103/PhysRevE.71.066123
https://doi.org/10.1103/PhysRevE.71.066123
https://doi.org/10.1103/PhysRevE.71.066123

