
PHYSICAL REVIEW E 101, 050902(R) (2020)
Rapid Communications

Direct measurement of force configurational entropy in jamming

James D. Sartor* and Eric I. Corwin †

Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA

(Received 11 December 2019; revised manuscript received 14 February 2020; accepted 31 March 2020;
published 4 May 2020)

Thermal fluctuations are not large enough to lead to state changes in granular materials. However, in
many cases, such materials do achieve reproducible bulk properties, suggesting that they are controlled by an
underlying statistical mechanics analogous to thermodynamics. While themodynamic descriptions of granular
materials have been explored, they have not yet been concretely connected to their underlying statistical
mechanics. We make this connection concrete by providing a first-principles derivation of the multiplicity and
thus the entropy of the force networks in granular packings. We directly measure the multiplicity of force
networks using a protocol based on the phase space volume of allowed force configurations. Analogous to
Planck’s constant, we find a scale factor, hf , that discretizes this phase space volume into a multiplicity. To
determine this scale factor, we measure angoricity over a wide range of pressures using the method of overlapping
histograms and find that in the absence of a fundamental quantum scale it is set solely by the system size and
dimensionality. This concretely links thermodynamic approaches of angoricity with the microscopic multiplicity
of the force network ensemble.
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Introduction. Thermodynamics connects abstract and dif-
ficult to measure details, such as entropy, with more easily
measured bulk properties, such as temperature. In granular
systems, for which the thermal energy scale is irrelevantly
small, similar connections have been proposed for the volume
ensemble [1,2] using compactivity as a temperature analog
and also for the force network ensemble [2,3] using angoricity.
While these quantities are measurable [4,5], they are not
physically meaningful unless they (1) are shown to have
temperaturelike properties, such as following the zeroth law
and (2) can be rigorously linked to a first-principles definition
of microscopic entropy [6]. Entropy itself was initially an
empirical quantity until Sackur and Tetrode placed it on firm
footing for the ideal gas with the discretization of phase space
into quantum-mechanical states [6,7]. The length scale of
the discretization depends both on properties of the system
and the universal constant h̄, whose value cannot be inferred
from bulk properties of the ideal gas alone. Angoricity holds
promise as a temperature analog, as it has been shown to
follow the zeroth law, while compactivity fails to do so [2,4,8].
However, before the thermodynamic approach of angoricity
can be considered to be on solid ground, the nature of the
entropy of jammed systems must first be understood.

When the density of an overjammed packing increases,
force networks are affected in two ways: (1) force magnitudes,
and thus pressure, increase, and (2) new contacts between
particles form, increasing the number of contact forces in the
network. Both of these changes increase the entropy of the
force networks. While the effect on entropy from pressure
changes is well understood [5,9], the effect from changes
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in the contact network is not. To decouple these effects, we
propose an extension to the force network ensemble in which
changes in the contact network are allowed. This leads us to
identify a critical number of excess contacts, δzc, describing
the transition from a regime in which entropy is dominated by
changes in pressure to one in which it is dominated by changes
in the contact network.

The temperature analog angoricity is defined as the deriva-
tive of entropy with respect to the stress tensor [3]. In
isotropic systems this tensor quantity can be simplified to
a scalar derivative of entropy with respect to pressure. Just
as temperature of an ideal gas can be measured from the
velocity distribution, angoricity can be measured from the
distribution of local pressures [5]. As a derivative, angoricity
provides information about the difference in entropy between
two systems but not the absolute values. Previous theoretical
and experimental work has identified an inverse scaling of
angoricity with pressure in the near jamming limit for two-
dimensional (2D) soft spheres [5,9]. However, these studies
do not systematically explore the effect of changing the con-
tact network, which remains static in the near jamming limit.
In our computational study, we explore the system by varying
the spatial dimension, pressure, and number of particles over
ranges much larger than would be feasible in a physical
experiment.

In this Rapid Communication, we present a first-principles
derivation of the entropy for the force networks of granular
packings. We measure this entropy up to a multiplicative
constant, h f , in the near jamming limit by directly measuring
the volume of the space of allowed force configurations.
Analogous to Planck’s constant in the Sackur-Tetrode equa-
tion, h f discretizes the space of force configurations into an
integer number of accessible states. We then use the method
of overlapping histograms to measure angoricity as a function
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FIG. 1. Force volume measurement for a system with one excess contact. Left: The two independent states of self stress, F1 and F2. Black
lines between particles represent positive (compressive) forces; red lines represent negative (tensile) forces. Center: A scatter plot of F1 vs
F2 for each pair of particles. Linear combinations of F1 and F2 are represented graphically by drawing a sloped line through the origin and
measuring the distance to each point. Any sloped line for which all of the points fall into the same half-space corresponds to a positive-definite
linear combination. The set of lines which allow for such solutions is the force space volume, indicated by the angle θ . Note that in a system
with �Z excess contacts, this volume is a �Z-dimensional quantity. Right: The two extremal positive-definite linear combinations at the edge
of this region are shown. Each has one force brought to precisely zero.

of pressure, and compare with our force volume measure
to solve for h f . This concretely connects the bulk nature
of angoricity with the microscopic multiplicity of the force
network Ensemble.

Computational methods. We use pyCudaPacking [10], a
GPU-based simulation engine, to generate energy minimized
soft sphere packings at specified pressures in periodic bound-
ary conditions. We do so for number of particles, N , spanning
from 256 to 4096, and dimension, d , from 2 to 5. The particles
are monodispersed, except in 2D in which we use equal
numbers of bidispersed particles at a size ratio of 1.4:1 to
prevent crystallization. Particles interact through a harmonic
contact potential as defined in [10], and the system’s energy is
minimized using the FIRE minimization algorithm [11].

Starting with random initial positions, we minimize energy
and then adjust overall density by uniformly scaling particle
radii to achieve a pressure P of 10−2 in natural units, as de-
fined in [12]. This pressure is chosen to prevent crystallization
artifacts from high density packings. From there, we itera-
tively adjust the density both up and down to achieve specific
values of pressure. We do this efficiently by exploiting the
known linear scaling of pressure with density above jamming
for a harmonic potential [13]. For each targeted pressure, we
ensure that the actual pressure is accurate to a factor of 10−5.
We sample 100 logarithmically spaced steps per decade of
pressure to ensure sufficient overlap between the distributions
of local pressure for neighboring systems, as is needed for the
method of overlapping histograms.

Rigidity. To understand the behavior of packings close to
the jamming transition we examine the geometric mechanisms
necessary for rigidity by constructing an unstressed spring
network with the geometry of the packing. The rigidity ma-
trix [14–16], R, describes this spring network by encoding
the normalized contact force vectors from the packing, ni j ,
between pairs of particles i and j as

Rkα
〈i j〉 = (δ jk − δik )nα

i j, (1)

where k indexes contacts and α indexes spatial dimensions.
For a system with Nstable stable particles and Ncontact contacts,
this will be an Ncontact by Nstabled matrix. The singular value
decomposition of this matrix yields two sets of singular
vectors, analogous to eigenvectors for a square matrix. The
right singular vectors describe the normal modes of posi-
tion displacements, and the left singular vectors describe
the normal modes of force displacements. The left singular
vectors corresponding to zero eigenvalues represent mechan-
ically stable force configurations, termed states of self-stress.
These vectors need not be positive definite, and therefore are
not necessarily valid force configurations for the underlying
packing.

The magnitude of each contact force can be considered as
a degree of freedom while the requirement for mechanical
stability introduces d constraints for each particle. Balancing
these constraints requires a minimum number of contacts to
ensure stability, which in systems with periodic boundary
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FIG. 2. Representative exponential scaling of the force volume,
Vf , with number of excess contacts, �Z , for N = 1024, d = 3. The
median of the distribution for each �Z is shown as a white circle,
surrounded by the full distribution in yellow. The black line shows
the exponential fitting form, with exponential base γ . Inset (bottom
left): γ for each N and d . Inset (top right): The scale, C, of the
exponential. Inset data is presented for d = 2 (red), 3 (yellow), 4
(purple), and 5 (green), and N = 256 (circles), 1024 (squares), and
4096 (triangles).

conditions is given by [17,18]

Nmin
contact = d (Nstable − 1) + 1. (2)

A system with this minimum number of contacts has
exactly one state of self-stress, and each additional contact
formed imparts an additional independent state of self-stress.
Thus, we define the number of excess contacts, �Z , as

�Z = Ncontact − Nmin
contact, (3)

making the number of independent states of self-stress �Z +
1. We define the number of excess contacts per particle,

δz = 2�Z/N, (4)

where the 2 reflects that each excess contact is shared between
two particles. These independent states of self-stress form a
basis for the (�Z + 1)-dimensional space of all mechanically
stable force configurations of the spring network. However,
imposing a normalization condition restricts this to a �Z-
dimensional subspace.

Force volume. The force network ensemble samples all
valid force networks in the spring representation of a pack-
ing with equal probability [19–21]. To determine the force
volume, we calculate the normalized independent states of
self-stress where F q

μ is the contact force on contact q in
the state of self-stress μ. The set of all possible repul-
sive contact forces is defined by linear combinations that
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FIG. 3. Scaled angoricity, αPc/A, for all N and d , collapses onto
Eq. (8) (black line) when plotted against scaled pressure, P/Pc, until
high pressure deviations caused by second-nearest-neighbor interac-
tions. Inset (top right): The crossover pressure Pc. Inset (bottom left):
A/dm is approximately 0.7. Colors denote dimensions from 2 to 5
and symbols denote number of particles as in Fig. 2.

satisfy ∑
μ

λμF q
μ � 0 (5)

for all contacts q, where {λμ} are coefficients subject to
the normalization condition

∑
μ λ2

μ = 1. We define the force
volume Vf to be the volume of the space of λμ coefficients
that satisfy this rule as illustrated in Fig. 1.

We measure this force volume with the following protocol:
(1) Recast F q

μ into a set, { �Cq}, of Ncontacts vectors containing
the value of the force on contact q in each of the �Z + 1 states
of self-stress.

(2) Planes which pass through the origin and place all of
the { �Cq} into a single half-space satisfy inequality (5). We
compute the extremal values of such planes as the facets of
the convex hull [22] of { �Cq, �0}. The normal vector to each
facet is the {λμ} which defines a vertex of the allowed space
of coefficients and corresponds to a linear combination of the
independent states of self-stress in which exactly �Z forces
are precisely 0.

(3) To respect the normalization requirement we calculate
Vf as the �Z-dimensional solid angle subtended by the vol-
ume defined by these vertices in coefficient space.

We convert this volume into a pure number of config-
urations by discretizing it into hypercubes of side length
h f , named to emphasize the parallelism with Planck’s con-
stant h used in the enumeration of phase space states in
the Sackur-Tetrode equation. Because the pressure sets the
scale of the average force, we then multiply this enumeration
by the pressure, as has been shown in previous theoretical
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and experimental work [5,9,23]. Putting these considerations
together, we arrive at an ansatz relating the microscopic force
volume to the multiplicity, and thus the entropy:

� = P
Vf

(h f )�Z
�⇒ S = lnP + lnVf − �Zlnh f . (6)

Although pressure and number of excess contacts both
appear in the entropy, they are not independent variables but
related in the thermodynamic limit by [12,13]

�Z = B(d )N
√

P, (7)

where B is some function of dimension only. We find values
of B of approximately 2.1, 6.0, 12.5, and 23 in dimensions
two, three, four, and five. These values are roughly consistent
with previous studies for two- and three-dimensional spheres
[12,18].

Angoricity [3], α, is derived as

α ≡ ∂S

∂P
= 1

P
+ ∂

∂P
lnVf − 1

2

BN√
P

lnh f . (8)

First, we measure the volume of force space Vf and explore
how it scales with the number of excess contacts. Second, we
measure bulk angoricity to confirm our prediction in Eq. (8)
and measure the microscopic constant h f .

Results. As shown in Fig. 2, the measured force volume
scales exponentially with the number of excess contacts:

Vf = Cγ �Z . (9)

We find C to be well approximated by 1, as shown in the top
inset. The lower inset shows that γ decreases with increasing
N and d .

We can simplify the expression for angoricity by combin-
ing the preceding three equations to find

α = 1

P
+ 1√

PcP
, (10)

where the crossover pressure between the two power laws is

Pc =
[

BN

2
ln

(
γ

h f

)]−2

. (11)

We use the method of overlapping histograms of local
pressures [5,24,25] to measure angoricity and determine the
value of Pc and therefore h f . For each system, we measure the
local pressure for many random samples of a particle with its
m = 50 nearest neighbors. The choice of m controls the sharp-
ness of the local pressure distribution and so induces a trivial
prefactor A, shown in the inset to Fig. 3 to be proportional to
dm. We then compute the angoricity by comparing these local
pressure distributions as in Ref. [5]. We fit the angoricity curve
to the power law in Eq. (10) with prefactor A and an additive
offset. As shown in Fig. 3, all data collapse onto Eq. (10). We
extract the crossover pressures, Pc, shown in the upper inset
of Fig. 3, and find that they are insensitive to N , but decrease
with increasing d .

Discussion. From Eq. (11) and our measured values of
γ and Pc we compute h f , shown in the inset to Fig. 4. A
complete expression for entropy can now be written as

S = lnP + �Zln

(
γ

h f

)
. (12)
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FIG. 4. (a) Scaling of δzc with N and d . (b) Scaling of hf , with
N and d , calculated from Pc by inverting Eq. (11). Colors denote
dimensions from 2 to 5 and symbols denote number of particles as in
Fig. 2.

This can be recast into a natural form using Eqs. (7) and (10)
by expressing the ratio of γ and h f as a critical number of
excess contacts per particle,

δzc = 2B
√

Pc = 2

N ln
(

γ

h f

) , (13)

S = lnP + δz

δzc
. (14)

Thus, the entropy is dependent on two intensive ther-
modynamic variables, P and δz, and a constant δzc for
each dimension. While h f is observed to decrease with
N and expected to vanish in the thermodynamic limit,
we find δzc to be intensive with system size, as shown
in Fig. 4.

The first term in Eq. (14) describes the entropy increasing
from the absolute pressure scale, whereas the second describes
the entropy increasing from the number of contacts increasing.
Sufficiently close to jamming the first term will dominate
as there will be few changes in the contact network even as
the pressure changes dramatically. Further from jamming the
second term will dominate, reflecting the primacy of changes
in the contact network. Note that while this equation may
be rewritten as a function of pressure using Eq. (7), for any
particular finite packing the integer number of excess contacts
is required to calculate the entropy precisely.

Conclusion. We have demonstrated that the force network
ensemble framework can be used to directly compute the
multiplicity of the force configurations in packings close to the
critical jamming point. We have presented an ansatz linking
the volume of the force configurational space associated with
a packing to the entropy of the packing. This entropy can be
expressed as a function of pressure and is independently con-
firmed by measurements of the angoricity over approximately
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seven orders of magnitude of pressure. We have combined
these two approaches of measuring entropy in order to extract
the fundamental scales governing the discretization of phase
space that allows for enumeration. We discover a crossover
value for the excess contacts per particle, δzc, below which the
entropy is governed primarily by changes in pressure at fixed
contact network and above which the entropy is governed
primarily by the creation of new contact forces.

This work places angoricity on a firm footing as a thermo-
dynamic quantity that controls the behavior of overjammed
systems. By tracing this entropy all the way down to an
enumeration of states we discover that, perhaps unsurpris-
ingly, Planck’s constant does not set the fundamental scale
of discretization h f . In a purely classical model such as this,
the discretization can only depend on the finite-size effects

of the system which are determined by N and d . Thus, in
the thermodynamic limit, while h f vanishes, the behavoir of
the system is controlled by δzc and thus Pc which do obtain
fixed values. This full expression for entropy provides the first
concrete linking of the microscopic force network ensemble
to the thermodynamic description of granular materials and
offers a complete description for the thermodynamics of the
force networks in overjammed systems.
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