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Observation of accelerating solitary wavepackets
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We study theoretically and observe experimentally the evolution of solitary surface gravity water wavepackets
propagating in homogeneous and time-dependent flow created by a computer-controlled water pump, resulting
in an effective linear potential. Unlike a potential free soliton, in this case the wavepacket envelope accelerates,
while its phase is proportional to the cubic power of the position in the water tank. For increased wave steepness,
we observe the emergence of asymmetry in the envelope, and hence it no longer retains its soliton shape.
Furthermore, we study a case of ballistic dynamics of solitary surface gravity water wavepackets with initial
nonzero momentum and demonstrate that their trajectory is similar to that of a projectile pulled by gravity.
Nevertheless, their envelope shape is preserved during propagation, and the envelope phase is identical to that
measured without an initial momentum.
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A soliton is a wavepacket that maintains its shape while
propagating at a constant velocity [1]. The unique properties
of this wavepacket originate from the cancellation of nonlin-
ear and dispersive effects in the medium [2]. The soliton was
first described in 1834 by Russell who observed a solitary
wave in the Union Canal in Scotland [2–4]. In the last few
decades, solitons were extensively studied both theoretically
and experimentally in various systems [5–8]. Most works deal
with solitons of fluid dynamics, plasma physics, nonlinear
optics, and matter waves [9–21]. These solitons are obtained
as solutions of the nonlinear Schrödinger equation (NLSE)
[22–24] in which both amplitude and phase play crucial roles
from a theoretical and experimental point of view [25,26].

For deep surface gravity water waves, the time derivative of
the water velocity potential acts as an external potential on the
wavepackets [27]. Hence, waves propagating in a quadratic
time-dependent flow (constant acceleration) are analogous to
those that measure wave dynamics in a linear potential. Most
studies deal with solitons propagating freely at a constant
group velocity. However, such solitons may propagate in an
external linear potential [28]. In a medium with cubic Kerr-
type nonlinearity, such solitons accelerate and are governed
by the nonlinear Schrödinger equation with an additional
term that can be solved analytically [29]. The envelope of
such a soliton retains a hyperbolic-secant shape, but its mean
location accelerates with time. Furthermore, its phase exhibits
not only a linear position-dependent phase, associated with a
momentum change, but also a position-independent part that
scales with the third power of time [29,30]. Such accelerat-
ing solitons appear in optical fibers, electromagnetic waves
propagating in a plasma, dense astrophysical magnetoplas-
mas, Josephson junctions, and in Bose-Einstein condensates
[31–37].

Despite the wide interest over the last 40 years in solitons
in a linear potential, in different branches of physics, as far as
we know, there is no direct experimental observation of the
amplitude and phase dynamics of these solitons. The mea-

surement of the cubic phase may be challenging, since, for
example, interferometric measurements of electric fields are
insensitive to the global position-independent phase [32]. We
note that the cubic phase is also present in other wavepack-
ets propagating according to a linear Schrödinger equation
[24,27,38,39].

Here, we study the spatial propagation dynamics of non-
linear surface gravity water waves in an effective linear po-
tential, realized by a well-controlled time-dependent homoge-
neous water flow. In particular, we focus on the evolution of
hyperbolic-secant pulses in this arrangement, which is the an-
alytic solution in a Kerr nonlinear medium, to gain insight into
the corresponding electromagnetic problem. We confirm the
prediction that solitons preserve their envelope shape as they
propagate along a parabolic trajectory in a linear potential.
Furthermore, we study, both theoretically and experimentally,
the propagation dynamics of ballistic solitons, created by an
initial momentum kick. We measure both their phases and
amplitudes as they propagate in an external potential, and
demonstrate that although their envelope follows a different
path in a space-time diagram, their overall and cubic phase
terms surprisingly remain unaffected. We further extend the
measurement to a strongly nonlinear regime, in which the
envelope becomes asymmetric and it no longer retains the
symmetric soliton shape.

The analysis is based on the modified Schrödinger equation
with an external flow. It is important to mention that in
nonlinear optics both focusing and defocusing third-order
nonlinearity is possible [40], whereas for deep surface gravity
water waves, only focusing nonlinearity exists. Following
Refs. [29,41], the scaled spatial version of the modified
Schrödinger equation for the normalized amplitude envelope
A ≡ A(τ, ξ ) in the moving frame with the group velocity cg is
given by

i
∂A

∂ξ
= ∂2A

∂τ 2
+ FτA + |A|2A. (1)
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The scaled dimensionless variables ξ and τ are related to
the propagation coordinate x and the time t by ξ ≡ ε2k0x
and τ ≡ εω0(x/cg − t ). The carrier wave number k0 and the
angular carrier frequency ω0 satisfy the deep-water dispersion
relation ω2

0 = k0g, with g being the gravitational accelera-
tion; the group velocity cg ≡ ω0/2k0. The parameter ε ≡ k0a0

characterizing the wave steepness is assumed to be small
(ε � 1) in the linear regime and moderate ε < 0.25 in the
nonlinear regime. The effective dimensionless force is related
to physical units by F ≡ −(ω0/ε

3k2
0 )a2, where a2 is the

effective acceleration coefficient of the homogeneous flow, in
units of [ s

m2 ] and is obtained assuming that the wavepacket
follows a parabolic trajectory 〈t (x)〉 = a1x + a2x2; a1 = c−1

g
is the inverted group velocity of the wavepacket.

The wavepacket envelope A ≡ A(τ, ξ ) in the moving frame
is governed by an equation that is similar to the one-
dimensional temporal nonlinear Schrödinger equation of an
electromagnetic wave in a linearly inhomogeneous plasma
with cubic nonlinearity. However, for evolution in space rather
than in time, the roles of time and space are interchanged
[24,41,42].

The temporal surface elevation at the origin

ζ (t, 0) ≡ a0 sech

(
t

t0

)
cos(ω0t ) (2)

is prescribed by the wave maker at x = 0, where t0 denotes
the characteristic duration and a0 is the maximum amplitude,
and the dimensionless envelope A is related to physical units
according to A = ζ/a0. The solitary wave solution of Eq. (1)
has a normalized amplitude

|A(So)(τ, ξ )| = sech[2η(τ − Fξ 2)] (3)

and the phase

ϕ
(So)
A (τ, ξ ) = −Fτξ + F 2

3
ξ 3 + 4η2ξ, (4)

and the parameter η is the steepness-width ratio of the pulse
and is given by η = 1

2 (t0εω0)−1. Equation (3) indicates that
the soliton envelope maintains its shape, but accelerates owing
to the linear potential. Equation (4) describes the evolution of
the phase, with the first term representing linear with respect
to the normalized time τ dependence with a slope that is
proportional to ξ , i.e., this slope increases (also linearly) with
the propagation coordinate; the second term in Eq. (4) is cubic
in the spatial coordinate.

In order to measure the propagation dynamics of nonlinear
surface gravity water wave pulses and the cubic phase, we
conducted a series of experiments in a 5-m-long, 0.4-m-wide,
and h = 0.2 m deep laboratory wave tank [27] with water
waves moving in a time-dependent water flow (see Fig. 1).
The velocity of the homogeneous flow increases linearly in
time and is induced by a computer-controlled water pump.
The experimental facility described, e.g., in Ref. [27] is ca-
pable of generating flow accelerations with F large enough
to observe a parabolic trajectory in the space-time diagram.
The wave maker is programed to excite wavepackets with a
hyperbolic-secant envelope by a computer-controlled wedge
that is partly immersed in the water and moves up and down.
The carrier wave number k0 > 23 m−1 satisfies the deep-
water condition k0h > π [43]; the wave dissipation can be

FIG. 1. Experimental setup for generating hyperbolic-secant sur-
face gravity water wavepackets moving in a time-dependent homo-
geneous flow created by a water pump.

neglected. The pump and the wave maker as well as the
specially designed inlet and outlet openings make it possible
to generate a water flow with the required range of velocities
and a high homogeneity. The temporal variation of the water
velocity is monitored using a Pitot tube placed 2 cm beneath
the surface. The realization of an effective linear potential
for surface gravity water waves requires a linear increase of
the water velocity with time. The velocity of the flow has
been increased by 1.2 cm/s every second up to 12 cm/s for
10 s, yielding an acceleration of 1.2 cm/s2. To avoid any
effect of residual reflections from the beach located at the
far end of the test section, measurements are performed at
distances between 0.5 and 2.6 m from the wave maker. The
instantaneous water surface elevations are measured by four
wave capacitance-type wave gauges [44] mounted on a bar
parallel to the tank side walls. The bar with the gauges is
fixed to an instrument carriage that can be shifted along the
tank. The water pump, the wave maker, and the data ac-
quisition are synchronized using a single computer program.
while the instantaneous surface elevation is measured by four
capacitance-type wave gauges [44].

In order to extract the trajectory of the wavepacket in the
laboratory frame, we calculate the mean temporal value, at a
distance x from the inlet, defined as

〈t (x)〉 ≡
∫ +∞
−∞ t |ζ (t, x)|2dt∫ +∞
−∞ |ζ (t, x)|2dt

. (5)

For each set of measurements a quadratic fit of 〈t (x)〉 is per-
formed to extract the coefficients of the linear and quadratic
terms a1 and a2, respectively. The envelope of the pulse is
fitted to the hyperbolic-secant dependence

f = aw
0 sech(t/tw ). (6)

The varying with x width parameter tw of the hyperbolic-
secant pulse is obtained from the fit, as shown in Fig. 2.
The expected parabolic dependence is fitted to the data
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FIG. 2. Evolutions of hyperbolic-secant envelopes [right, ob-
tained from the measurements by the Hilbert transform; left, sim-
ulated based on Eq. (1) for (a), (c), and (e) and based on (7) for
(g), with t0 = 0.33 s, η = 0.3 in a frame of reference at moving
velocity cg]. Simulations (left column) and measurements (right
column) were performed at (a), (b) a0 = 1.5 mm, ε = 0.03, (c),
(d) a0 = 4 mm, ε = 0.09, (e), (f) a0 = 5.50 mm, ε = 0.13, and (g),
(h) a0 = 8.0 mm, ε = 0.18. (i) Experimental (point) and theoretical
widths (solid lines), calculated using Eq. (6) for different values of
steepness. While at low steepness (ε = 0.03) the width is dominated
by dispersion, for the higher steepness (ε = 0.13), tw (x) exhibits soli-
ton behavior, remaining constant throughout the entire measurement
range. For the case of a highly nonlinear steepness (ε = 0.18), the
width increases slowly with x.

presented in Figs. 2(b), 2(d) and 2(f). The velocity parameter
a1 = 3.08 s/m is in good agreement with c−1

g = 3.06 s/m
(calculated using the water wave dispersion relation), and
a2 = 0.05 s/m2. This procedure yields F = −0.69.

The propagation dynamics of accelerating hyperbolic-
secant pulses is investigated first for wavepackets with low
steepness (initial amplitude a0 = 1.5 mm, ε = 0.03). In this
case, the Kerr nonlinearity is negligible, and the pulse spreads
as it propagates owing to dispersion [see Figs. 2(a) and
2(b)]. However, as the steepness increases (a0 = 4 mm, ε =
0.09), the enhanced nonlinearity reduces the spreading [see
Figs. 2(c) and 2(d)]. The width of the pulses tw is shown in
Fig. 2(i), and the experimental data are presented in Figs. 2(b),
2(d) 2(f), and 2(h) and in Figs. 2(a), 2(c) and 2(d).

For even higher amplitudes, a0 = 5.5 mm (ε = 0.13), the
dispersion is compensated by the induced Kerr-type nonlin-
earity and the shape is preserved over a distance of 2.5 m
[see Figs. 2(e) and 2(f)], thus providing clear experimental
evidence of an accelerating solitary wavepacket. We further
investigate higher amplitudes, up to a0 = 8.0 mm (ε = 0.18),
and observe that the wavepacket evolves asymmetrically and
no longer preserves shape, in contrast to plasma waves which
are governed by the NLSE that retain symmetry. Those
strongly nonlinear wavepackets are modeled by the fourth-
order modification of NLSE, also known as the Dysthe equa-
tion [24,41,42,45].

However, the original equation Dysthe has proposed does
not include a term that describes an external homogeneous
flow. Here, we propose a modification of the Dysthe equation,
with an additional term FτA, where F is the dimensionless
force presented above. The modified Dysthe equation in nor-
malized form is

∂A

∂ξ
+ i

∂2A

∂τ 2
+ i|A|2A + 8ε|A|2 ∂A

∂τ
+ 2εA2 ∂A∗

∂τ

+ FτA + 4iεA
∂�

∂τ Z=0
= 0, 4

∂2�

∂2τ 2
+ ∂2�

∂2Z2
= 0. (7)

Here, � represents the envelope of the self-induced velocity
potential, � = φ

ω0a2
0
, and Z = εk0z. The spatial coordinate z is

a vertical coordinate pointed up vertically, z = 0, at the free
surface.

The global phase change along the tank of accelerat-
ing hyperbolic-secant solitary wavepackets is presented in
Fig. 3(a) in the laboratory frame with the same parameters as
in Fig. 2(d); the black lines correspond to experimental data
whereas the red lines correspond to Eq. (3).

The Hilbert transform [46] from the toolbox function
“hilbert” [47] of Matlab is applied to extract the global
phase change. The amplitude and phase induced during pulse
propagation can be determined by creating a complex signal

z(t ) ≡ u(t ) + i · H{u(t )}
from a real signal u = u(t ),

H{u(t )} ≡ 1

π

∫ ∞

−∞

u(s)

t − s
ds.

Using the polar decomposition

z(t ) = u(t ) + iv(t ) ≡ A(t )eiϕ(t )
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FIG. 3. Global phase change and accumulated cubic phase for
accelerating solitary water wavepackets. (a) The observed surface
elevation of wavepackets in different locations along the water tank;
ζ So (black line) and predicted by Eqs. (4) envelopes (red lines) for
k0 = 23 m−1, a0 = 5.50 mm (ε = 0.13), cg = 0.33 m/s, and t0 =
0.33 s. Quadratic fits were performed for 20 measuring points, de-
termining cg = 1/a1 together with F ≡ −0.69. (b) The phase offset
of the accelerating solitary water wavepacket at the maximum of the
mean value of every elevation. (c) The cubic phase term, obtained
by subtracting the linear terms from the global phase change shown
in (b); for both (b) and (c) the red markers are the phase values
given by the Hilbert transform from the surface elevations (after
the removal of the carrier phase) and black solid lines are analytical
results. (d) The slope c of the linear time-dependent function of the
phase; each point is given by extracting cos(φ) vs t . (e) The extracted
linear phase term φ = Fξτ in the moving frame.

yields the instantaneous envelope amplitude

A(t ) ≡
√

u2(t ) + v2(t ),

and its instantaneous phase

ϕ(t ) ≡ arctan

[
v(t )

u(t )

]
.

The remaining phase envelope (after removing the carrier part
k0x − ω0t) is plotted in Fig. 3(b); the red markers indicate
the global phase change at 20 selected points along the water
tank whereas the black lines correspond to Eq. (4). In order to
extract the cubic term, we subtract the linear terms from the
measured data, i.e., plot the term ϕ

(Cub)
A (τ, ξ ) = ϕ

(So)
A (τ, ξ ) +

Fτξ − 4η2ξ = F 2

3 ξ 3ϕ. The cubic term is shown in Fig. 3(c),
and the red markers indicate the global cubic phase change
at 20 selected points along the water tank whereas the black
lines correspond to ϕ

(Cub)
A (τ, ξ ) = F 2

3 ξ 3.
We now show the linear part of the phase φ = Fξτ along

the pulse at specific locations. This phase can be expressed
as φ = φ0 + ct , where φ0 is the initial phase shift and c is
the slope. The value of c can be obtained directly at different
locations by fitting the experimental results of cos(φ), as

FIG. 4. Evolutions of hyperbolic-secant envelopes with an initial
momentum kick [right, obtained from the measurements by the
Hilbert transform; left, simulated based on Eqs. (18) with t0 =
0.66 s], in a frame of reference at a moving velocity cg (a), (c), and
(e). Simulations (left column) and measurements (right column) for
(a), (b) a0 = 10.5 mm, ε = 0.18, p0 = −2 rad/s, and (c), (d) a0 =
6.2 mm, ε = 0.18, p0 = 2 rad/s, and the effective force F ≡ −0.69.
The global phase is measured by using the Hilbert transform for both
(e) and (f). For both (e) and (f) the black markers are the measured
global phase values (after the removal of the carrier phase) and black
solid lines are analytical results given by Eq. (3). The red markers
are the cubic phase terms, obtained by subtracting the linear terms
from the global phase, i.e., an analytical subtraction of the linear
terms Fτξ − 4η2ξ , and red solid lines are analytical results given by
ϕ

(Cub)
A (τ, ξ ) = F 2

3 ξ 3. (e) presents the extracted phases from (b) and
(f) corresponding to the measurements in (f), i.e., (e) corresponds to
p0 = −2 rad/s and (f) corresponds to p0 = 2 rad/s.
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shown in Fig. 2(d). The linear term of the envelope phase can
be extracted explicitly via the Hilbert transform; the resulting
slope of the phase corresponds to Fξ . This procedure provides
direct observation of the increase of the linear phase term
during propagation along the water tank, which appears only
due to the acceleration of the solitary wavepacket, as shown
in Fig. 3(e).

The existing setup is now used for studying solitary waves
with a nonzero initial momentum. In this case, the soliton
envelope of the temporal surface elevation is given by

ζ (So/Ballistic)(t, 0) ≡ a0 sech

(
t

t0

)
cos(ω0t ) exp(ip0t ), (8)

where p0 is the analog of an initial momentum kick. We
study the case of positive and negative initial momentum,
i.e., p0 = ±2 rad/s, resulting in a contribution of an initial
velocity (in the moving frame) of ci = ±0.05 m/s, where
ci = g/2p0. In both cases, the trajectory is similar to that of
a projectile pulled by gravity. Figure 4(b) clearly shows that
for negative momentum p0 = −2 rad/s at the beginning of
the test section, the wavepacket propagates in the direction
opposite to that of the acceleration, zero momentum is at-
tained at approximately x = 1.15 m, followed by movement
to the right. The white lines, given by x = (a2)(t − x/cg)2 +
[g/(ω0 ± 2p0)](t − x/cg), indicate the extracted using the
Eq. (5) trajectory of the wavepacket in the moving frame; the
white dashed lines shown for comparison are calculated for
an accelerating wavepacket for p0 = 0 rad/s. The difference
between the solid and dashed lines shows that the ballistic
wavepacket follows a different trajectory. This experiment
was repeated for the case of positive momentum p0 = 2 rad/s.
Figures 4(c) and 4(d) show that the wavepacket propagates
with a larger initial velocity. The solid white lines indicate that
the trajectory of the wavepacket is indeed positively shifted
compared to the nonballistic case, shown by the dashed white
lines. The extracted phase values for the case of negative
momentum, i.e., p0 = −2 rad/s, are shown in Fig. 4(e), where

the black markers show the global phase change (after the
removal of the carrier phase) and the black solid lines are
analytical results given by Eq. (4). In a manner identical to
Fig. 3, we subtracted the linear terms and extract the cubic
phase term, indicated by red markers; the analytical result
ϕ

(Cub)
A (τ, ξ ) = F 2

3 ξ 3ϕ is given by solid red lines. The results
shown in Figs. 4(e) and 4(f) are very similar to the case of the
phase of nonballistic accelerating solitary wavepackets shown
in Fig. 3. This observation indeed supports the theoretical
prediction that the accumulated phase does not depend on
the initial momentum and depends only on the distance of
propagation ξ and on the effective force F . The global cubic
phase is not limited to the hyperbolic-secant wavepackets
studied here, but occurs for a wide variety of wavepackets
moving in a linear potential in a nonlinear medium with a
Kerr-type nonlinearity [31–35].

In conclusion, in a series of experiments, the propagation
dynamics of solitary surface gravity deep-water wavepackets
with and without initial momentum, which accelerate in a
linear potential in a nonlinear medium, were observed. We
have derived theoretically and measured successfully the ac-
celeration of the solitary wavepacket envelope and the accu-
mulated cubic phase of these wavepackets and have shown
that despite having an initial momentum contribution (either
positive or negative), the accumulated cubic phase is not
affected. Moreover, by exciting wavepackets with a higher
steepness in the water tank, higher-order nonlinear terms of
the wave equation come into play, leading to asymmetric
breaking of the soliton wavepacket solution. This procedure
enables us to study the evolution of the amplitude and phase
of wavepackets under the combined effects of asymmetry and
linear potential, whereas in the past these effects were studied
only for either asymmetry or a linear potential as mentioned
in Refs. [28,48–52].

This work is supported by DIP, the German-Israeli Project Co-
operation, the Israel Science Foundation (Grants No. 1415/17
and No. 306/15).
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