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We propose the Wishart planted ensemble, a class of zero-field Ising models with tunable algorithmic hardness
and specifiable (or planted) ground state. The problem class arises from a simple procedure for generating a
family of random integer programming problems with specific statistical symmetry properties but turns out to
have intimate connections to a sign-inverted variant of the Hopfield model. The Hamiltonian contains only
2-spin interactions, with the coupler matrix following a type of Wishart distribution. The class exhibits a
classical first-order phase transition in temperature. For some parameter settings the model has a locally stable
paramagnetic state, a feature which correlates strongly with difficulty in finding the ground state and suggests an
extremely rugged energy landscape. We analytically probe the ensemble thermodynamic properties by deriving
the Thouless-Anderson-Palmer equations and free energy and corroborate the results with a replica and annealed
approximation analysis; extensive Monte Carlo simulations confirm our predictions of the first-order transition
temperature. The class exhibits a wide variation in algorithmic hardness as a generation parameter is varied, with
a pronounced easy-hard-easy profile and peak in solution time towering many orders of magnitude over that of
the easy regimes. By deriving the ensemble-averaged energy distribution and taking into account finite-precision
representation, we propose an analytical expression for the location of the hardness peak and show that at fixed
precision, the number of constraints in the integer program must increase with system size to yield truly hard
problems. The Wishart planted ensemble is interesting for its peculiar physical properties and provides a useful
and analytically transparent set of problems for benchmarking optimization algorithms.
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I. INTRODUCTION

The interface between physics and computational com-
plexity has yielded fruitful insights over decades of research.
Hard optimization problems—which are ubiquitous through-
out the natural sciences and domains such as operations
research—are of significant importance to humans and are
widely believed to admit no efficient algorithms for their
solution over all members of their class. It was recognized
that such problems show analogous features to those found
in statistical mechanical systems, for example, the existence
of algorithmic phase transitions [1,2], under which typical
problems show a dramatic increase in the difficulty faced by
known exact and heuristic algorithms.

In some cases, insights from the physics of spin glasses
and disordered systems have inspired remarkable new algo-
rithms; for example, Mézard, Parisi, and Zecchina [3] stud-
ied algorithmic hardness transitions in random 3-satisfiability
(3-SAT) problems using tools from statistical physics and
subsequently proposed survey propagation as a promising
method for solving such problems. In addition, physics-based
approaches have suggested ensembles of very hard problems;
for example, locked constraint satisfaction problems [4] owe

their difficulty to the fragmentation of the solution space into
widely separated sets. The NK model [5,6] is a well-studied
class of tunably rugged cost functions proposed to capture the
complexity of a variety of physical and biological systems.

An important special class of hard problem ensembles are
those whose solutions are known to the constructor; these
are often known as optimization problems with planted solu-
tions. Aside from their theoretical interest, such problems are
noteworthy for several reasons. They may, for example, serve
as candidates for cryptographic one-way functions, that is
functions whose outputs are cheaply computable for any input
but for which determining an input yielding a given output is
hard. Furthermore, they serve as useful benchmark problems
for evaluating heuristic or exact algorithms. In recent years,
the need for such benchmarks has increased with the advent
of physical devices implementing quantum annealing [7] and
related (e.g., Ref. [8]) algorithms. In such situations, it is
desirable to not only have access to a set of problems of
tunable hardness but to also be able to compare an algorithm’s
performance with the correct answer.

A physics-based approach for generating hard 3-SAT prob-
lems with planted solutions was proposed by Barthel et al. [9];
more recently, Krzakala and Zdeborová presented a technique
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known as quiet planting [10] for devising graph q-coloring
problems with known solutions whose properties are indistin-
guishable from those of a random ensemble. This concept can
be generalized to a variety of sparse problems, and has a close
connection to reconstruction on trees [11].

While the aforementioned techniques and analyses have
yielded numerous elegant insights, they all share the unde-
sirable property of considering problems that are structurally
far-removed from contemporary physics-based optimization
devices. K-satisfiability problems, for example, require en-
ergy functions to include terms whose value depends on
groups of K variables; in all the previously mentioned work
over binary variables, K � 3. Realistic spin system models
and optimization hardware on the other hand are typically
restricted to pairwise interactions; emulating higher-order
interactions on such systems can require tremendous over-
head. In contrast, q-coloring problems directly correspond to
the antiferromagetic Potts model of statistical physics and
are thus expressible in terms of 2-body interactions, but q
must be larger than 2 to yield hard problems as 2-coloring
instances can be solved in linear time. On devices natively
encoding problems consisting of binary variables, this can be
problematic. Various techniques have recently been published
[12–15] for constructing planted Ising instances on sparse
graph topologies, which in some cases appear to yield quite
difficult problems [14], but in common with short-ranged
disordered models in general, most of their known properties
are inferred from numerical simulation and much remains
unexplored about which features make them amenable as
benchmarks for given algorithms.

In this paper, we propose a simple randomized procedure
for generating systems of binary-constrained integer programs
with a known solution [16]. The system coefficients are gen-
erated according to a specific type of correlated multivariate
Gaussian distribution. When translated to an effective Ising
Hamiltonian, we obtain a novel type of disordered system
with known ground state which we call the Wishart planted
ensemble; the name is inspired by the distribution followed
by the resultant random matrix of couplers.

The Hamiltonian includes interactions among all pairs
of variables; this aspect makes it a less-than-perfect fit for
testing on devices which implement short-range topologies.
Unlike hard problem ensembles based on K-SAT or graph
coloring however, the variable domains are binary valued and
the interactions are pairwise. Vitally, the ensemble displays
an rich array of thermodynamic and computational proper-
ties of considerable relevance to both classical and quantum
algorithms. Computationally, the problems can be tuned to
range in difficulty from very easy to extremely difficult at
quite modest system sizes. We emphasize that nearly all
statements about problem “hardness” in this paper refer to the
empirically observed typical-case difficulty encountered by
heuristics (and in all likelihood exact algorithms) and have no
bearing on theoretical computer science questions concerned
with worst-case difficulty.

A striking physical property of the Wishart ensemble is
the existence of a first-order phase transition, a discontinuous
jump in the free-energy derivative at some system-dependent
critical temperature. A key parameter in the generation pro-
cedure is α, which specifies the number-of-equations–to–

number-of-variables ratio; α is analogous to parameters such
as the clause-to-variable ratio in the satisfiability problems
and exerts critical influence on the physical and algorithmic
complexity. By deriving the Thouless-Anderson-Palmer [17]
equations for the ensemble with special care to account for
the correlated couplers, we obtain the mean-field free energy,
from which we find that at any finite α, the internal energy
drops discontinuously from some excited value at some α-
dependent critical temperature Tc. We verify this temperature
and the nature of the transition with extensive parallel tem-
pering Monte Carlo [18,19] simulations, which reveal that the
system converges to its asymptotic predicted properties quite
rapidly. For large α > 1, the magnitude of the discontinuity
decreases monotonically and the thermodynamics smoothly
change character toward a traditional second-order ferromag-
netic transition. When α < 1, the paramagnetic state, i.e.,
the set of all configurations having no correlation with the
planted solution, is stable at any nonzero temperature. This
feature signals difficulty for classical heuristic algorithms as
it behaves as a deceptive dynamical “trap.” More specifically,
following free-energy gradients as done by methods like sim-
ulated annealing [20] will overwhelmingly lead to solutions
far from the true optimum. Only by fortuitous initialization
within the ground-state basin of attraction will the problem be
solved with high probability. It turns out that α modulates the
size of the ground-state basin, with larger values increasing
the probability of solution by lucky initialization. When α�1,
on the other hand, the paramagnetic state becomes unstable
for some temperature Tu < Tc; at that point local algorithms
can successfully find the solution by “rolling downhill” and
hence such problems are typically easy. Remarkably, Barthel
et al. [9] also argue that the hardness of their hard 3-SAT
planted ensemble is predicated on the existence of a first-
order ferromagnetic transition. We confirm the results of the
Thouless-Anderson-Palmer (TAP) analysis with two alterna-
tive approaches: the replica method [21] and the annealed
approximation.

First-order phase transitions are well known to exist in
the q-state Potts model for q � 3 and in some Ising-like
systems such as the Blume-Capel model [22,23] in which
variables nonetheless assume more than two states. They
are, however, quite unusual in the pairwise Ising model in
zero field (though see Ref. [24]); in particular neither the
Sherrington-Kirkpatrick [25] nor the Edwards-Anderson [21]
spin glasses exhibit such a transition. The Hopfield model [26]
displays a first-order transition between the spin glass and
retrieval phases when a relatively small number of patterns
(α < 0.05) are stored [27], though as discussed in Sec. III,
the Hopfield model is less appropriate as a class of problems
with controllable hardness than the Wishart planted ensemble.
The puzzling presence of such a transition in our system
is accounted for by noting that the couplers are correlated
to enforce the existence of the planted solution rather than
independently disordered. Simulating systems with a first-
order transition is widely known to be challenging.

The Wishart planted ensemble is of particular interest
because it shares several features with models that have
been shown by Nishimori and Takada [28] to be promis-
ing candidates for exhibiting (limited) exponential speedup
when simulated using so-called nonstoquastic quantum driver
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Hamitonians; such systems cannot be simulated classically
and hence represent a “strong” type of quantum effect. The
advantage of the Wishart planted ensemble over the p-spin
models considered in Ref. [28] is once again that the inter-
actions are naturally pairwise rather than requiring terms of
order p � 3.

Suitable nonstoquastic devices are not available as of the
writing of this paper, but the presented model can be used to
explore interesting problems on near-term stoquastic devices
as well. In particular, the combination of a rough multimodal
landscape (replica symmetry breaking) in the space orthog-
onal to the planted solution alongside tunable control of the
energy of the planted solution (at leading order in N) opens up
the possibility to explore the hard population transfer problem
recently proposed by Smelyanskiy et al. [29]. This model
is useful for distinguishing physical quantum dynamics from
classical dynamics such as quantum Monte Carlo in transverse
field Ising models due to the multipath tunneling phenomena
(miniband resonance). In principle one can prepare a state in
a planted mode, tune the mode energy to equality (resonance)
with other modes, and explore the rate of escape.

While this paper is mostly concerned with classical prop-
erties, these intriguing connections to both types of quantum
devices will certainly be explored in future work.

Computationally, the Wishart planted ensemble emerges
from our procedure for generating a certain type of random
integer linear program [30] and has numerous connections
with well-studied [31–35] optimization problems such as the
number partitioning and subset sum [36] problems. In com-
mon to these problems, the allowable precision over the prob-
lem parameters has important influence over combinatorial
properties. There is also, however a crucial distinction from
these problems; when the parameter α is fixed, the number
of equations in the integer program scales linearly with the
number of variables rather than remain constant (at unity, in
the case of the previous two problems).

Random problem ensembles without a planted solution
typically display a parametrized “easy-hard” difficulty tran-
sition (e.g., Refs. [32,37]) in their optimization variants. The
Wishart ensemble, on the other hand, shows an “easy-hard-
easy” character. One of the easy regimes is due to the presence
of a very large number of acceptable solutions coexisting with
the planted ground state; given the task of locating any one of
them, an optimization method has a relatively high likelihood
of success. The other is due to the planting procedure effec-
tively constraining the search space, providing “hints” to the
algorithm toward the solution. The hard regime, however, is
seen to be extremely difficult: Numerical experiments using a
distributed, state-of-the art parallel tempering implementation
show a dramatic hardness peak for small (N = 32) system
sizes. When N = 64, parallel tempering Monte Carlo fails to
locate even an approximate solution under lax and permissive
target criteria within the allotted simulation time of around
11 h on contemporary high-speed hardware.

While we derive the Wishart planted ensemble in terms
of a somewhat abstract random integer program, the resultant
model turns out to have a remarkable structural similarity to
the Hopfield model [26,27] of biological neurons and, more
particularly, a sign-inverted variant [38] proposed to model
neural “unlearning.” As discussed in Sec. III, there turn out to

be several important differences between the models; nonethe-
less, it is exciting that such completely different starting points
as integer programming and unlearning in neural networks
result in models with close connections.

The rest of the paper is structured as follows. In Sec. II we
describe our procedure to generate Wishart planted instances
based on random integer programming problems. We also
discuss the ensemble’s computational properties and how to
represent its members, whose parameters are defined to take
continuous values, with finite precision. Section III analyzes
the physical properties of the class; the TAP free energy
(derived in the Appendix) is analyzed and shown to have
global minima along a one-dimensional subspace of the set
of spin magnetizations. Furthermore, it has a locally stable
paramagnetic state for all temperatures when α < 1 and for
T > α − 1 when α � 1. These properties give rise to the
first-order transition between the paramagnetic and planted
states; we determine the transition temperature in terms of
α. We show that as α grows, the system begins to increas-
ingly behave like a ferromagnet, i.e., with a second-order
transition. The predicted first-order transition temperature is
validated with extensive Monte Carlo simulation. In Sec. IV,
we turn our attention to empirical algorithmic properties;
under finite-precision representation, the ensemble displays
an easy-hard-easy relation with respect to parallel temper-
ing time to solution as α is varied. After showing that the
ensemble-averaged energies of the Wishart planted ensemble
follow a gamma distribution and introducing the notion of an
intrinsic search space, we analytically predict the location of
the hardness peak for any target energy threshold and confirm
the prediction using optimized parallel tempering simulations.
The prediction is shown to be precisely accurate even for
approximate solution criteria. We show that generating dif-
ficult problems under constant precision restriction requires
scaling the number of constraints in the integer program
approximately linearly. The Appendix contain most of our
calculations, and confirm the TAP results through replica
analysis and an annealed approximation.

II. THE WISHART PLANTED ENSEMBLE

A. Generation procedure

Our goal is to construct an ensemble of zero-field Ising
Hamiltonians over the N-spin complete graph with planted
ground state t , in other words, having the form

H (s) = −1

2

∑
i �= j

Ji jsis j,

where s and t refer to configurations on the N-spin Ising model
configuration space SN � {±1}N and such that

H (±t ) = min
s∈SN

H (s).

When not explicitly stated t will be taken to be the ferromag-
netic ground state t = (+1,+1, . . . ,+1) and its Z2 image,
as the minimizer to such a problem can be subsequently
concealed by gauge randomization.

Consider the N × M real-valued matrix W ∈ RN×M ,
whose M � 1 columns are denoted by wμ for μ = 1, . . . , M.
The value of M turns out to modulate the ensemble
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properties such as thermodynamics and hardness; in this work
we are primarily concerned with the regime in which M scales
linearly as a constant factor of N , i.e., M = αN for α > 0.

Given a desired ground state t , our procedure seeks to
construct a consistent homogeneous Ising-constrained linear
system with s = ±t as a solution, in other words, to obtain W
such that

W T t = 0. (1)

This is because the positive semidefinite quadratic form

G(s) = 1
2 sT WW T s = 1

2‖W T s‖2
2 (2)

would then attain its minimum value of zero at s = t , and
hence if we define

J̃ = − 1

N
WW T = − 1

N

M∑
μ=1

wμ ⊗ wμ (3)

and zero its diagonal to form

J = J̃ − diag(J̃), (4)

then the Hamiltonian

H (s) = − 1
2 sT Js (5)

attains its ground state at s = t with energy

H (t ) = − 1
2 tT Jt = 1

2 Tr(J̃),

where the property that s2
i = 1 for s ∈ SN has been used. The

scaling by 1/N in the definition of J̃ is to make the energy
extensive, i.e., scaling linearly with system size.

We obtain the linear system by individually generating the
M columns {wμ}, i ∈ 1, . . . , M of W such that 〈wμ, t〉 = 0.
We propose a simple projective method for efficiently generat-
ing correlated Gaussian variates satisfying the summation and
other desirable properties. More precisely, the column vectors
are set to be distributed as

wμ ∼ N (0,�), (6)

where the covariance matrix is given by

� = N

N − 1

[
IN − 1

N
ttT

]
(7)

with IN the N-dimensional identity matrix. In other words, for
each column vector w, all elements have unit variance, and for
all variable pairs i �= j, the covariances are

E[wiw j] = − tit j

N − 1
.

Note that rank(�) = N − 1 as expected; given any N − 1
components of w, the remaining one follows deterministi-
cally. To generate the column vectors, we first determine the
square root of �, i.e., �

1
2 such that � = �

1
2 �

1
2 , to be

�
1
2 =

√
N

N − 1

[
IN − 1

N
ttT

]
. (8)

We then iterate over the loop described in Algorithm 1:

Algorithm 1 Wishart Planted Ensemble Generator

for μ = 1, . . . , M do
Sample uncorrelated Gaussian zμ ∼ N (0, IN )
wμ ← �

1
2 zμ

end for

One can readily verify that 〈wμ, t〉 = 0 for all μ and that
wμ is distributed according to Eq. (6). While the components
of w are correlated, the Gaussian nonetheless has strong
structure that simplifies the subsequent analysis. Following an
appropriate gauge transformation to the ferromagnetic state,
the elements of � imply that the distribution is exchangeable,
i.e., invariant to a permutation of the components. Exchange-
ability is a stronger property than stationarity, which merely
requires the covariance of components i and j to depend only
on |i − j|. The property is used in Sec. III A when deriving
the TAP free energy and again in Sec. IV A when obtaining
the ensemble energy distribution.

The random matrix WW T follows a Wishart distribution,
a well-studied matrix generalization of the χ2 distribution; in
light of this we call our problem class the Wishart planted
ensemble (WPE). When M < N , the support of the Wishart
density lies on a low-dimensional subspace of N × N matrices
[39]. As we see in Sec. III B, its spectral distribution is
a key feature underlying the phase behavior. We note also
that while sampling wμ according to the Gaussian N (0,�)
simplifies the analysis it is by no means necessary in practice
for our results to hold in the large N limit. For example, if
{zμ} used to obtain {wμ} were vectors of length N consist-
ing of independent and uniform {±1} variates rather than
uncorrelated Gaussians, then central limit arguments show
that WW T is nonetheless asymptotically Wishart. We note,
however, that using finite precision introduces the possibility
that states other than t may attain the ground-state energy. The
optimization problem in this paper is defined to be that of
locating any ground state; the algorithmic implications of the
presence of several solutions is discussed in the next section
and in detail in Sec. IV.

B. Computational properties

Before proceeding to an examination of the WPE ther-
modyamics, we discuss its properties from a computational
perspective in light of its interpretation as a constrained homo-
geneous linear system. Readers familiar with related settings
such as linear error correcting codes should bear in mind that
arithmetic here is over the real numbers rather than a finite
field such as GF(2).

Given a matrix W , the task of finding the ground state of
Eq. (5) is equivalent to finding a solution to the following NP-
hard problem called integer programming feasibility,

solve W T s = 0

subject to s ∈ SN . (9)

Suspending for a moment the fact that M scales with N in the
WPE, we can obtain a sense for how it may impact problem
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difficulty. If W consists of M < N independent columns, then
dim[null(W T )] = N − M. The dimension of the nullspace of
W T implies the search space for potential Ising state solutions
to Eq. (9), and so the larger it is, the more difficult the problem
may be guessed to be. In particular, when W T consists of a sin-
gle row (M = 1) and hence an N − 1 dimensional nullspace,
the problem may be surmised to be maximally hard. When
W is specified with relatively low precision, this turns out to
not be the case; exponentially many solutions other than ±t
overwhelmingly appear as N increases and so locating any
such satisfying s can be quite easy. This is reflected in the Ising
Hamiltonian (5); when M = 1, J can be verified to be fully
frustrated [40], which gives rise to tremendous low-energy
degeneracy.

At the other extreme in which M assumes large values, the
nullspace of W T becomes one dimensional and hence the two
Ising solutions to Eq. (9) are trivially recovered by inspection
from a vector spanning the nullspace. In the Hamiltonian in
Eq. (5), making M large results in a ferromagnetic system. To
see this, we note that

J̃ = − 1

N
WW T , (10)

= − α

M
WW T , (11)

→ −α�, (12)

where the limit follows from the law of large numbers. From
the covariance matrix �, the couplers thus uniformly approach

Ji j = α
tit j

N − 1
,

implying that the system reduces to a gauge-transformed
and rescaled Curie-Weiss ferromagnet, whose ground state is
easy to find due to the lack of frustration. Hence one may
reasonably guess that for a given allowable precision, the most
difficult problems occur for some intermediate value of M.
This easy-hard-easy profile is shown to indeed hold and is
discussed in Sec. IV, in which we make more explicit the
role of null(W T ) and develop the conjecture that the difficulty
peak occurs at the value of M in which the fewest number of
solutions occur relative to the volume of the nullspace.

A prototypical special case of Eq. (9), corresponding to
M = 1, is the subset sum problem; its decision variant, that
of establishing whether a satisfying s to Eq. (9) exists, was
one of Karp’s [41] original 21 NP-complete problems. We
note that W must be specifiable to arbitrary precision for
the optimization variant in Eq. (9) to avoid efficient solution
via the technique of dynamic programming as the complexity
of this algorithm scales exponentially in the number of bits
needed to specify the coefficients. This requirement holds
more generally: when the value of M is fixed to any integer
and the matrix elements belong to a finite set, integer pro-
gramming problems of the form of Eq. (9) can be solved in
pseudopolynomial time using the same technique [42].

Subset sum problems with feasible solutions have been of
particular interest due to their complexity underpinning the
security of an early family of cryptographic systems [43].
Remarkably, a method has been devised [35] for solving
with high probability a family of low-density random subset
sum problems, in which the maximum element of the single-

column W is large compared to N , based on an idea known as
lattice basis reduction [44].

A well-studied further specialization of the subset sum
problem is known as the number partitioning problem, cor-
responding to the task of partitioning a base set of positive
integers into two blocks with sums of minimum absolute
difference (or “discrepancy”). When the integers are chosen
independently from a uniform distribution (the problem does
not respect a planted solution), number partitioning displays
several interesting properties, in particular an algorithmic
easy-hard phase transition [32,33,37,45]. More specifically,
if the positive integers forming the base set are bounded by
2κN for a fixed κ > 0, then when κ > κc, partitions with
a discrepancy of zero exist with vanishing probability, and
typical instances become difficult for known heuristic and
complete algorithms. Conversely, when κ lies below this
threshold, partitions with zero discrepancy are abundant, and
the problems are easily solved.

While the subset sum and number partitioning problems
bear obvious connections to the model presented in this work,
it is apparent that our assumptions and focus are different.
Broadly speaking, in the WPE a state must be found which
now simultaneously satisfies the M relations in the integer
program; the fact that M scales as αN rather than remaining
fixed introduces consequences in the algorithmic hardness
properties.

C. Representing a WPE instance

The WPE construction presented in Sec. II A was defined
in terms of Gaussian variables; in a practical implementation,
however, one must contend with finite precision and generally
cannot represent the required continuous-valued parameters.
In the WPE, this can be dealt with in one of two ways. The
first, which will be examined in this section, is to main-
tain the correlation structure defined by � but replace the
Gaussian variates z with a discrete zero-mean, unit variance
ensemble; the simplest such choice is to have z uniformly
and independently take the two values {±1} (sometimes
called a Rademacher distribution). This turns out to allow
an exact representation of the problem parameters using a
logarithmic (in N) number of bits; further, as mentioned in
Sec. II A, the coupler matrix is nonetheless asymptotically
Wishart and the same physical properties derived in this paper
result.

The second and more heuristic way to represent a problem
is to simply round the parameters to the closest machine-
representable number. This introduces numerical errors; for
example, the planted solution may no longer have its theo-
retically intended energy. Consequently, one must introduce a
tolerance on what defines a “solution.” We use this approach
in our algorithmic hardness experiments because as discussed
in Sec. IV C, it minimizes the potential discrepancy between
the finite-size statistical properties and our analytical predic-
tions, which may arise due to using non-Gaussian generator
variables on the small systems we were forced to consider.
Nonetheless, using the theoretically derived energy histogram,
we are able to account for the observed hardness peak under
this approximate representation.
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We now discuss the exact discretized WPE over a
Rademacher distribution, i.e., where {zμ

i } are independently
and uniformly in {−1, 1} rather than drawn from N (0, 1) for
i ∈ {1, . . . , N} and μ ∈ {1, . . . , M}. We first rewrite

�
1
2 = 1√

N (N − 1)
A,

where the integer-valued matrix

A � N
[
IN − 1

N
ttT

]
,

i.e.,

Ai j =
{

N − 1 i = j
−1 i �= j

.

Because

w = 1√
N (N − 1)

Az,

then up to the leading constant of 1/
√

N (N − 1), the elements
of w may assume values in the set of 2N − 1 equally spaced
integers

Sw � {−2(N − 1), . . . ,−2, 0, 2, . . . , 2(N − 1)}.
Thus, in the integer programming formulation, the
Rademacher-discretized WPE takes approximately
log(2N − 1) bits to encode the parameters.

Obtaining the required precision in the Hamiltonian for-
mulation (i.e., on J) is more messy but analogous. Recalling
that

Ji j = − 1

N

M∑
μ=1

w
μ
i w

μ
j ,

then using the previous restriction on the values of w we can
show that

N2(N − 1)Ji j ∈ SJ,

where

SJ � {−4M(N − 1)2, . . . ,−4, 0, 4, . . . 4M(N − 1)2}.
Not all elements in this set of integers are actually attainable
by Ji j , but it provides a useful upper bound on the number
of possible values and shows that representing Ji j in the
Rademacher-discretized WPE takes no more than on the order
of log(M ) + 2 log(N ) bits, which when M = αN is O(log N ).

III. THERMODYNAMIC PROPERTIES

Analyzing long-range disordered systems has a rich history
in statistical mechanics [46]. The Sherrington-Kirkpatrick
(SK) model [25], a fully connected Ising model with inde-
pendently sampled Gaussian bond strengths, is a prototypical
example of such systems. The replica method [21] is a power-
ful framework for performing such analyses, and has yielded
great successes such as the solution to the SK model [47]
which have since been rigorously proved to be correct (see,
for example, Ref. [48] and the references therein).

This approach is pursued in Appendix A 5 were we are able
to recover the transition properties developed in this section,

and through connections with the anti-Hopfield model iden-
tify some additional interesting transitions within the model.

A different and in many senses complementary approach
to the analysis of weakly coupled, fully connected disordered
systems is due to Thouless, Anderson, and Palmer [17]. The
TAP equations are a set of nonlinear relations satisfied by
the local magnetizations for a given instance. They can be
arrived at in one of several ways [49]. For the SK model,
they are often interpreted as correcting the “naïve” mean field
equations with a so-called Onsager reaction term. The ap-
proach of Plefka [50] arrives at the TAP equations by second-
order expansion of the free energy at constant magnetization,
which turns out to have an appealing information geometric
interpretation [51]. In this section we use another approach
called the cavity method [52].

Determination of the TAP equations for the WPE is some-
what complicated by the fact that Ji j are not independent
variates as they are for the SK model. The TAP equations for
systems with correlated J have been determined in the past: A
notable example, which turns out to have a close connection to
our ensemble, is the Hopfield model [26] of a biological neural
network. The couplings of the Hopfield model are given by

Ji j = 1

N

p∑
μ=1

ξ
μ
i ξ

μ
j ,

where the p vectors {ξμ}, known as patterns to be stored for
later retrieval, consist of N independent zero-mean binary
random variables. The physics of the Hopfield model was
first studied with the replica approach by Amit et al. [27,53];
the TAP equations were derived by Mézard et al. [52] using
the cavity method, but yielded results inconsistent with the
replica analysis. TAP equations consistent with Ref. [53] were
obtained by Nakanishi and Takayama [54] using Plefka’s
method, and subsequently by Shamir and Sompolinski [55]
via an elegant cavity approach.

The connection of the WPE to the Hopfield model is
apparent if we express the elements of J̃ defined in Eq. (3)
as

J̃i j = − 1

N

M∑
μ=1

w
μ
i w

μ
j .

An obvious difference from the Hopfield model is the pres-
ence of the leading negation. Consequently, while the Hop-
field Hamiltonian tends to favor spin configurations aligned
with the patterns {ξμ}, the WPE Hamiltonian penalizes con-
figurations overlapping with the directions {wμ}. An addi-
tional distinction, however, is that while the M vectors are
independently drawn from the previously defined Gaussian
distribution, the components of each vector are now corre-
lated, a property which emerged due to the solution planting
procedure. Remarkably, a model defined by negating the
sign of the Hopfield model Hamiltonian (only the first of
the two differences above) has been proposed as a model
of “unlearning” paramagnetic configurations and thereby en-
hancing learning for biological networks. A replica analysis
of this “anti-Hopfield” model was undertaken by Nokura
[38]. The additional “layer” of correlations and the presence
of a planted solution in the WPE turns out to lead to very
different behavior from that of the anti-Hopfield model; in
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particular, the anti-Hopfield model has no first-order transition
comparable to the transition into the planted solution, and
the large-α regime is Sherrington-Kirkpatrick-like rather than
ferromagnetic.

Another Ising ensemble related to the WPE is the random
orthogonal model (ROM) proposed by Parisi and Potters [56],
where the J matrices are generated by uniformly sampling
an orthogonal matrix O, forming diagonal matrix D whose
elements Dii ∈ {±1} (often additionally assumed to have a
trace of zero), and setting J = ODOT . Having been devised
with different aims, this model is also quite different from
the WPE. First, no planting takes place, so the ground state is
uncontrolled. Further, the ground-state energy is only known
if an Ising-feasible state happens to be an eigenvector of
J, which become exceedingly unlikely for even moderately
sized systems. Finally, the eigenvalue distributions of the J
matrices are not the same, nor are the TAP equations presented
in Ref. [56]. The systems thus have quite differing ther-
modynamic properties; in particular, a first-order transition
analogous to the planting transition is absent in the ROM.

It is natural to wonder about the suitability of the original
Hopfield model to the task at hand. Unfortunately, it is not
possible to generate sufficiently rugged energy landscapes
while maintaining control over the ground states using this
model. Hence, while the Hopfield model is an appealing
abstraction of an associative memory, it is not as well suited
to usage as a tunable planted optimization objective. The
Hopfield model does not exhibit, for any setting, a persistent
metastable paramagnetic state analogous to that of the α < 1
WPE. In contrast to the WPE in which the planted ground
state is undisturbed while a rough energy landscape is induced
in the orthogonal subspace, ruggedness in the Hopfield model
arises due to interference among the stored patterns, causing
undesired spurious minima [27]. For values of the Hopfield
α, which specifies the ratio of number of stored patterns to
number of variables, of less than around 0.05, a first-order
transition between a spin glass and “retrieval” phase takes
place, but finding one of the embedded patterns is quite easy
in this case (as it should be for the model’s intended purpose).
At somewhat larger values of α, the model continues to
function as an associative memory, though the patterns are
only assured of being local optima rather than ground states.
When α > 0.138, only a second-order paramagnetic to spin
glass transition takes place, and control over even the local
minima is completely lost.

A. TAP equations

We derive the TAP equations for the WPE following the
two-step cavity approach of Shamir and Sompolinski [55],
making appropriate adaptations to deal with the correlations
among the components of each w. The complete calculation is
shown in Appendix A 1. Alternatives to the TAP method based
on the annealed approximation and replica method are consid-
ered in Appendix A 4 and A 5, yielding consistent results. In
these appendices the connection with the anti-Hopfield model
is explored, as is the notion of a planted solution with tuned
energy that might permit other uses, such as the population
transfer experiment discussed in the introduction.

Let mi = 〈si〉 and m be the vector of all magnetizations.
Define

q = 1

N

N∑
i=1

m2
i

and

V = α(1 − q)

1 + β(1 − q)
.

The TAP equations for the WPE are

mi = tanh

[
β

(∑
i �= j

Ji jm j − βV mi

)]
. (13)

Solutions to Eq. (13) are stationary points of the following
TAP free energy:

FTAP(m) = − 1

2

∑
i �= j

Ji jmimj − 1

β

N∑
i=1

S(mi )

− 1

2
αN

{
(1 − q) − 1

β
log[1 + β(1 − q)]

}
, (14)

where the local entropy terms are

S(mi ) = −1 + mi

2
log

1 + mi

2
− 1 − mi

2
log

1 − mi

2
.

To determine the quenched free energy one must consider
a weighted sum over minima [57]. In this section we present
a more limited analysis that is appropriate when only a single
minimum dominates the free energy. The result, which may
be an upper bound to the free energy, is consistent with the
replica symmetric analysis of Appendix A 5, and in good
agreement with numerical results of Sec. IV. We expect the
approximation to be sufficient at higher temperature, and that
in other cases the consequences of multiple fixed points may
be small following the replica symmetry breaking analyses in
related models as discussed in Appendix A 5 [38,56].

In general, determining the global minima of FTAP is a
difficult task as m lies in an N-dimensional space subject to
the bound constraints

m ∈ [−1, 1]N .

In our case, however, the existence of the planted solution
considerably simplifies things by assuring that the free-energy
minimum necessarily occurs along the ground-state direction:

min
m∈[−1,1]N

FTAP(m) = min
m∈[−1,1]

FTAP(mt ).

To see this, consider the restriction of m to the spherical shell
given by {

m

∣∣∣∣ 1

N

N∑
i=1

m2
i = q0

}
for some q0 ∈ [0, 1] or, alternatively,

m = e
√

Nq0

for arbitrary unit vector e. The claim is that

e = ± t√
N
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minimizes FTAP on the shell; from Eq. (14), the term

−1

2

∑
i �= j

Ji jmimj

is minimized for m = ±√
q0t due to the planting procedure.

Further, the term

−
N∑

i=1

S(mi )

is minimized on the shell at the 2N points at which the {mi}
have the same magnitude, which holds when m = ±√

q0t , and
the final term in FTAP is independent of m on the sphere. The
global optimum, which is the minimum over all the shells’
minimizers, thus occurs along

m = mt = ±√
qt .

Recall that

H (t ) = −1

2

∑
i j

Ji jtit j = 1

2
Tr(J̃ )

and that

J̃ii = − 1

N

M∑
μ=1

(
w

μ
i

)2
.

Using the fact that S(mti ) = S(m) for ti ∈ {±1} we define the
one-dimensional TAP free energy as F (m) � FTAP(mt ), i.e.,

F (m) � − 1

2N
m2

M∑
μ=1

N∑
i=1

(
w

μ
ii

)2 − N

β
S(m)

− 1

2
αN (1 − m2) + αN

2β
log[1 + β(1 − m2)]. (15)

Consider the difference

m2

2

⎡⎣αN − 1

N

M∑
μ=1

N∑
i=1

(
w

μ
ii

)2

⎤⎦
present in Eq. (15). Using the higher-order moments of cor-
related Gaussians, one can show that despite the dependence
among the components of wμ, the term scaling m2

2 is at most
O(

√
M ). Normalizing by N to obtain the free energy per spin,

we obtain

f (m) = − m2

2N
O(

√
αN ) − 1

2
α − 1

β
S(m)

+ α

2β
log[1 + β(1 − m2)]. (16)

In the thermodynamic limit, the first term vanishes; neglecting
the constant term of − 1

2α, the global free-energy minima of
Eq. (14) can thus be found as those of the function

f̃ (m) � − 1

β
S(m) + α

2β
log[1 + β(1 − m2)]. (17)

The mimina of f̃ must be stationary points of Eq. (17), which
are attained for solutions of the equation

m = tanh
αβm

1 + β(1 − m2)
. (18)

B. Thermodynamic properties of the WPE

The WPE displays phase properties quite surprising in
the Ising model. Rather than undergo an SK-like spin-glass
transition typical of many disordered systems, the presence of
a planted solution gives rise to a thermal first-order phase tran-
sition. This transition in the WPE occurs at an α-dependent
temperature Tc such that two stable states contribute equally
to the free energy. As expected, at high temperature the
disordered paramagnetic state (m = 0) is the unique global
minimizer to FTAP. At a critical temperature Tc, this state
remains globally minimizing but is no longer unique; another
state m = mt with m �= 0 is also optimal. Below Tc, the
paramagnet ceases to be the minimum, but whether m =
0 remains a local minimum (metastable state) to FTAP or
an unstable state (saddle point or maximizer) depends on
α and the temperature. We find the fascinating result that
when α < 1, the paramagnetic state is locally stable at all
nonzero temperatures. As will be discussed, this property has
considerable algorithmic implications.

The transition is first order because of the discontinuity
in the minimizing m and in the derivative of the free-energy
minimum with respect to T ; consequently, the internal energy
also undergoes a jump at Tc as we will see. Remarkably, for
any finite α, the transition is always technically first order, in
the sense that there is a discontinuity in the log partition func-
tion derivative. The magnitude of this discontinuity decreases
with α, and the transition gradually segues from first to second
order.

1. Stability of m = 0

The stability of m = 0 can be ascertained from the Hessian
of FTAP, i.e.,

H (m) � ∂2FTAP

∂m2
.

The point m = 0 is a local minimum of FTAP if and only
if H (0) is positive definite. It turns out that the spectral
distribution of the random matrix J is key in determining
the relation between the definiteness of H (0) and T at given
α. The limiting eigenvalue distribution of J is calculated in
Appendix A 2 somewhat surprisingly, it is closely related to
the Marchenko-Pastur [58] law for the spectrum of Wishart
matrices constructed with uncorrelated Gaussians. The im-
portant aspect for now is that −α is always (asymptotically)
the smallest eigenvalue of −J.

Computing the partial derivatives from the definition of
FTAP in Eq. (14) we obtain the Hessian matrix elements

Hi j =
⎧⎨⎩

1

β

(
1−m2

i

) − 2αβm2
i

N[1+β(1−q)]2 + αβ(1−q)
1+β(1−q) i = j

−Ji j − 2αβmimj

N[1+β(1−q)2] i �= j
.

At m = 0 we thus have

Hi j =
{

1
β

+ αβ

1+β
i = j

−Ji j i �= j

or, compactly, the Hessian at m = 0

H (0) = −J + c(α, β )I (19)
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with

c(α, β ) = 1 + β(1 + αβ )

β(1 + β )
.

H (0) is positive definite when c(α, β ) is large enough to shift
the eigenvalues of −J to all be positive. From the spectral
property mentioned above, stability hence occurs when

c(α, β ) � α.

For a given α, this condition is equivalent to

(T + 1)(α − T ) � α

or

T (T + 1 − α) � 0.

Obviously, T is non-negative; when α < 1 the relation thus
holds for all T while when α � 1, it is satisfied when T �
α − 1.

To summarize, when α < 1, the point m = 0 is a locally
stable stationary point to the TAP free energy at any temper-
ature; on the other hand, when α � 1, the Hessian becomes
indefinite at temperature Tu = α − 1. For temperatures below
Tu, note that the eigenvalue of H corresponding to eigenvector
t (the planted solution) becomes negative, which implies that
the paramagnetic solution becomes unstable along this direc-
tion. Interestingly, the curvature of FTAP along t is of largest
magnitude for α � 1 at the temperature such that c(α, β ) is
minimal. In terms of T ,

c(α, T ) = T + α

T + 1
,

which is smallest when T = −1 + √
α. As local search

heuristics follow free-energy gradients in their quest for the
solution, it seems reasonable that this temperature is in some
sense optimal to start with when searching for the ground state
in the α � 1 (easy) regime. A further special interpretation
of this temperature relates to the anti-Hopfield model, as
discussed in Appendix A 5.

2. First-order phase transition

The first-order transition for given α occurs at a Tc such that
f̃ (0) = f̃ (m) for m �= 0. For any T , the stationary points of f̃
are determined numerically by iteratively solving the saddle
point equation [Eq. (18)]; using binary search in T , we can
then localize the transition temperatures at any α. Figure 1
shows the relation of Tc with α, and also shows for α � 1
the paramagnetic instability point Tu = α − 1. It is clear that
Tc > Tu uniformly but as α increases the two temperatures
converge; this in turn constrains the jump magnitude between
the two sides of the transition. While Tc has no closed-form
expression in α, we can obtain a lower bound T̂c as

Tc � T̂c � 22/α − 1, (20)

which serves as a surprisingly accurate approximation for
small α but deteriorates as α gets larger than 1.

We illustrate these results by plotting f̃ (m) at represen-
tative temperatures for a few values of α. Consider first the
relatively small value of α = 0.25, with landscape illustrated
in Fig. 2. The first-order transition at Tc = 0.004 is clearly
visible in the middle panel as m = 0 is now a coexisting global

FIG. 1. Transition temperatures for the Wishart planted ensem-
ble as a function of α. Tc (solid blue) refers to the first-order
(coexistence) phase transition temperature, while for α � 1, Tu (solid
red) marks the instability of the paramagnetic phase. Note that as
α increases past 1, Tu and Tc converge, which is expected from the
construction procedure. The values of Tc in the low-α portion of the
function are small but nonzero; they are well-approximated there by
Tc ≈ 22/α − 1.

minimum with the other minima close to the end points [59].
Remarkably, when T ≈ 0.003, shown in the bottom panel,
m = 0 remains locally optimal.

In Fig. 3 we see similar behavior with an increased Tc ≈
0.187 and a persistent metastable m = 0 state at low tempera-
ture for α = 0.75.

From an algorithmic perspective, the low-temperature sta-
bility of m = 0 is quite intriguing as it is widely believed
to correlate with genuine combinatorial hardness, sounding
the death knell for heuristic approaches attempting to locally
optimize trial configurations. This category of algorithms
includes workhorses such as simulated annealing and parallel
tempering Monte Carlo, which exploit correlations in the
energy landscape to search by performing biased random
walks. Paramagnetic stability suggests that a problem is hard
because it implies that cooling an initially disordered con-
figuration will overwhelmingly lead to states that are also
disordered. There is no exploitable information within the
landscape guiding the dynamics to the correct region of the
state space, and the only hope is to begin the search from
the appropriate basin. Disordered states form the vast bulk
of the configuration space, however, so the probability of
a correct initialization decreases exponentially with system
size. While all problems with α < 1 exhibit this feature, the
specific value of α turns out to modulate the size of the planted
solution basin, i.e., all states from which the ground state can
be reached at reasonable cost, which of course exerts a critical
effect on the observed performance of heuristics. This aspect
can be observed by comparing the intervals between the end
points and maxima of f̃ in Figs. 2 and 3 and noting them to
be wider for α = 0.75. Broadly speaking, small values of α

lead to smaller basins and hence, one would surmise, more
difficult problems. This assertion assumes, however, that the
vectors {wμ} are composed of real numbers and specifiable to
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FIG. 2. Function f̃ , whose global minima correspond to those of
the TAP free energy, for a Wishart planted problem with α = 0.25.
In (a), we see the high-temperature regime, with a single minimum
at m = 0. Panel (b) shows the first-order transition, occurring at
Tc = 0.004 and characterized by equal contribution of m = 0 and
the minima close to m = ±1, while panel (c) displays the low-
temperature phase (T ≈ 0.003). Note that m = 0 remains metastable
in spite of the low temperature, while the free-energy minima lie
around m = ±1 corresponding to the planted solution.

FIG. 3. Function f̃ for a Wishart planted problem with α = 0.75.
In panel (a) we show the high-temperature regime. Panel (b) shows
the first-order transition at Tc = 0.187. Panel (c) illustrates the low-
temperature (T ≈ 0.125) phase, with m = 0 remaining metastable
as it did for α = 0.25 shown in Fig. 2. Note further that the sizes of
the regions between the maxima and the boundaries are larger than
they were for α = 0.25, suggesting that the ground state has a wider
basin of attraction, resulting in this being a computationally easier
problem.
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FIG. 4. f̃ for α = 1.5. Panel (a) shows the high temperature phase, whereas panel (b) shows the first-order phase transition at Tc = 0.68.
The paramagnet at m = 0 remains stable until Tu = 0.5, shown in panel (c), at which point it becomes unstable. For T < Tu (d), the ground
states are easily attainable.

arbitrary numerical precision. When the precision is bounded,
the interpretation is more involved and is discussed in detail
in Sec. IV.

Figure 4 shows how f̃ is affected by T for a value of α =
1.5, a regime in which we expect m = 0 to become unstable.
The first-order transition is still readily apparent at Tc = 0.68.
For temperatures lower than Tc but higher than Tu = 0.5, the
paramagnet remains a local minimum. Finally, when cooled
to Tu = 0.5, m = 0 becomes a maximum along the planted
ground-state direction. From a computational perspective, we
anticipate that a well-designed local algorithm will be likely
to succeed below this temperature as it follows the free-energy
gradients leading it to the planted solution.

To further appreciate the first-order transition, we illustrate
the discontinuity at Tc of some key thermodynamic quantities
for a few representative α values. A key observation is that
the nature of the transition changes “gracefully” from first to
second order as α increases past unity.

First, we recall (see, for example, Ref. [60]) that the ensem-
ble partition function is related to the mean-field free-energy

density f (m) as

ZN (β )
.=

∫ 1

−1
exp[−Nβ fβ (m)]dm.

Using Laplace’s method, we obtain the “log partition density”

lim
N→∞

1

N
log ZN (β ) = −β min

m∈[−1,1]
fβ (m),

where an additive term arising from Laplace’s formula van-
ishes for large N . We define the minimum and minimizer of
the free-energy density, respectively, as

f ∗(β ) � min
m∈[−1,1]

fβ (m)

and

m∗(β ) � arg min
m∈[−1,1]

fβ (m).

The limiting internal energy density is

e(β ) � lim
N→∞

1

N
EN (β ) = lim

N→∞
− 1

N

d

dβ
log ZN (β )
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FIG. 5. f ∗(β ) corresponding to the asymptotic log partition function density for four values of α. The first-order transition occurs at
βc = 1/Tc denoted by the dashed vertical line in each panel. When α = 0.5, shown in panel (a), and α = 0.75, shown in panel (b), the function
is clearly not analytic at βc. It remains so for α = 2.5 [panel (c)], but the discrepancy in the derivatives on the two sides has lessened. When
α = 5 the function, plotted in panel (d) visually appears smooth at βc.

so that

e(β ) = d

dβ
β f ∗(β ).

In Fig. 5, we plot f ∗(β ) for four values of α, with the corre-
sponding βc = 1/Tc located at the vertical dashed line. For the
first two values of α (0.5 and 0.75), the log partition function
is clearly a smooth function on either side of the transition
but is not differentiable at βc. At α = 2.5, the two sides still
have different derivatives but the discrepancy is diminished,
and when α = 5 it is no longer visibly discernible.

Figure 6 shows the magnetization m∗(β ) for the same four
values of α; the smaller α values show a sharp, discontinuous
bifurcation at βc at which point the system abruptly shifts
from being paramagnetic to being closely aligned with the
planted solution. The jump is still apparent but attenuated for
α = 2.5, while for α = 5 the bifurcation starts to resemble a
second-order ferromagnetic transition.

Finally, the internal energy densities are plotted in Fig. 7.
Once again, the energies drop discontinuously at βc from
some excited values to the planted solution ground state

energies (per spin) of −α/2, which is most evident for the
smaller two values of α, diminished but still apparent when
α = 2.5, and essentially invisible for α = 5. Note that the en-
ergy gap between the two sides of βc is larger when α = 0.75
than when α = 0.5, in accordance with its higher transition
temperature. The gap closes again for large α but the energies
thereafter progress continuously to their ground-state values.

The gradual reversion to a continuous transition is sensible
in light of the construction procedure; when M is very large,
the matrix J̃ converges to −α�, where � is the w covariance
matrix. Since �i j = − 1

N−1 , this implies that in the large α

limit, the system becomes a (scaled) Curie-Weiss ferromagnet
with a transition temperature of T ∼ α.

C. Monte Carlo simulation

In this section we perform finite-temperature Monte Carlo
simulation of fully connected spin glasses with couplers
drawn from a Wishart distribution. To detect the existence of
a finite-temperature phase transition we measure the Binder
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FIG. 6. Magnetizations m∗(β ) for the same values of α used in Fig. 5. The first-order transition appears as an abrupt bifurcation at βc

(dotted vertical lines) most apparent for α = 0.5 (a) and α = 0.75 (b). When α = 2.5 (c) the discontinuity is diminished, while for α = 5
(d) the bifurcation appears to have changed to second order.

cumulant [61] given by

g = 1

2

(
3 − [〈m4〉T ]av

[〈m2〉T ]2
av

)
, (21)

where 〈· · · 〉T represents a thermal average, [· · · ]av represents
a disorder average, and

m = 1

N

N∑
i=1

si (22)

is the magnetization per spin. Although the model is disor-
dered, it orders into a ferromagnetic phase because the ferro-
magnetic ground state is planted by construction. In general,
the Binder ratio scales as

g = G̃(N1/ν[T − Tc]), (23)

where G̃(.) is polynomial for small values of its argument,
T is the temperature, and Tc the critical temperature. In
general, g(T = Tc) is independent of N and, as such, on can
determine Tc by the point where data for different N cross.
However, because as we shall see the transition is first order,
the shape of the Binder ratio as a function of temperature is
somewhat different to the commonly known shape in second-

order phase transitions (see, for example, Ref. [62]). When a
first-order phase transition is present, the Binder ratio starts
at g(T → 0) → 1, dips into g(T ) < 0 and then plateaus to
g(T → ∞) → 0. One can determine the critical transition
temperature by either extrapolating g(Tmin, L) for L → ∞,
where Tmin is the minimum value of g. Alternatively, one
can study the crossing of data for different system sizes N
in the range 0 � T � Tmin. The former is usually easier to
use to detect a transition, because the latter is often close
to T = 0 where data for different N do not splay enough to
see a clean crossing. However, as shown in Refs. [63,64],
g(Tc) − g(Tmin, N ) ∼ 1/N , whereas the corrections to scaling
in Eq. (23) decrease proportional to g(Tc) − g(T, N ) ∼ 1/N2.
As such, here we determine the position of the critical temper-
ature by studying the crossing of the Binder ratio.

To further corroborate the existence of a first-order tran-
sition to a ferromagnetic phase we study the distribution
P(m) of the magnetization [Eq. (22)]. Close to the transition
temperature where latent heat is present the order parameter
should signal two competing phases, i.e., peaks at |m| → 1,
as well as a competing peak at m = 0.

The simulations are done using parallel tempering Monte
Carlo [18,19]. Thermalization is verified by ensuring that all
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FIG. 7. Internal energy densities e(β ) for the values of α used in Figs. 5 and 6. For α = 0.5 (a) and α = 0.75 (b) the energy density drops
discontinuously from an excited value to the planted solution ground-state energy density of −α/2. For α = 5 (d) the discontinuity appears to
have disappeared and the internal energy drops gradually with temperature.

measured observables are independent of simulation time. We
do this by analyzing how the results for all observables vary
when the simulation time is successively increased by factors
of 2 (logarithmic binning). We require that the last three
results for all observables agree within error bars. Simulation
parameters are shown in Table I. Error bars are determined via
a jackknife analysis over the disorder.

Figure 8 shows data for the Binder ratio as a func-
tion of temperature. Figures 8(a), 8(c), and 8(e) show the
Binder ratio for α = 0.50, 0.75, and 1.00, respectively, over
the whole temperature range. A negative dip signaling a
first-order transition is clearly visible. Figures 8(b), 8(d),
and 8(f) zoom into T ∈ [0, Tmin]. As can be seen, the data
cross for all three α values. From the crossing points we
estimate Tc(α = 0.50) = 0.065(5), Tc(α = 0.75) = 0.188(1),
and Tc(α = 1.00) = 0.335(5), in perfect agreement with our
analytical estimates. Note that Tc(α) → 0 for decreasing α,
i.e., the problems become increasingly harder numerically for
smaller values of α > αc.

In Fig. 9 data for the magnetization distribution are shown
for α = 0.50, 0.75, and 1.00 and T ≈ Tc. In all three cases
peaks at |m| → 1 are visible, signaling ferromagnetic order.

TABLE I. Parameters of the simulations. Nsa is the number of
samples, Nsw = 2b is the total number of Monte Carlo sweeps for
each of the NT replicas for a single sample, Tmin (Tmax) is the
lowest (highest) temperature simulated, and NT is the number of
temperatures used in the parallel tempering scheme for each system
size N and α.

α N Nsa b Tmin Tmax NT

0.50 48 1000 22 0.0650 1.40000 150
0.50 64 1000 22 0.0650 1.40000 150
0.50 96 1000 26 0.0650 1.40000 150

0.75 48 1000 21 0.1150 1.40000 130
0.75 64 1000 21 0.1150 1.40000 130
0.75 96 1000 21 0.1150 1.40000 130
0.75 128 1000 21 0.1150 1.40000 130

1.00 48 1000 21 0.1150 1.40000 130
1.00 64 1000 21 0.1150 1.40000 130
1.00 96 1000 21 0.1150 1.40000 130
1.00 128 1000 21 0.1150 1.40000 130
1.00 192 1000 21 0.1150 1.40000 130
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FIG. 8. Binder ratio as a function of temperature for α = 0.50, 0.75, and 1.00. Panels (a), (c), and (e) show data for the complete
temperature range, whereas panels (b), (d), and (f) zoom into the region where T ∈ [0, Tmin]. A first-order transition is clearly visible.

However, a third peak for m = 0 grows with increasing N ,
thus signaling a jump in the magnetization close to the tran-
sition. Note that for decreasing α the first-order transition is
more pronounced.

IV. HARDNESS PHASE TRANSITION

Having studied the phase behavior of the WPE and elicited
properties that would plausibly correlate with algorithmic
difficulty, we now proceed to examine some empirical results
in which we probe the typical time to find the ground state
using a parallel tempering (PT) Monte Carlo method. This
algorithm is widely used to simulate complex physical and
biological systems; contemporary implementations routinely
examine spin glasses with several thousand variables and are
quite competitive as optimization algorithms as well [65,66].
In essence, it is a careful stochastic local search [67] method
such that configurations are allowed to escape metastable

states by traveling to high temperatures and return afresh to
probe the low-energy landscape while ensuring asymptoti-
cally correct equilibrium sampling at each temperature.

We seek to check and account for the existence of an algo-
rithmic hardness peak, a sharp increase in the time required
to find the ground state as α is varied. Unfortunately, our
numerical studies were severely hampered by the extreme
difficulty of the WPE in its hard regime, which disallowed
us from empirically localizing the peak for sizes that would
otherwise be considered modest by the standards of other
Ising ensembles (e.g., the SK model). We systematically
reduced the sizes in which PT failed, within our computational
resources, to approach the planted ground-state energy for a
range of α < 1 values. Reliable statistics were finally obtained
for N = 32; the plot of median time to solve the problem, or
more precisely and as justified in Sec. IV C, to find a state with
energy within ε = 10−7 of that of the planted ground state, is
shown in Fig. 10. Other choices for ε are certainly sensible,
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FIG. 9. Order parameter distributions for α = 0.50, 0.75, and
1.00 in a linear-log scale. The data clearly show three peaks—two
close to |m| → 1 and one close to m = 0—for temperatures close to
the critical temperatures determined in Fig. 8. Close to the transition
there are competing phases, i.e., a multivalue order parameter.

and in Sec. IV C we consider and analyze the less stringent
values of ε = 10−5 and ε = 10−3. Details of the simulation
protocol are found in Appendix A 6.

The hardness peak is evident at α = 3/N = 3/32, where
the problems typically took around 5 minutes to solve. As
expected, the instances get steadily easier for the larger α

FIG. 10. Optimized parallel tempering Monte Carlo time-to-
solution for the WPE at N = 32 for 20 values of 1 � M � N . This is
a prototypical easy-hard-easy pattern with the peak occurring when
M = 3. Note that the vertical axis is logarithmic and spans many
orders of magnitude. As discussed in Sec. IV C, a “solution” in this
case is defined as finding a state whose energy lies within ε = 10−7

of the planted ground-state energy.

values, but the observation that M = 1 is easy may initially
seem surprising. As alluded to previously, this is due to the
fully frustrated nature of M = 1, giving rise to a tremen-
dous number of low-energy states, coupled with the fact that
standard double-precision floating point arithmetic was used
for the computations. Consequently, the potential exists for
several states that under unbounded precision would have
had close but nonetheless distinct energies to be mapped to
the same value. Under the low-energy degeneracy associated
with M = 1, one thus observes a huge and exponentially
increasing (in N) number of numerically indistinguishable
“ground states”; finding one such acceptable state turns out
to be relatively easy [68].

Yet the number of solutions alone cannot be expected
to predict problem difficulty; in the computationally easy
large-M regime, the Hamiltonian starts to look increasingly
like a ferromagnet, and so is essentially assured of having a
unique solution. Thus, in contrast to uncorrelated problems
like number partitioning in which an easy-hard transition is
observed at the parameter value such that “perfect” solutions
to the problem disappear [37,45], the correlations resulting
from the planting procedure give rise to another factor in-
fluencing difficulty and which leads to the observed easy-
hard-easy pattern. We conjecture that hardness at a given α

is determined by two competing factors: First, the number
of solutions satisfying the integer program and, second, the
intrinsic search space size of the integer program. It seems
plausible that the regime in which the ratio of these two
quantities is minimized signals the hardness transition as this
would be analogous to having the fewest needles in the biggest
haystack. Our aim is to analytically predict the hardness peak
for the N-variable WPE at given α and numerical tolerance ε.

To determine the number of satisfying solutions under
precision ε, we first derive the ensemble-averaged energy
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histogram for the WPE, discussed in Sec. IV A. We then
formalize our notion of the intrinsic search space in Sec. IV B;
as anticipated in Sec. II A, the size of the nullspace of W T

plays a key role. Finally, we make our quantitative conjecture
regarding the transition location in Sec. IV C and show that
it precisely predicts the location of the peak in Fig. 10. In
Sec. IV D, we present some preliminary numerically obtained
features of the WPE energy landscape to complement the
main analysis performed here.

A. Energy histogram

We consider an ensemble of problems over N spins with
parameter M such that

J̃ = − 1

N
WW T

with the columns {wμ} of W simulated as N (0,�) and
Hamiltonian

H (s) = − 1
2 sT J̃s

for s ∈ SN . Note that the diagonal elements are included in
this formulation as it is presently more convenient to take the
ground-state energy to be zero. Without loss of generality, we
assume the ferromagnetic ground state is planted so that for
all μ

N∑
i=1

w
μ
i = 0.

We seek the distribution of energies marginalized over the
problem ensemble

pE (e) �
∫

{wμ}
pE (e|{wμ}) f (w1, . . . ,wM )d{wμ}, (24)

where pE (e|{wμ}) is the probability of drawing by uniform
sampling a state with energy E = e from the given problem.

The result is surprisingly simple; the energies follow a
gamma distribution with density

pE (e) =
{ 1

�(M/2) e
M/2−1 exp(−e) for e � 0

0 for e < 0
, (25)

and cumulative distribution PE (e) � Pr(E � e)

PE (e) =
{ 1

�(M/2)γ
(

M
2 , e

)
for e � 0

0 for e < 0
, (26)

where �(x) and γ (x, y) are the gamma and incomplete gamma
functions [69], respectively. The calculation of the distribution
is shown in Appendix A 3. It is quite similar to Mertens’s
[32] analysis of the number partitioning problem cost density,
but here the energy is a more complicated quadratic function
with a correlated coupler matrix rather than a rank-1 absolute
value discrepancy over independent coefficients. Figure 11
displays pE (e) for the WPE when N = 64 for a few values of
M. When M = 1, the density is overwhelmingly concentrated
on low-energy values; combined with bounded precision, this
degeneracy is responsible for the problems being easy. By the
properties of the gamma distribution, the mean and standard
deviation of E are M/2 and

√
M/2 respectively; consequently

FIG. 11. The energy distribution pE (e) of a WPE instance of
size N = 64 at different values of M. When M = 1 (solid blue
line), the density is overwhelmingly concentrated on values very
close to the ground-state energy of E = 0. The energy mean and
standard deviation (fluctuations) are M/2 and

√
M/2, respectively;

when M = 15 (dash-dotted red line) there is vanishing probability of
drawing a low-energy state by random chance.

(nonplanted) low-energy states become exponentially less
likely as M increases.

If the coupler matrix J rather than J̃ were used, the density
would simply be translated by the ground-state energy of
−αN/2, i.e.,

pE (e) ← pE (e + αN/2).

We point out that Eq. (25) in fact describes the energy den-
sity of nonplanted states, which as is shown in the Appendix,
is dominated by paramagnetic states (m = 0) far from the
planted solution. In fact, the true density should be regarded as
a mixture of a δ function at zero energy with weight 2−(N−1),
representing the probability of sampling the planted solution,
and of the gamma distribution (25) with weight 1 − 2−(N−1).

The distribution enables evaluation of the ensemble-
averaged number of states whose energies are at most ε and
which are not related by a global spin flip [70], which turns out
to be highly relevant to computational properties. This can be
shown to be

E[#[E � ε]] = 1 + (2N−1 − 1)PE (ε)

= 1 + (2N−1 − 1)
1

�(M/2)
γ

(
M

2
, ε

)
. (27)

The leading “1” is due to the persistence of the planted
solution; its presence in the expectation may initially seem
strange and for small values of α it is indeed irrelevant, but as
α increases, the paramagnetically contributed solutions start
to vanish and its influence in fact becomes dominant.

B. Intrinsic search space cardinality

We have speculated that because we aim to solve an Ising-
constrained linear program or, equivalently, to solve for a state
s∗ ∈ SN lying in the nullspace of W T , the dimensionality of
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the nullspace plays some role in problem complexity. In this
section, we clarify the notion and extract an M-dependent
intrinsic search space. This is defined as a discrete set of
reduced-dimensional states over which one would need to
exhaustively search to solve the problem without reference to
any information about the values of W . In some sense, this
is analogous to the reduced complexity enjoyed by various
optimization problems on graphs of low treewidth. The result
is that when W T has M independent rows, one only needs to
consider O(2N−M−1) states in brute-force search; the subtrac-
tion by one is simply to remind that the problem is invariant to
global spin flips. We note that the following procedure is not
meant for literal implementation because we are disregarding,
for example, numerical issues that may be important in prac-
tice, but simply to show that up to a polynomial prefactor the
exhaustive search complexity is exponential in K , where

K � dim[null(W T )] = N − M.

We remind the reader that the integer programs are always
feasible due to the planting construction. Let the vectors

V � {v1, v2, . . . , vK}
span null(W T ). Such a basis can be obtained in polynomial
time using, for example, the singular value decomposition of
W . The integer program can be equivalently phrased as

find s∗ ∈ SN

such that V x = s∗ is consistent,

where V is the N × K matrix whose columns are {vi} and
x ∈ RK . For any state s, one can in polynomial time either
solve for satisfying coefficients x or show that no such coeffi-
cients exist using standard linear algebra techniques. While a
solution will eventually be found when the method is repeated
for all possible states, we now show that not all s ∈ SN need
be checked.

We first obtain a K × K matrix Ṽ composed of a subset of
K independent rows from V . Such a matrix can be determined
using, for example, the QR decomposition with pivoting [71].
We apply this decomposition to the columns of V T :

V T P = QR,

where P is an N × N column-permuting matrix, Q is K × K
and orthogonal, and R is K × N and upper-triangular. This
ensures that the first K columns of V T P are independent, so
we take

Ṽ = PT
KV ,

where PK is an N × K submatrix composed of the first K
columns of P and encodes which rows of V were selected for
Ṽ . These steps are computed only once for a given problem.

Now let s̃ be an Ising state of length K . The system

Ṽ x̃ = s̃

with respect to partial state s̃ always has a solution because
Ṽ is full rank. After solving for x̃, we verify whether this
generalizes to a feasible solution over all Ising variables by
computing

y = PT V x̃.

The first K components of y will be s̃ by construction; if the
rest are also in {±1}, then y is a feasible solution. If not,
then we choose another s̃ and repeat the process starting with
solving for x̃. This shows that up to the polynomial overhead
involved in the various steps, one only needs to consider the
number of states in SK ; in fact due to the spin-flip symmetry,
the intrinsic search space contains 2K−1 elements. In the case
where M � N and so the nullspace is one dimensional, only a
single state need be checked.

C. Predicting the hardness transition

We now synthesize the two preceding antithetical factors
into an expression that predicts when problems are likely
to become difficult. For illustration, we first consider the
case of degenerate ground states, in which the reasoning
does not in fact make any assumptions about the specific
generative process or family from which problems are drawn.
The number of solutions not related by global flip symmetry to
a specific problem is denoted by NG, a random variable whose
distribution may correspond to some parametric setting.

In the exhaustive algorithm described in the previous sec-
tion, a set of no more than 2N−M−1 partial states {s̃} need be
checked for feasibility. Given a traversal order over the partial
states, the expected time to locate a solution to a problem
is simply the average number of iterations until a specific s̃
mapping to a feasible completion is found. Noting that each
partial state corresponds to at most one solution and assuming
that an adversary uniformly allocates the solutions among the
partial states, by searching among {s̃} in arbitrary order, the
solution time can be identified with the number of draws of
a partial state (without replacement) from a population of
2N−M−1 such states, NG of which are solutions, until a single
solution is found. This quantity follows a specific type of
negative hypergeometric distribution, where for convenience
we obtain the inverse of its mean τ for our particular values as

1

τ
= NG + 1

2N−M−1 − NG
≈ NG

2N−M−1
. (28)

When averaged over all problems in the ensemble, the ex-
pected inverse solution time is thus approximately

E

[
1

τ

]
= E[NG]

2N−M−1
. (29)

Equation (29) makes explicit the competing effects of the
number of solutions (numerator) and search space size (de-
nominator) on problem difficulty.

Returning our attention to the WPE, we presently deter-
mine how to compute the expected number of solutions, or
equivalently the mean number of ground states in the Ising
formulation, defined as

E[#[E = 0]],

where the degeneracy results from the discreteness of the
generator variables {zμ}. We recall from Sec. II C that in the
WPE, all independent and standardized {zμ} yield the same
limiting properties as those resulting from using a Gaussian
and presented in this work. Consequently, a good estimate for
the ground-state degeneracy can be obtained for sufficiently
large systems using the expected count in Eq. (27). For
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FIG. 12. log QN (M ) whose minimum, denoted by the dashed red line, is conjectured to predict the WPE hardness transition at precision
ε = 10−7 for sizes N = 32 (left) and N = 128 (right). For N = 32, the minimizer occurring at M = 3 coincides with the maximum parallel
tempering time-to-solution observed in Fig. 10. When N = 128, maximum difficulty is predicted to occur when M = 11, suggesting that at
constant precision, generating the hardest problems requires scaling M with N .

example, the number of ground states in the Rademacher-
discretized WPE presented in Sec. II C can be approximated
by

E[#[E = 0]] = 1 + (2N−1 − 1)
1

�(M/2)
γ

(
M

2
, ε1

)
, (30)

where ε1 = O(1/N3) represents the smallest attainable
excited-state energy for the problem size.

As mentioned, the computational expense associated with
simulating the WPE in its hard regime forced us to simulate
systems of relatively small size. Such a restriction can, how-
ever, potentially introduce finite-size effects; in other words,
the properties of the discretized systems may be far from those
predicted by their Gaussian asymptotics. To minimize such
artifacts, we opted to sample the parameters using Gaussian
generators represented with the maximum available precision
and consequently, to contend with numerical errors. The task
was thus translated to that of approximate solution.

Bounded precision means we cannot represent all the
“true” values of the Gaussian variables {zμ} used to generate
W nor can we in general exactly represent the values of W
resulting from the planting procedure using the rounded {z}
variables or even the exact energy of a state relative to the
rounded W . Rounding and discretization cause errors in the
representation of some energies; in particular, states that had
distinct energies under arbitrary precision may be mapped to
numerically indistinguishable values, and the relative ordering
among closely spaced true energies may change. Let Ê be the
random variable resulting from finite-precision representation
of some true continuous-valued energy E ; its corresponding
CDF PÊ (ε) � Pr(Ê � ε) now has step discontinuities. If we
interpret the mapping of a state’s exact energy E to its repre-
sentable approximation Ê as a pseudo-random-walk process
leaving invariant the probability of having energy of at most
ε, then provided ε is large enough to be representable we
can approximate the finite-precision energy CDF with the

continuous distribution introduced in Sec. IV A:

Pr(Ê � ε) ≈
∫ ε

0
pE (e)de = PE (ε),

where the latter equality follows from the nonnegativity of E .
We can then approximate the expected number of states with
observed energy of at most ε using Eq. (27):

E[#[Ê � ε]] = 1 + (2N−1 − 1)
1

�(M/2)
γ

(
M

2
, ε

)
. (31)

The value of ε is in principle arbitrary but must be large
enough to reflect the approximation error of the planted
ground-state energy. We observe that under the aggregated
discretization effects of the construction procedure, the true
planted ground-state energy of zero is typically distorted to a
value on the order of the so-called machine epsilon ≈10−16

for double-precision arithmetic. A sensible strategy is thus
to take ε to be some value not much larger than this, which
would conservatively ensure that no planted ground states are
missed while accepting a certain number of “false positives,”
i.e., that some nonplanted states may be considered successful
solutions. Excessively small values of ε, however, resulted in
prohibitively long computational times for the problems in
the hard regimes. Our methodology to analyze the empirical
solution time settled on using three target energy values:
ε ∈ {10−7, 10−5, 10−3}. We hence strive to yield accurate
predictions of the hardness transition for the important task
of approximate (or relaxed) solution to the problem.

Finally, we define the function trading off number of
solutions to effective search space size

QN (M ) � E[#[Ê � ε]]

2N−M−1
(32)

and anticipate that problems become most difficult at

M∗ = arg min
M∈{1,...,N}

QN (M ),

as this coincides with the fewest number of solutions relative
to the effectively constrained search space. In Fig. 12, we
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FIG. 13. Predicted scaling of M with N to maximize WPE
hardness at precision ε = 10−7. True values of M∗ = arg min

M
QN (M )

(blue points) clearly follow a linear relation. Regression approxi-
mates this relation as M∗ ≈ 1.63 + 0.073N (red line), suggesting
that the hardest problems occur for this precision restriction at
α ≈ 0.073.

plot log QN (M ) for system sizes N = 32 and N = 128, when
ε ≈ 10−7 in accordance with our most stringent target. When
N = 32, M∗ = 3 in perfect accordance with the location of
the hardness peak shown in Fig. 10. The latter size was far too
large to solve in the hard regime within our constraints, but the
plot suggests that to obtain the most difficult problems for this
larger size, M needs to increase. It is instructive to predict the
required scaling of M with N for maximally hard problems at
this level of precision.

Figure 13 shows M∗ as a function of N , where a clear linear
scaling is apparent. By linear regression, we find this relation
to be

M∗ ≈ 1.63 + 0.073N,

suggesting that the hardest problems at ε = 10−7 occur when
α ≈ 0.073. The general message is clear: To have truly dif-
ficult problems under precision constraints, the number of
equations M in the integer program cannot be constant.

The reader may notice that the definition of QN resembles
that of the mean inverse solution time (29) with respect to
the exact partial state traversal algorithm. Directly relating
QN , which considers all energies in a specified range, to
the solution time of an exact solver is not straightforward
however. The issue is that a partial state s̃ may now have
several completions to full Ising states whose energies match
the target but which are not ground states. While we have
shown that finding the ground-state completion of a given s̃
or verifying that no such completion exists is straightforward,
locating a completion guaranteed to match a generic target
ε > 0 is nontrivial. We may nonetheless heuristically justify
QN as follows. Suppose that fixing the N − M partial state
variables s̃ sufficiently constrains the remaining free variables
that locating the extension of minimum energy can typically
be done rapidly and with high probability with a heuristic al-
gorithm. An “exhaustive-approximate” algorithm for finding

FIG. 14. Optimized parallel tempering time to approximate so-
lution for the N = 32 WPE as ε, the acceptable excess energy over
that of the ground state, is varied. As expected, the peak difficulty
decreases as ε increases, as this corresponds to making the objective
more permissive. Interestingly, the hardness peak occurs at larger
values of M as ε grows. This phenomenon is discussed in the
text, where we make analytical predictions of the peak location by
reference to the function QN (M ), and illustrated in Fig. 15.

a state whose energy is bounded by ε can thus proceed as
follows: Traverse the {s̃} in some order, where for each s̃, the
minimizing extension is heuristically obtained, and stop if a
resultant state’s energy is less than ε. Under the assumption
that the target states are uniformly distributed among the
partial state “bins,” QN can once again have an interpretation
as an expected inverse solution time. To justify our conjecture,
we now show that QN (M ) can serve to localize the hardness
peak for generic values of ε.

Figure 14 shows the PT median times to solution for
the same N = 32 WPE ensemble considered so far, but for
three values of ε defining an acceptable solution: ε = 10−7,
10−5, and 10−3. Unsurprisingly, the typical solution times
decrease as the energy criterion becomes more permissive.
Additionally, we note that the location of the hardness peak
shifts to larger values of M as ε is relaxed. Most importantly,
in Fig. 15 we observe the predictive power of QN (M ) at these
values of ε: In all three cases, the minimizer M∗ of QN (M )
at the respective values of ε precisely corresponds with em-
pirically observed PT solution time. We have hence proposed
a robust, theoretically motivated framework for generating
tunably difficult problems over a wide range of approximate
solution targets.

D. Properties of locally optimal states

As we have seen, the energy histogram derived in Sec. IV A
has been useful in predicting the algorithmic properties of
WPE instances. Nonetheless, this distribution does not pro-
vide information about topological aspects of the local min-
ima, i.e., states that are energetically stable with respect to a
single spin flip.

In this section, we briefly probe the properties of local
minima using exhaustive search on small instances; we save
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FIG. 15. Illustration of the predictive power of M∗ =
arg min

M
QN (M ) in localizing the algorithmic hardness peak for

a range of target ε values: (a) ε = 10−7, (b) ε = 10−5, (c) ε = 10−3.
In each panel, we plot the parallel tempering solution times (green,
left y axis) for the N = 32 WPE and log QN (M ) (blue, right y axis)
for the corresponding ε values. The dashed red line displays the
value of M∗, which agrees perfectly with the empirically measured
hardness peak.

analytic examination of these properties, along the lines of
Bray and Moore’s [72] analysis for the SK model, for later
work.

FIG. 16. Expected number of local optima for WPE instances of
size N = 24 as a function of α.

A natural statistic to analyze is the expected number of
local minima as α is varied. Furthermore, it is instructive to
define a residual energy histogram restricted to stable states.
These are shown for a system with N = 24 variables in
Figs. 16 and 17, respectively. As expected, the number of
minima decreases monotonically in α as the ensemble tends
toward a ferromagnet. At small α, we observe a large number
of minima, but also that the residual energy itself is likely to
be small. This is consistent with the observation that at small
α, the problems with restricted precision are easy.

To further illustrate properties of the WPE, Fig. 18 shows
examples of disconnectivity graphs for four specific instances
at their respective values of M. Disconnectivity graphs are
two-dimensional representations of high-dimensional energy
landscapes. In their simplest form they depict the minima

FIG. 17. Residual locally optimal energy distributions for WPE
instances of size N = 24 as a function of α. For small α, the
distributions are concentrated on low residual energy values.
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FIG. 18. Disconnectivity graphs (described in the text) representing the energy landscape of four specific N = 24 WPE instances at various
values of M. Leaf nodes of the tree structures depict local minima, and internal nodes represent barrier states. (a) When M = 4 (top-left), we
observe a tremendous near-degeneracy of a large number of metastable states with energy very close to that of the planted solution. (b) When
M = 8 (top-right), the degeneracy begins to lift, and the number of minima starts to decrease. As M increases to 15 (c) and 32 (d), the ground
state becomes increasingly dominant and the problems computationally easier.

of the system and the lowest energy barrier connecting any
two minima, where an energy barrier is defined as the high-
est energy value encountered along a specific pathway. The
barriers represent the minimum increase in energy necessary
to transition from one minimum to another. In this work,
the minima of the system were obtained via complete enu-
meration and the barriers were calculated using a search
over all possible pathways identified with flipping spins that
are misaligned between pairs of minima. This method was
outlined by Garstecki, Hoang and Cieplak [73]. To deal with
the large number of minima in a computationally efficient
manner, we further made use of an approximation based
on the relative proximity of minima; specifically, for each
minimum only the barriers to the 50 minima closest to it
in Hamming distance were obtained. This approximation is
based on the fact that transitions between two minima can
also happen through basins of intermediate minima, and hence
if two minima are separated by a large Hamming distance
it is likely that the lowest energy barrier between these two
minima will be already represented via transitions between
intermediate minima and their corresponding barriers.

In Fig. 18 the minima are represented by vertical bars
whose lowest points denote their energies. On top, they are

connected by lines converging to a common point repre-
senting the height of the barrier that needs to be crossed in
order to transition between the connected minima. Due to the
continuous nature of the energy values, we sort the minima
into a hierarchical cluster structure whose end points comprise
the intervals [Eb − ��, Eb + ��), where Eb is the energy of
the barrier and 2�� denotes the length of the interval. Minima
whose connecting barriers fall within the same energy interval
are sorted into a common cluster. Within an individual cluster
the minima are arranged based on the number of spins in
the up or corresponding down states. Minima which have a
high number of up-state spins are sorted toward the left and,
correspondingly, minima with a high number of down-state
spins are sorted toward the right. Note, that this order strictly
only applies within the individual cluster; the order of the
individual clusters relative to each other is determined by
the hierarchical structure. In this work we set �� = 0.075.
Figure 18 shows a clear progression in the energy landscape
for which small values of M, e.g., M = 4 in Fig. 18(a), are
characterized by a very large number of almost degenerate
metastable states, and larger values of M [Figs. 18(b)–18(d)]
tend to break the degeneracy, emphasize the planted ground
state, and make the landscape more funnel-like.
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FIG. 19. Average barrier height distribution (described in the
text) for the WPE (N = 24). This quantity represents the average
increase in energy incurred in transitioning from one minimum to a
closely lying neighbor. The distribution is more dispersed at small α,
where the barrier heights are furthermore larger in expectation than
at larger α. This indicates that transitions from the minima at large α

are more likely to be achievable with less energy cost and therefore
might be more probable than at small values of α.

Figure 19 shows the distribution of the average barrier
height within the first Hamming distance of its individual
minima states. It represents the distribution of the average
increase in energy necessary for the system to escape its
minima via the shortest route, i.e., to transition to adjacent
minima. For a given instance, the average 〈· · · 〉 was taken
over the barriers to the minima which lie within the shortest
Hamming distance to a given minimum, say minimum i. Eb

are the energies of the individual barriers and Emin is the
energy of minimum i. The overall distribution is then obtained
by sampling over all minima i of N = 100 sample systems for
each of the values of α.

As can be seen in Fig. 19, at small values of α the distribu-
tion is more spread than at large values, where additionally it
is dominated by relatively small values of the average energy
barrier. From an energy landscape perspective this indicates
that transitions from the minima at large α are more likely
to be achievable with less energy cost and therefore might be
more probable than at small values of α [74].

V. DISCUSSION

We have proposed a planted Ising ensemble with several
noteworthy physical and algorithmic properties. The model
exhibits a first-order temperature transition, a persistent lo-
cally stable paramagnetic state when α < 1, and when rep-
resented with finite precision, an easy-hard-easy algorithmic
difficulty profile. Its physical properties are consistent with
the observed hardness of finding its ground state; moderately
sized problems are extremely difficult in the hard regime. This
meshes well with the intuition that the transition and paramag-
netic stability give rise to a golf-course-like energy landscape.

After deriving the instance-averaged energy distribution—
which turns out to follow a gamma law—we compare the
expected number of states matching a solution criterion with a
quantity we introduced quantifying the intrinsic search space
size at given α to analytically predict the location of the
hardness peak. The prediction is validated using solution
times obtained with a highly optimized implementation of
parallel tempering Monte Carlo.

The first-order transition between the planted and param-
agnetic phases is furthermore established by the TAP analysis
in Sec. III A, with alternative derivations supported by the
replica method (Appendix A 5) and annealed approximations
(Appendix A 4). Careful Monte Carlo simulations demon-
strate the correctness of our analytically predicted transition
temperatures.

A connection is made with the anti-Hopfield model and this
is developed analytically in Appendix A 5 [38]. This analysis
indicates that we might expect to see the impact of replica
symmetry breaking if we focus on the region orthogonal to
the planting space. In this paper we have not focused on this
for two reasons. First, the emphasis has been on intermediate
scale problems, where it is difficult to numerically establish
such phenomena, finite size effects may dominate, and prac-
tical issues such as finite-precision representation may have
greater impact. Second, at large N replica symmetry breaking
has little impact on the free-energy barrier separating the bulk
of the space from the planted solution, which is the primary
driver of hardness for heuristic optimization in the planted
case.

Nevertheless, we believe the qualitative description of the
space orthogonal to the planted solution, that of a rough
energy landscape with deep solutions almost orthogonal to
the planted solution, is in effect. Roughness is apparent at
the small scales we have worked with empirically. With this
in mind, a modification of the planting procedure is pursued
in Appendix A 4 and A 5 whereby the planted solution is
partially penalized. Its leading-order energy is then tunable
at fixed α, at the cost of losing strict guarantees that it is a
ground state. This modification, it is believed, might be the
basis for interesting tests of dynamics (escape into or out of
the planted solution). In particular, an interesting suggestion
has been made that for this type of problem in the presence
of a transverse field, quantum dynamics may be differentiated
from classical counterparts [29]. The features of our model
with this modified planting procedure represent a practical
realization of many of the abstract model features underlying
the population transfer hypothesis.

Future work will explore this direction more deeply, and
consider as well whether the features of the WPE energy
landscape lend themselves to the demonstration of fundamen-
tal speedup using emerging quantum annealing devices, in
particular those whose classical simulation is known to be
intractable. It is our hope that the insights into the ensemble’s
physical and algorithmic classical properties presented in this
work will solidly underpin these future directions.

In addition, we are interested in pursuing the relation be-
tween the WPE and the important class of low-rank estimation
problems [75] used in unsupervised feature extraction and
dimensionality reduction, in further examining whether any
deeper connections can be made between the ensemble and
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biological unlearning [38], and in studying potential connec-
tions with models for analyzing large-system code-division
multiple-access (CDMA) multiuser detectors [76].
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APPENDIX

1. Cavity calculation of the TAP equations

For notational convenience, we redefine the Hamiltonian
of the WPE to include the constant terms corresponding to
the diagonal elements of J̃; this will not affect the final
result. Further, without loss of generality we assume that the
ferromagnetic solution t = (1, 1, . . . , 1) and its reversal are to
be planted as the ground state. The Hamiltonian of the WPE
is

H (s) = −1

2

N∑
i, j=1

J̃i j sis j,

where

J̃i j = − 1

N

M∑
μ=1

w
μ
i w

μ
j

and wμ ∼ N (0,�). As before, M = αN for α > 0 and N →
∞. The elements of the covariance matrix � are as follows:

�i j =
{

1 for i = j
− 1

N−1 for i �= j
.

This covariance structure implies that the Gaussian process
generating w is not only stationary but exchangeable. As
discussed in Sec. III, this model bears many resemblances to
the Hopfield network, but in addition to the negation of the
interactions, we have the additional complication of the “an-
tipatterns” {wμ} consisting of correlated elements. Nonethe-
less, by closely following the two-step cavity-based method
presented by Shamir and Sompolinksi [55] for the Hopfield
model, taking special care to account for the correlations, we
may derive the TAP equations for the WPE.

The cavity approach [52] derives the self-consistent rela-
tion for each local spin magnetization by first considering
removal of the spin from the N + 1-spin system and defining

a state distribution on the N-spin subsystem. Remarkably, the
joint distribution of the field and spin in the original system
can be expressed in terms of the field distribution resulting
from the subsystem, allowing the spin and field statistics for
the full system to be related to those of the subsystem. On their
own, these exact relations do not give much insight because
they are intractable to compute, but when the subsystem field
distribution can be justified to be Gaussian, the TAP equations
for the magnetizations may be obtained. A substantial amount
of the work is in deriving the correct parameters for the field
distribution. The details for the WPE follow.

a. Cavitating a spin

Consider an (N + 1) × (N + 1) WPE matrix J̃ cou-
pling spins {0, . . . , N} through M vectors {wμ}, i.e., J̃i j =
− 1

N+1

∑M
μ=1 w

μ
i w

μ
j . We can decompose this Hamiltonian into

a sub-Hamiltonian H (N ) consisting only of interactions among
spins {1, . . . , N}, denoted here by s1:N , and a term accounting
for the interaction between spin zero and the others:

H (N+1)(s) = H (N )(s1:N ) − h0(s1:N )s0 + 1
2 J̃00

with

H (N )(s1:N ) = −1

2

N∑
i, j=1

J̃i j sis j

and

h0(s1:N ) =
N∑

j=1

J̃0 j s j .

The final constant in H (N+1) is irrelevant and will be dropped.
The exact joint distribution over (s0, h0) can be shown to be

P(N+1)(h0, s0) = 1

ξ
exp(βh0s0)P(N )(h0),

where

ξ = ZN+1

ZN
= 〈2 cosh βh0〉N

and 〈· · ·〉N refers to thermal averaging with respect to
P(N )(s1:N ) = 1

ZN
exp(−βH (N )(s1:N )). From this, we obtain the

(intractable) relations

〈s0〉N+1 =
∑

s0

∫
s0P(N+1)(h0, s0)dh0

=
∫

[exp(βh0) − exp(−βh0)]P(N )(h0)dh0

〈2 cosh βh0〉N

= 〈sinh(βh0)〉N

〈cosh(βh0)〉N
(A1)

and

〈h0〉N+1 =
∑

s0

∫
h0P(N+1)(h0, s0)dh0

=
∫

h0[exp(βh0) + exp(−βh0)]P(N )(h0)dh0

〈2 cosh βh0〉N

= 〈h0 cosh(βh0)〉N

〈cosh(βh0)〉N
. (A2)
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The next step is to compute the field statistics to be used
following a Gaussian assumption for P(N )(h0).

As for the Hopfield model, define the field mean and
variance as

〈h0〉N =
N∑

j=1

J̃0 j〈s j〉N ,

〈(δh0)2〉N = 〈
h2

0

〉
N − 〈h0〉2

N .

Note that

〈(δh0)2〉N =
N∑

i=1

N∑
j=1

J̃0iJ̃0 jχ
(N )
i j ,

where

χ
(N )
i j � 〈δsiδs j〉 = 〈sis j〉N − 〈si〉N 〈s j〉N .

Using the definition of J̃0i, we obtain

〈(δh0)2〉N = 1

(N + 1)2

M∑
μ=1

M∑
ν=1

w
μ
0 wν

0

N∑
i=1

N∑
j=1

w
μ
i wν

j χ
(N )
i j .

(A3)

If we define the overlap of spins {1, . . . , N} with the last N
components of wμ as

ημ � 1

N

N∑
i=1

w
μ
i si

and its covariance under the cavitated spin distribution

〈δημδην〉N � 〈ημην〉N − 〈ημ〉N 〈ην〉N ,

then we obtain

〈δημδην〉N = 1

N2

N∑
i=1

N∑
j=1

w
μ
i wν

j χ
(N )
i j

and hence

〈(δh0)2〉N ≈
M∑

μ=1

M∑
ν=1

w
μ
0 wν

0〈δημδην〉N .

Noting χ
(N )
ii = 1 − 〈s2

i 〉N = O(1) while χ
(N )
i j = O( 1√

N
) for

i �= j, we proceed to determine the magnitude of 〈δημδην〉N

in order to simplify the field variance, bearing in mind that
while wμ is independent of wν , there are componentwise
correlations within each vector not present in the Hopfield
model. The conclusion will be that just as for the Hopfield
model, 〈δημδην〉N is O( 1

N3/2 ) when μ �= ν and O( 1
N ) and when

μ = ν.
Define

Sμν = 1

N2

N∑
i=1

N∑
j=1

w
μ
i wν

j χi j,

where the superscript on χ has been dropped. We seek E[Sμν]

and the fluctuations
√
E[S2

μν] − E[Sμν]2, where the expecta-
tions are taken over {w}.

The linear expectations are straightforward to compute;
when μ �= ν, we have

E[Sμν] = 1

N2

N∑
i=1

N∑
j=1

E
[
w

μ
i

]
E
[
wν

j

]
χi j = 0

while, recalling the covariance structure of w, when μ = ν,

E[Sμμ] = 1

N2

⎡⎣ N∑
i=1

E
[(

w
μ
i

)2
χii

] +
∑
i �= j

E
[
w

μ
i w

μ
j χi j

]⎤⎦
= 1

N2

[
O(N ) − O

(
N (N − 1)

N
√

N

)]
= O

(
1

N

)
,

which is different from the Hopfield model, in which this
quantity is zero.

Direct computation of the quadratic expectation E[S2
μν] is

tedious but straightforward. In the expansion, there will be a
total of N4 terms of the form χi jχklw

μ
i wν

j w
μ

k wν
l . We first make

a relevant partitioning of these terms for generic {μ, ν} and
then compute the expectations for the cases where they are
equal and different.

(i) Case i = k, j = l
If i = j, then there are N terms of the form χ2

ii (w
μ
i )2(wν

i )2

If i �= j, then there are N (N − 1) terms like χ2
i j (w

μ
i )2(wν

j )2

(ii) Case i = k, j �= l
If i = j, then there are N (N − 1) terms as

χiiχil (w
μ
i )2wν

i w
ν
l

If i �= j, then we have N terms like χi jχii(w
μ
i )2wν

i w
ν
j and

N (N − 2) terms as χi jχil (w
μ
i )2wν

j w
ν
l

(iii) Case i �= k, j = l
This is a rotated version of the previous case. When i = j,

there are N (N − 1) terms of the form χ j jχk jw
μ
j w

μ

k (wν
j )2

When i �= j, there are N terms like χi jχ j jw
μ
i w

μ
j (wν

j )2 and
N (N − 2) terms as χi jχk jw

μ
i w

μ

k (wν
j )2

(iv) Case i �= k, j �= l
When i = j, there are N (N − 1) terms like

χiiχkkw
μ
i w

μ

k wν
i w

ν
k and N (N − 1)(N − 2) terms as

χiiχklw
μ
i w

μ

k wν
i w

ν
l

When i �= j, there are N (N − 1)(N − 2) terms as
χi jχkkw

μ
i w

μ

k wν
j w

ν
l and N (N − 1)(N2 − 3N + 3) terms like

χi jχklw
μ
i w

μ

k wν
j w

ν
l

Consider now the case of μ �= ν. Adding the terms in the
expansion, recalling that wμ is independent of wν and that
E[wiw j] = − 1

N when i �= j, we find that

E
[
S2

μν

] = O

(
1

N3

)
,

implying that Sμν is O( 1
N3/2 ). This quantity is of identical order

in the Hopfield model despite the correlations in {w}.
When μ = ν on the other hand, we find that

E[Sμμ] = 1

N4

[
NO(1)E

[
w4

i

] + N (N − 1)O

(
1

N

)
. . .

E
[
w2

i w
2
j

] + 2N (N − 1)O

(
1√
N

)
E
[
w3

i wl
] + 2N . . .
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O

(
1√
N

)
E
[
w3

i w j
]+2N (N − 2)O

(
1

N

)
E
[
w2

i w jwl
]+ . . .

N (N − 1)O(1)E
[
w2

i w
2
k

] + N (N − 1)(N − 2) . . .

O

(
1√
N

)
E
[
w2

i wkwl
] + N (N − 1)(N − 2)O

(
1√
N

)
. . .

E
[
wiw jw

2
k

] + N (N − 1)(N2 − 3N + 3)O

(
1√
N

)
. . .

E[wiw jwkwl ]

]
, (A4)

where the O(· · · ) terms in Eq. (A4) refer to the effects of the
{χi j} products. Using the properties of the higher-order mo-
ments of a correlated Gaussian distribution (e.g., Ref. [77]),
we have by the exchangeability of our distribution for any
indices such that different letters refer to different values,

E
[
w4

i

] =3 = O(1)

E
[
w3

i w j
] = − 3

N
= O

( 1

N

)
E
[
w2

i w jwk
] = − 1

N
+ 2

N2
= O

(
1

N

)
E
[
w2

i w
2
j

] =1 + 2

N2
= O(1)

E
[
wiw jwkwl

] = − 3

N2
= O

(
1

N2

)
.

Substituting these into Eq. (A4), we obtain the result that
E[S2

μμ] = O(1/N2) and hence that Sμμ is typically√
O

(
1

N2

)
− 1

N2
± 1

N
, (A5)

namely O(1/N ). These results imply that the field variance in
Eq. (A3)

〈(δh0)2〉N =
M∑

μ=1

(
w

μ
0

)2〈(δημ)2〉N +
∑
μ �=ν

w
μ
0 wν

0〈δημδην〉N

is

O

(
M

N

)
+ O

[√
M(M − 1)

N3/2

]
= O(1) + O

(
1√
N

)
,

where the order of the second summation follows from the
independence of μ and ν; by self-averaging it can hence be
approximated by

〈(δh0)2〉N =
M∑

μ=1

〈(δημ)2〉N � VN . (A6)

Finally, recall that h0 = − 1
N+1

∑M
μ=1 w

μ
0

∑N
i=1 w

μ
i si ≈

−∑M
μ=1 w

μ
0 ημ. The {ημ} decorrelate at the same rate as they

do in the Hopfield model; further, w
μ
0 follows deterministi-

cally from {wμ
1:N } and adds no information about the state

distribution on sites {1, . . . , N} and hence on the {ημ}. This
suggests that the field can be approximated by a limiting

Gaussian distribution:

P(N )(h0) = 1√
2πV

exp

[
− (h0 − 〈h0〉N )2

2V

]
,

where V � lim
N→∞

VN . This Gaussian approximation dramati-

cally simplifies relations in Eqs. (A1) and (A2), which reduce
to

〈s0〉N+1 = tanh(β〈h0〉N )

〈h0〉N+1 = 〈h0〉N + βV 〈s0〉N+1. (A7)

Considering deletion of any spin i rather than zero, the TAP
relation

〈si〉 = tanh

⎡⎣β

⎛⎝∑
j �=i

Ji j〈s j〉 − βV 〈si〉
⎞⎠⎤⎦ (A8)

follows. Note that the distinction between J and J̃ disappears
at this point; a consequence of the cavity method is that {J̃ii}
terms are disregarded as one expects. To fully specify the TAP
relation, V must be determined for the WPE; we turn to this
task next.

b. Cavitating a w

Consider now a system of N spins but with M + 1 {wμ}.
The corresponding Hamiltonian can be related to that of a
system with a single wμ removed. Specifically, if

H (M )(s) = 1

2N

N∑
i, j=1

M∑
μ=1

w
μ
i w

μ
j sis j,

then the full Hamiltonian is

H (M+1)(s) = H (M )(s) + 1

2N

(
N∑

i=1

w0
i si

)⎛⎝ N∑
j=1

w0
j s j

⎞⎠
= H (M )(s) + N

2
(η0)2,

where again an irrelevant constant has been dropped. Now
following the cavity procedure, we obtain the distribution of
η0 relative to the Boltzmann distribution corresponding to
H (M+1) in terms of that corresponding to H (M ):

P(M+1)(s)

= 1

ZM+1

∑
s

exp[−βH (M+1)(s)]δ

(
η0 − 1

N

N∑
i=1

w0
i si

)

= 1

ZM+1

∑
s

exp

[
−βH (M )(s) + N

2
(η0)2

]

× δ

(
η0 − 1

N

N∑
i=1

w0
i si

)

= ZM

ZM+1
exp

[
−β

N

2
(η0)2

]
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×
∑

s

[
P(M )(s)δ

(
η0 − 1

N

N∑
i=1

w0
i si

)]

= ZM

ZM+1
exp

[
−β

N

2
(η0)2

]
P(M )(η0). (A9)

The expectation 〈η0〉M = 1
N

∑N
i=1 w0

i 〈si〉M = 0 by
self-averaging due to the stationarity of w0. The variance
〈(δη0)2〉M was shown to be O( 1

N ) previously; for large N , its
typical value is

〈(η0)2〉M = 1

N2

⎡⎣∑
i �= j

w0
i w

0
j χ

(M )
i j +

N∑
i=1

χ
(M )
ii

⎤⎦
→ 1

N2

⎡⎣−
∑
i �= j

1

N − 1
χ

(M )
i j +

N∑
i=1

(
1 − 〈si〉2

M

)⎤⎦
→ 1

N
(1 − q),

where

q = 1

N

N∑
i=1

〈si〉2
M .

Finally, assuming that P(M )(η0) is Gaussian and using the
relation in Eq. (A9), we obtain

P(M+1)(η0) ∝ exp

[
− N

2(1 − q)
η2

0 − Nβ

2
η2

0

]
= exp

[
−1

2

[
N

1 − q
+ Nβ

]
η2

0

]
,

which is a Gaussian with mean zero and variance

〈(δη0)2〉M+1 = 1 − q

N[1 + β(1 − q)]
.

Note that this value would result for any wμ removed. To
obtain the field variance, we use Eq. (A6) to obtain

V =
M∑

μ=1

〈(δημ)2〉N

= αN〈(δη0)2〉M+1

= α(1 − q)

1 + β(1 − q)
.

This resembles that of the Hopfield model but with a changed
sign in the denominator.

2. Limiting spectral distribution of J

We determine the limiting eigenvalue distribution of the
J matrix. To do so, it suffices to determine the spectral
distribution of J̃. To see why, first note that J̃ii → −α for all i
by the law of large numbers. Recalling that J = J̃ − diag(J̃),
this implies that J is asymptotically related to J̃ by addition of

a uniform quantity to the diagonal, namely

J = J̃ + αIN ,

which in turn means that the eigenvalues of J are simply those
of J̃ translated by α.

For Wishart matrices of the form 1
M XX T , where X are

N × M matrices whose elements are independent zero-mean
unit-variance Gaussian variates and M = αN , the limiting
spectral distribution is known as the Marchenko-Pastur [58]
law. The fact that the columns of W are correlated Gaussian
variates seems at first to complicate the determination for
1
N WW T . The structure of the specific covariance matrix �

considerably simplifies matters, however. Recalling that

� = N

N − 1
[I − ttT ],

it is apparent that first, t is an eigenvector with null eigenvalue,
and second, that any vector in the subspace orthogonal to
t is an eigenvector with eigenvalue N/(N − 1) → 1. Hence,
any orthonormal set of N − 1 vectors orthogonal to t can be
used to represent �, and the variation of w along each of
these eigenvectors is asymptotically of unit magnitude. The
procedure for generating w is for large N thus equivalent
to first generating vector x whose first N − 1 elements are
independently ∼N (0, 1) and whose last element is zero and
next, transforming x by some unitary matrix U rotating the N th

coordinate vector eN = (0, . . . , 0, 1) to t . This implies that the
spectral distribution of WW T approaches that of XX T , where

X =
[

X̃
0T

]
consists of an (N − 1) × M matrix X̃ composed of iid normal
variates and a final row of zeros; the eigenvalues of XXT are
thus those of X̃ X̃

T
with an extra zero added. The limiting

spectral distribution of 1
N−1 X̃ X̃

T
can be straightforwardly ob-

tained from the Marchenko-Pastur law by appropriate change
of variables. We then obtain the limiting eigenvalue distribu-
tion of the matrix −J̃ = 1

N WW T to be

f̃ (λ) =
{

(1 − α)δ(λ) + f̃+(λ) α < 1
1
N δ(λ) + N−1

N f̃+(λ) α � 1
, (A10)

where

f̃+(λ) = 1

2π

√
(λ+ − λ)(λ − λ−)

λ
1[λ ∈ [λ−, λ+]

and

λ− = α − 2
√

α + 1
λ+ = α + 2

√
α + 1.

Note that the δ spike at zero never disappears, a feature that
turns out to crucially influence the phase behavior for large
α. Finally, the spectral distribution of J = J̃ + αI follows by
reflection and translation:

f (λ) =
{

(1 − α)δ(λ − α) + f+(λ) α < 1
1
N δ(λ − α) + N−1

N f+(λ) α � 1
, (A11)

where

f+(λ) = − 1

2π

√
(λ+ − λ)(λ − λ−)

λ − α
1[λ ∈ [λ−, λ+]
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and

λ− = −2
√

α − 1

λ+ = 2
√

α − 1.

The distribution consists of a continuous component over the
support [λ−, λ+] and a persistent δ function at α, where of
course α � λ+.

3. Energy histogram of the Wishart ensemble

Define the length M vector of normalized state overlaps
with the {wμ}

η(s) = 1√
2N

W T s

so that H (s) = ηT η and

pE (e|{wμ}) = Pr(ηT η = e|{wμ})

= 1

2N

∑
s

δ

(
e − 1

2N
sT WW T s

)
.

The derivation of the marginal energy

pE (e) �
∫

{wμ}
pE (e|{wμ}) f (w1, . . . ,wM )d{wμ}

is simplified by decomposing the integration into sums of
expectations over subsets of states with a constant number of
positive elements and exploiting the exchangeability of f (w).
Let N+(s) be the number of elements in s with value +1;
for a magnetization m ∈ [−1, 1], N+ = (1+m)N

2 . On the N+
constrained subset, the marginal density of E is

pE (e|N+) = 1( N
N+

)E{wi}

[∑
s:N+

δ
(

e − 1

2N
sT WW T s

)]

= 1( N
N+

) ∑
s:N+

E{wi}

[
δ
(

e − 1

2N
sT WW T s

)]
,

where the sums are over states with N+ positive entries. The
joint distribution

f (w1, . . . ,wM ) = f (w1) . . . f (wM )

by the independence of the columns, but the components of
each wμ are correlated. They are however exchangeable, and
since the same s appears in each term in the sum this implies
that

E{wi}

[
δ
(

e − 1

2N
sT WW T s

)]
(A12)

only depends on N+. Consider the specific case of s whose
first N+ elements are 1. Define the sums (one for each column
of W )

Aμ
+ � 1√

2N

N+∑
j=1

w
μ
j .

Because
∑N

i=1 w
μ
i = 0, the sum

Aμ
− � 1√

2N

N∑
j=N++1

w
μ
j = −Aμ

+

deterministically. By the independence of the wμ the sums
{Aμ

+} are independent random variables and from the prop-
erties of linear transformations of Gaussian variables each is
distributed according to a zero-mean Gaussian with variance

σ 2
N+ = N+(N − N+)

2N (N − 1)
.

When N+ = 0 or N+ = N , the zero-variance Gaussian is
defined to be a δ function as we expect. We express the
expectation (A12) at fixed N+ as

E{wi}

[
δ

(
e − 1

2N
sT WW T s

)]

= E{Aμ
+,Aμ

−}

{
δ

[
e −

M∑
μ=1

(Aμ
+ − Aμ

−)2

]}

= E{Aμ
+}

{
δ

[
e −

M∑
μ=1

(2Aμ
+)2

]}
. (A13)

Now let

S �
M∑

μ=1

(Aμ
+)2

with density fS . We then have

E{Ai+}

{
δ

[
e −

M∑
i=1

(2Ai
+)2

]}
= ES[δ(e − 4S)] = 1

4
fS

( e

4

)
.

(A14)

Because S is the sum of squares of M zero-mean iid Gaussians
with variance σ 2

N+ , it is gamma-distributed, i.e., with density

fS (s) =
{

1
�(k)θ k sk−1 exp

(− s
θ

)
for s � 0

0 for s < 0

with parameters (k, θ ) = (M/2, 2σ 2
N+ ). For large N and m

relating N+ to N , σ 2
N+ ≈ 1−m2

8 . We then obtain the constrained-
m energy histogram

pE (e|m) = 1

4
fS

(
e

4

)
= 1

�(M/2)(1 − m2)M/2
eM/2−1 exp

(
− e

1 − m2

)
for e � 0 and zero otherwise and the overall energy distribu-
tion

pE (e) = 1

2N

∑
m

(
N

(1+m)N
2

)
pE (e|m), (A15)

where the sum runs over the N + 1 values of m mapping to
N+ ∈ {0, . . . , N}. As described, for example, in Refs. [45,60],
applying Stirling’s large-N approximation to the binomial
coefficients, replacing the sum with an integral and evaluating
it with Laplace’s method, we obtain

pE (e) ≈ pE (e|m = 0)
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or the marginal gamma energy density for the WPE

pE (e) =
{

1
�(M/2) e

M/2−1 exp(−e) for e � 0

0 for e < 0
. (A16)

4. Annealed approximation

The purpose of the annealed approximation is to provide a
simple bound on the typical case behavior of the free energy
at leading order in N . The free-energy density is defined

f = lim
N→∞

− 1

βN

〈
log

∑
s

exp [−βH (s)]

〉
, (A17)

where 〈·〉 denotes an average over instances. Discontinuities in
the free energy describe the phase transitions, and derivatives
describe the order parameter(s) and other statistically signifi-
cant quantities at thermal equilibrium.

It is convenient for this section to consider a model defined
by the Hamiltonian

H (s) = 1

N

αN∑
μ=1

(∑
i′,i

Zi′,μ

[
δi,i′ − κ

N

]
si

)2

, (A18)

where Zi,μ are independent and normally distributed random
variables. For the case κ = 1 this Hamiltonian is identical to
the main text Hamiltonian up to the choice of the embedding
solution (ti = 1, ∀i), inclusion of a nonzero diagonal term
in the coupling matrix (which adds a constant offset to the
energy), and corrections of O(1/N ). These restrictions are for
the convenience of analysis, and have no significant impact on
the analysis method or conclusions of the section.

The parameter κ is useful in making the connection to
the anti-Hopfield model (obtained for the case κ = 0) [38],
and in identifying a variation on the principle of embedding
discussed in the main text. Tuning of this parameter allows
one to control the energy level of the planted solution at

leading order in N , allowing an embedding of a ground state
with control over the gap at fixed α, or implanting an excited
state well separated from other stable and metastable states.

The annealed approximation may be used to obtain a lower
bound, f � fA, on the free-energy density

fA = lim
N→∞

− 1

βN
log

〈∑
s

exp [−βH (s)]

〉
. (A19)

The physical interpretation for this approximation is that the
quenched degrees of freedom (Z) are treated on an equal foot-
ing with the dynamical degrees of freedom (s). This means
that models of lower energy can be selected disproportion-
ately, since spin and model variables can become correlated
to lower the free energy. By this process it is possible that
atypical models can dominate the free energy so that typical
case is not reflected. However, in this ensemble we show that
the free energy is correct through much of the phase space in
agreement with the TAP analysis of Sec. III A.

Due to the quadratic form of the Hamiltonian in the order
parameter, it is rather straightforward to take the disorder
average explicitly, which yields:

fA = lim
N→∞

− 1

βN
log

∑
s

exp {αNTr log[I + βX (s)]},
(A20)

where Xi j (s) = 1
N (si − κ

∑
i′ si′ )(s j − κ

∑
j′ s j′ ). Following

this, we notice that the eigenvalues of X are a function only of
the sum of spin variables, thus the trace log can be simplified,
defining m = 1

N

∑
si we can write

fA = lim
N→∞

− 1

βN
log

∑
m

(
N

(1 + m)N/2

)
× exp(αN log{1 + β[1 − m2κ (2 − κ )]}). (A21)

Using Stirlings’s approximation, and using a continuum ap-
proximation for m we can write

fA = lim
N→∞

− 1

βN
log

∫
dm exp

(
− N

∑
x=±1

1 + mx

2
log

(
1 + mx

2

)
+ αN log{1 + β[1 − m2κ (2 − κ )]}

)
. (A22)

Finally, applying Laplace’s approximation yields the result

f � max
m

1

β

∑
x=±1

1 + mx

2
log

(
1 + mx

2

)
+ · · · α log[1 + β[1 − m2κ (2 − κ )]}. (A23)

The quantity m can be readily associated with the planted state
overlap (magnetization, for the case of ti = 1 ∀i). The first
term is the standard mean-field entropy term, the latter term
being an energy term.

Maximizing this equation involves solving for df /dm =
0, also called the saddle-point equation. At high temperature
there is only the solution m = 0, whereas at low temperature
(for large-enough κ) there are two additional solutions. For
the case κ = 1 of the main text [Eq. (A 23)] is identical to the
dominant minima of the TAP equation free energy [Eq. (14)].

At low temperature it is interesting to observe that the
crystallization transition occurs due to a competition between
the energy term and the entropy term, one dominating in each
regime. For the paramagnetic solution is defined by m = 0,
whereas for the planted solution m ≈ 1. Equating these two
terms for the case κ = 1 we can find a simple approximation
to the first-order transition, the approximation in Eq. (20)
proves a very accurate lower bound for the critical temperature
shown in Fig. 1 for small values of α.

In this section we have found that the annealed approx-
imation recovers the more general TAP result derived in
Sec. III A. For the special case of O(N ) planting κ < 1
we find that the embedded state remains thermodynamically
dominant at low-enough temperature for large-enough κ , at
a diminished critical temperature (and increased ground-state
energy). For the case κ ≈ 0, and at small α the annealed
approximation is insufficient to predict all features of the
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phase diagram, for this we can use the replica method of
Appendix A 5.

5. The replica method

The annealed approximation of Appendix A 4, and TAP
analysis presented (Sec. III A), are insufficient to describe all
the features of our model phase space. To go beyond these
we here introduce a replica method. The replica method when
solved is able to capture non trivial properties of the exact
free energy, at leading order in N , in a variety of disordered
models closely related to our proposed model [27,38,56]. As
presented here, the replica method is a nonrigorous method
for purposes of obtaining insight through related models.

The replica method for the anti-Hopfield model (κ = 0)
is demonstrated by Nokura et al. [38], and may be derived
along similar lines as the Hopfield model [27]. Only minor
variations to the form of the Hopfield replica method (free
energy) are necessary to analyze the WPE, but these changes
have significant consequences.

The free-energy density [Eq. (A17)] can be rewritten for
purposes of the replica method in terms of a replicated parti-
tion function

f = lim
N→∞

− 1

βN
lim
n→0

∂

∂n
〈Zn〉, (A24)

where Z is the partition function, and the trick is to solve for
the case of positive integer n and analytically continue to real
n. For integer n we can write

Zn =
∑

s

n∏
ρ=1

exp[H (sρ )] (A25)

using Eq. (A18), sρ being a vector of dimension N . From here
we can follow closely the method in Section 2 of Ref. [27],
which is considered a standard approach. This being under-
stood, we are sparse in our derivation. The main difference in
the method is the introduction of an additional order parameter
m through the identity∫

dmρδ

(
mρ − 1

N

∑
i

sρ
i

)

=
∫

dmρdm̂ρ exp

(
m̂ρ

[
Nmρ −

∑
i

sρ
i

])
. (A26)

The integral identity, and scaling with N , being appropriate
for the large system limit saddle-point, to be later identi-
fied. A similar identity is introduced for the overlap qρ,ρ ′ =
1
N

∑
i sρ

i sρ ′
i .

The replicated partition function following these manipu-
lations be written

〈Zn〉 = exp

{
αN

2
Tr log([(1 − β )I + βq − . . . βκ (2 − κ )mmT ]) − N

2

∑
ρ �=ρ ′

qρ,ρ ′ q̂ρ,ρ ′

− · · · N
∑

ρ

mρm̂ρ + log Trs exp

(
1

2
sT q̂s + m̂T s

)}
, (A27)

where I is the n × n identity matrix, q and q̂ are matrices
of the same dimension with zero on diagonal (overlap order
parameters), and m, m̂ and s are n × 1 vectors (alignment with
planted solution order parameters).

For the special case mρ = 0 (or κ = 0) this free energy
is identical to that of the anti-Hopfield model [38]. The
interpretation of this result is as follows: since m describes the
degree of alignment with the planted solution, we can argue
that when there is no extensive alignment with the planted
solution, such as at high temperature (above the first-order
planting transition) or in general for the space orthogonal to
the planted solution, the model phenomena will be identical
to the anti-Hopfield model. This is interesting, since in the
anti-Hopfield model, and in related classes of problems, there
is understood to be a replica symmetry breaking phenomena
[56]. The space becomes divided into modes separated by
extensive barriers at sufficiently low temperature. We thus
expect this same phenomena to carry over to our model either
as a stable or metastable solution. To determine which we
must analyze the free energy within an approximation. In
this Appendix we will develop only the replica symmetric
theory, this being understood as sufficient for the param-
agnetic phase, and the crystal phase discussed in the main
text.

In the replica symmetric solution we take mρ = m,∀ρ and
that qρ,ρ ′ = q for ρ �= ρ ′ (the diagonal term is 0). The free
energy at leading order can be determined from the saddle-
point free energy

β f (q, q̂, m, m̂)

= −α

2

{
log[(1 + β(1−q)] + · · · +β[q − (2κ − κ2)m2]

1 + β(1 − q)

}
+ m̂m − 1

2
q̂q + 1

2
q̂ − · · ·

∫
dz exp

(
− z2

2

)
× log[2 cosh(

√
q̂z + m̂)]. (A28)

We can attempt to solve this equation as in the annealed case
by setting derivatives with respect to m, m̂, q and q̂ to zero.
These equations can be written

m̂ = αβ
(2κ − κ2)m

1 + β(1 − q)
, (A29)

m =
∫

dz tanh(
√

q̂z + m̂), (A30)

q̂ = αβ
q − (2κ − κ2)m2

[1 + β(1 − q)]2
, (A31)

q =
∫

dz tanh2(
√

q̂z + m̂). (A32)
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First we should note the solution m = m̂ = q = q̂ = 0, which
is the same (paramagnetic) free energy as in the annealed and
TAP analysis, and describes the high-temperature solution.
The local stability of this solution at κ = 1, which determines
the critical temperature, is identical to that determined by
alternative analysis methods (Appendix A 4 and III A).

Next consider the subspace with q̂ = 0 and m �= 0. In this
case we find the relationship q = (2κ − κ2)m2, and q = 0,
and recover the planted phase with identical properties to the
annealed and TAP analysis. The energy of this solution being
controlled by κ . This solution, where it exists is again locally
stable.

Finally, for α > 1 a solution with nonzero q̂ is possible
in the subspace with m = 0, the critical temperature given
by T = −1 + √

α. Nevertheless, for κ = 1 the embedding-
aligned phase (|m| > 0) is dominant. Thus the replica sym-
metric solution is in agreement with the understanding pre-
sented in the main text. For ρ < 1 this solution can become
relevant for a limited region α � 1, and describes a transition
similar to that in the SK model.

However, it is known that the replica symmetric solution
can be unstable, and it is necessary to go beyond these
approximations to first and higher orders of replica sym-
metry breaking to describe the phase space correctly, this
being most important at small α. We have not probed the
interesting consequences in this part of the phase diagram,
but the results of the anti-Hopfield model are understood
to apply and there is expected to be dynamical and static
transitions in the space orthogonal to the planted solution
[38,78]. It is the existence of these solutions, whether they
are stable or metastable, alongside the planted one, that offers
the interesting possibility to undertake a population transfer
measurement in the context of this model [29]. Being able
to plant a deep stable or metastable solution may also have
other interesting applications, particularly in sampling and
inference applications where one must provide more than a
single ground-state certificate.

The aim of this paper is to provide practical interme-
diate scale benchmarks, the replica method describes only
the typical case properties at leading order in N . A tension
therefore exists between the results found in this section, and
practical limitations of the ensemble such as precision, and
instance to instance fluctuations at finite size. These facts

must always be borne in mind when considering such analysis
results.

6. Time to solution measurements

In this work the problem hardness is quantified via time to
solution (TTS) of parallel tempering Monte Carlo. We do em-
phasize that we expect similar results using other heuristics.
For a single disorder realization, the time to solution is defined
as the run time such that there is a 99% success probability to
have found the solution at the end of the run.

Many solvers have parameters that affect the success prob-
ability which we denote by a set {φ}. For parallel tempering
Monte Carlo, the parameters considered are the lowest tem-
perature and number of replicas. Often, it is faster to carry out
many short attempts taking run time R with a lower success
probability p(R, {φ}) which motivates the definition [79–81]

TTS(R, {φ}) � R
log (1 − 0.99)

log[(1 − p(R, {φ})]
. (A33)

The number of attempts is taken to be a real number for
convenience.

In the case of an ensemble, averages may be poorly defined
and so the median is used [79]. For the TTS to be well defined,
the minimum value with respect to run time and parameters
must be computed [80]. The ensemble TTS is defined as

TTS � min
R,{φ}

median
i

{TTSi(R, {φ})},

where the index i refers to the TTS of individual disorder
samples as a function of run time and parameters.

Due to the nonsequential nature of parallel tempering
Monte Carlo, the success probability as a function of run time
can be efficiently measured with only a small number of runs
[82]: The algorithm is run W times until the solution is found.
For a given run time R, the success probability is estimated as
the percentage of runs where the solution is found in time less
than R.

Due to finite numerical precision, solutions are considered
to be any state with energy E < EGS + ε where EGS is the
planted solution energy and ε is a numerical constant. ε =
10−7 was used for the TTS study in Fig. 10. The effects of
different values of ε on the location of the TTS maximum are
shown in Fig. 14.
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