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Two mechanisms of momentum transfer in granular flows
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This Rapid Communication highlights the physical processes at the origin of the constitutive law of dense
granular flows. In simulated plane shear flows, we present a micro-mechanical expression for the phenomenolog-
ical friction law μ(I ). The expression highlights two distinct pathways for momentum transport—through either
balanced contact forces or grain micro-acceleration. We show that these two rate-dependent processes control
and explain the friction law. This understanding may help advance rheological models for granular materials and
other soft materials such as emulsions and suspensions.
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Granular materials flow like no other liquid, and their flow-
ing behavior has been perplexing scientists for decades [1–8].
A major understanding breakthrough was the discovery of a
continuum constitutive law named μ(I ) [6,9,10]. It relates
the shear τ = (σxy + σyx )/2 and normal P = (σxx + σyy)/2
stresses by a simple law reminiscent of Coulomb friction
τ = μP. The complexity of granular flows is embedded in
the effective coefficient of friction μ, which exhibits multiple
dependencies with the rate of shear γ̇ , the normal stress, the
grain size d , and the grain density ρ. A dimensional analysis
simplified these multiple dependencies to a single dependence
with one dimensionless number, named the inertial number I
[11]. Analysis of various flows showed that the friction coef-
ficient increases from a minimum value μ0 in the quasistatic
regime (I → 0), up to a plateau at μ2 in the collisional regime
(I � 1) [9,10]. The following mathematical expression was
proposed to capture this:

μ(I ) ≈ μ0 + μ2 − μ0

I0/I + 1
, I = ti‖γ̇ ‖, ti = d

√
ρ

P
. (1)

The parameters μ0, μ2, and I0 depend on the physical
and geometrical properties of the grains. The inertial time ti
represents a characteristic timescale associated with inertial
grain motion driven by a normal stress P. This friction law has
a proven ability to predict flows in a variety of configurations
[12]. However, it is phenomenological, and its physical origin
remains unclear [1,11,13–16].

To identify the physical processes governing this constitu-
tive law, we simulated a series of plane shear flows using a
discrete element method. In this configuration, an assembly
of grains is sheared at a constant shear rate γ̇ and normal
stress P, which together correspond to a single value of I
[see inset of Fig. 1(a)]. Plane shear has the advantage of
producing steady and homogeneous flows, where the stresses
and strain rate are statistically invariant in time and space. We
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performed a number of such steady shear flows with different
values of I, from which we simultaneously measured the
friction law μ(I ) and microscopic quantities characterising
contact forces and grain kinematics. The numerical technique
and parameter values used for these simulations are detailed
in the Supplemental Materials [17]. The results of the simula-
tions support the following discussion.

Figure 1(a) shows that the frictional constitutive law mea-
sured in our simulations matches (1). To measure the coeffi-
cient of friction μ in any given test, we calculated the Cauchy
stress tensor from the contact forces as σi j = sym(nc〈Fil j〉),
where Fi and l j are the ith and jth component of a contact
force and branch vector, respectively, and sym(A) = (A +
AT )/2 is the symmetric part of a tensor A. nc is the density
of contacts (i.e., the number of contacts per unit volume),
and 〈Fil j〉 is the spatial and temporal average over all the
contacts of their moment tensor. The 〈·〉 operator is the aver-
age operator defined as 1

Nt

1
Nc

∑Nt
t=0

∑NC
c=0 ·. In this definition,

each interaction between two grains yields two “contacts”
with opposing forces, and with branch vectors connecting the
center of each grain to the point of contact. This expression
for the Cauchy stress σi j readily links continuum stress to
micro-mechanics. It was, for instance, previously used to
establish a link between the the friction coefficient and the
contact anisotropy, a purely geometric feature of the flow [16].
In the following, we propose an alternative expansion of this
expression that highlights the micro-mechanical dynamical
processes underpinning μ(I ).

First, we observed in all our tests that 〈Fil j〉 was symmet-
rical and that both normal stresses σxx and σyy were nearly
equal. This means that the shear stress is given by either
τ ≈ nc〈Fxly〉 or τ ≈ nc〈Fylx〉.

Second, we expanded the expectation of the contact mo-
ment as 〈Fylx〉 = 〈Fy〉〈lx〉 + δFyδlxC, where δF 2

y = 〈F 2
y 〉 −

〈Fy〉2 is the contact force variance, δl2
x = 〈l2

x 〉 − 〈lx〉2 is the
contact length variance, and C is their correlation. Here-
after, δFy and δlx are referred to as the contact force and
length fluctuations, respectively. By definition, C is the Person
correlation coefficient between the sets Fy and lx and was
computed separately. It represents the product of the vertical
component of the contact forces and the horizontal component
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FIG. 1. Granular friction law decomposition. (a) Friction coeffi-
cient μ = τ/P measured in simulated plane shear flows (�) fitted by
the empirical friction law (1) (black line: best fit obtained using μ0 =
0.26, μ2 = 0.88, and I0 = 0.29), along with its decomposition into
static μs and inertial μi parts (see text). Inset: Illustration of the plane
shear configuration showing a linear velocity profile (arrows) and the
periodic domain (dashed lines). (b, c) Snapshots of the contact force
network and grain accelerations taken from flows in the quasistatic
regime (I = 0.001, left) and collisional regime (I = 1.0, right).
These show the rise in grain micro-acceleration and weakening of
the contact force network at high inertial number, which control μs

and μi, respectively (corresponding movies available online [17]).
Segments in (b) connect the centers of two contacting grains, with
linewidths proportional to log(1 + ‖F‖/Pd2) where ‖F‖ is the norm
of the contact force. Grains in (c) are colored according to the norm
of their acceleration ‖a‖.

of their branch vectors (this quantity differs from the correla-
tion between force norm and contact orientation, as used in
Ref. [16]). This set includes all contacts c in the flow detected

at every recorded time t :

C := 1

Nt

1

Nc

1

δFyδlx

Nt∑
t=0

NC∑
c=0

(F c
y (t ) − 〈Fy〉)(lc

x (t ) − 〈lx〉). (2)

Third, we observed that the average 〈Fy〉 and 〈lx〉 are both
null, which is consistent with the principle of opposing action-
reaction forces at each contact. A pair of interacting grains
involves two opposite forces and nearly opposite branch vec-
tors (branch vectors would be perfectly opposite with mono-
disperse grains). Thus, the correlation C becomes

C = 1

δFyδlx
〈Fylx〉. (3)

Last, we measured that the contact length fluctuation was
proportional to the grain size and nearly independent of I :
δlx = αl d with αl = 0.72. This analysis yields the following
expression for the coefficient of friction μ = τ/P:

μ(I ) = β
δFy

Pd2
, β = αl ncd3C, (4)

as a product of the normalized force fluctuation δFy/Pd2 and
a dimensionless number β measuring the density and the
anisotropy of the contact force network. Figures 2 and 3 show
that both these quantities vary with the inertial number: β

decreases while δFy increases linearly when I is increased.
The next argument is both pivotal and intuitive: that con-

tact forces acting on a grain drive its micro-acceleration.
While there is no net acceleration in the steady flows un-
der consideration, individual grains can and do temporarily
accelerate. To quantify these micro-accelerations, we have
measured the quantity δa2 = 〈a2〉 − 〈a〉2, where a is the norm
of the acceleration of a grain at a given time and 〈·〉 is a
temporal average over all the grains. δa is referred to as the
acceleration fluctuation. When normalized by a characteristic
inertial acceleration ai: = d/t2

i , Fig. 2 (inset) shows that the
acceleration fluctuation is proportional to the inertial number:

A: = δa/ai ∝ I. (5)

We call the dimensionless number A micro-acceleration.
This highlights the following key relation between force and
acceleration fluctuations:

δFy

Pd2
≈ f0 + A(I ). (6)

Our data indicate a value of f0 = 1.1, close to unity
[Fig. 2(a)]. The rationale for this linear increase is illustrated
in Fig. 2(b): contact forces acting on a grain are only partially
balanced. They comprise a balanced part that induces static
stresses but no acceleration, δF b

y ≈ Pd2, and an unbalanced
part that drives grain micro-acceleration, δF u

y ∝ mδa, which
yields δF u

y /Pd2 ∝ A. We further observed that both compo-
nents δF u

x and δF u
y of the force fluctuations are nearly equal.

Combining Eqs. (4) and (6) enables us to express the
friction law in terms of micro-quantities related to the contact
network and the grain micro-acceleration:

μ(I ) ≈ β(I )[ f0 + A(I )]. (7)
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FIG. 2. Rise of grain micro-accelerations driven by force fluc-
tuations. (a) The fluctuations in force increase linearly with the
fluctuations in grain acceleration. Main panel: Each point represents
the spatial average of one snapshot in time. Black square markers
show their temporal average. The line shows the linear fit of Eq. (6)
with f0 = 1.1. Inset: Force and acceleration fluctuations both fol-
low a linear dependence on the inertial number; markers show the
measured force and acceleration fluctuations, and lines the best fits:
A = 11I and δFx/Pd2 ≈ δFy/Pd2 = 1.1 + 11I. (b) Illustration of
two contact forces on a grain decomposing into a balanced part and
an unbalanced part driving micro-acceleration.

Accordingly, we propose to decompose the friction coeffi-
cient as a sum of two components:

μ = μs + μi. (8)

where μs(I ) = β(I ) f0 is a static component supported by
balanced contact forces, whereas μi(I ) = β(I )A(I ) is an
inertial component arising from unbalanced forces.

Figure 1 confirms that this decomposition matches the
continuum friction law. It also shows the variations of the
components μs(I ) and μi(I ), which highlight the processes
governing μ(I ). In the quasistatic regime (I → 0), the in-
ertial component is small, and the friction coefficient is pre-
dominantly controlled by the static component: μ(I → 0) ≈
μs(I ) = β(I ) f0. As the inertial number increases, two pro-
cesses simultaneously occur: the static component decreases
while the inertial component grows. As a result, the friction
coefficient is predominantly controlled by the inertial compo-
nent in the collisional regime: μ(I � I0) ≈ μi(I ).

The decrease in static component is directly driven by
β(I ), which itself is the product of the contact density and
the correlation C. Figure 3 indicates that the decrease in
β(I ) is caused by a decrease in contact density. This results
from a dilatancy effect which leads to a decrease in solids

(a)

(b)

10-3 10-2 10-1 100
10-1

100

Fy = −|F | cos θ
lx = −d/2 sin θ

FIG. 3. Contact network weakening. (a) The contact network
variable β = αl ncd3C decreases with increasing inertial number;
the solid line represents the function β = μ/( f0 + A) with no fit
parameters. Inset shows that this decrease is driven by shear-induced
dilation (reduced φ), which yields a decrease in coordination number
Z as the inertial number is increased. The coordination number
is the average number of contacts per grain, so that nc ∝ φZ .
Markers show the spatiotemporal average measured from our sim-
ulations. Lines represent the following best fits: Z = 4.0–3.7I0.21,
φ = 0.81–0.29I, and C = 0.46–0.25 exp(−I/0.29). (b) Illustration
of contact orientations leading to different contributions towards C.
Neglecting tangential contact forces, contacts in the shear direction
and transverse to the shear direction do not contribute to C, since the
product Fylx = 0. Contacts aligned with the principal stress direction
(θ = π/4) contribute the most (see text).

fraction and coordination number; this implies fewer grains
per unit volume and fewer contacts per grain. The snapshots
of contact force networks shown in Fig. 1(b) further confirm
these processes. In contrast, the correlation C(I ) appears to
increase from about 0.2 to 0.4 when the inertial number is
increased from 10−3 to 0.1, which hinders the decay in β(I ).
This means that, while there are fewer contacts as I increases,
each contact contributes more towards β.

In the following, we discuss the physical meaning of the
correlation quantity C. The correlation can be expressed in
terms of contact force ||F ||, branch vectors norm ||l||, and
their orientation θ :

C = 1

δFyδlx
〈||F ||||l|| cos θ sin θ〉. (9)

This means that the orientation of individual contacts in-
fluences their contribution to C. Horizontal (θ = π/2) and
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vertical (θ = 0) contacts do not contribute to C. In contrast,
the contact orientation that maximizes their contribution to
C is π/4 from the flow direction. This orientation coincides
with the orientation of the major principal stress in these shear
flows, as we observed that the two normal stresses are equal.
Figure 3(b) illustrates how this increase in C results from an
increase in contact anisotropy, with the remaining contacts
being more aligned with the major principal stress direction.
We therefore interpret the increase is C(I ) to result from an
alignment of contacts along the major principal stress. Such a
shear-induced anisotropy was directly measured in Ref. [16].

The increase in inertial component μi(I ) = βA is driven
by the rise in grain micro-acceleration. Snapshots in Fig. 1(b)
indicate that grain micro-accelerations rarely exceed the iner-
tial acceleration ai in the quasistatic regime, while they often
are a few orders of magnitude higher in the collisional regime.
However, the effect of this increase on μi is hindered by the
decrease in the contact parameter β(I ).

The decomposition of the friction law into static and
inertial components highlights a new understanding of the
origin of the viscous behavior of granular materials. Granular
dynamic viscosity is defined as η = μP/|γ̇ | [9]; accordingly,
a measure of granular kinematic viscosity is ν = η/ρ =
(μs + μi )d2|γ̇ |/I2, which corresponds to a diffusivity of
momentum. This indicates that momentum transport occurs
by two distinct processes: either via a network of balanced
contact forces that do not involve grain micro-acceleration,
or via grain micro-accelerations themselves. We propose to
decompose the granular viscosity ν into two components
reflecting these processes:

ν = νs + ν i, (10)

νs = β(I ) f0

I2
d2|γ̇ |, (11)

ν i = β(I )A(I )

I2
d2|γ̇ |. (12)

These viscosities correspond to momentum diffusivities.
Their dimension is meters squared per unit time.

Accordingly, they involve a characteristic length � and
timescale T , which both may depend on I such as
νs,i ∝ (�s,i )2/T s,i. Our results indicates that the static
and inertial viscosities have a different scaling with
I: ν i(I ) ∝ Iνs(I ), implying that they involve different
characteristic lengths and/or different characteristic times. In
the quasistatic regime (I → 0), the diffusivity length scales
may be inferred by considering that β(I ) ≈ μ0 and assuming
that the characteristic timescale is the shear time γ̇ −1. This
leads to �s ∝ d/I and �i ∝ d/I .5. However, the assumption
T = γ̇ −1 is to be validated. For instance, it was shown that
the characteristic time for mass diffusivity in dense granular
flows involves the inertial number and is given by I .5γ̇ −1

[18,19]. Determining the characteristic time for momentum
diffusion remains an open question.

The findings in this paper provide a basis to investigate
how internal dynamics affect granular rheology in more
complex flows. In inhomogeneous flows, the strain response
may also depend on the spatial gradient of stress, rather
than just the stress itself, and is termed a nonlocal flow
[20–24]. For example, force fluctuations in a flow may prop-
agate (“self-heat”) into nonflowing regions and overcome
the yield stress. Our decomposition suggests that nonlocality
could arise from either the static or the inertial mode of
momentum transport, or both. Comparing direct measure-
ments of μi(I ) and μs(I ) in nonlocal flows against the local
measurements presented here would enable one to directly
identify which of these two modes of momentum transport
is nonlocal.

Finally, our results and analysis are likely to be applicable
to a wider class of materials comprising discrete “units” such
as foams, emulsions, and dense suspensions [25–29]. We
expect that the presence of interstitial water could require
introducing a viscous time in place of the inertial time,
and that the force-acceleration fluctuation relation we found
for inertial grains might become a force-velocity fluctuation
relation accounting for viscous interactions. In spite of these
differences, we expect the two modes of momentum transport
to be general features of these materials.
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