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Simulation of high-viscosity-ratio multicomponent fluid flow using a pseudopotential model based
on the nonorthogonal central-moments lattice Boltzmann method
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In this research, the development of a pseudopotential multicomponent model with the capability of simulating
high-viscosity-ratio flows is discussed and examined. The proposed method is developed based on the non-
orthogonal central moments model in the lattice Boltzmann method, and the exact difference model (EDM)
is used to apply the intercomponent interaction force. In contrast to the original Shan-Chen model, in which
the applying force has the viscosity-dependent error term, the error term of this model does not depend on
the viscosity. A GPU parallel CUDA code has been developed and is employed to study the proposed method.
Different cases are considered to evaluate the ability of the model, including the Laplace test, a static droplet,
and a two-component concurrent channel flow. Also, wetting and nonwetting relative permeabilities for flows
with dynamic viscosity ratios between 0.0002 and 5000 are predicted. Numerical results are compared with
those of available analytical solutions. Very good agreement between these results are observed. The model has
the capability of simulating multicomponent flows with very low kinematic viscosities of the order of 10−5 and
dynamic viscosity ratios of up to an order of 104, which is a much wider range compared with that of existing
pseudopotential models. Furthermore, the results showed that the parallel processing on GPU significantly
accelerated computations. The present parallel performance evaluation shows that the CUDA parallel can achieve
about 41 times improvement than the CPU serial implementation. The aforementioned enhancement increases
the flexibility of the multicomponent lattice Boltzmann method and its applicability to a broader spectrum of
engineering applications.
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I. INTRODUCTION

Multicomponent fluid flows occur in many engineering
and industrial applications. Hence, their simulation is of high
interest to many researchers [1]. Due to the wide variety of
fluid properties, the capability of numerical models to ap-
ply appropriate thermo-physical properties for the simulation
of engineering problems is also very important [1,2]. The
stability and accuracy of a multicomponent method for the
simulation of flows with a wide range of viscosity ratios is an
especially important capability for realistic applications such
as flows through rocks [2], underground water and oil flows,
and many other engineering and industrial situations.

In recent years, among the methods of computational fluid
dynamics, the lattice Boltzmann method (LBM) has been
very much considered due to its inherent properties such
as the particle-like nature, the easy application of boundary
conditions in complex geometries, and the simple algorithm
[3,4]. Also, this method is highly parallelizable so that, this
particular feature has been a motive to parallelize the LBM
using GPUs, see, e.g., [5–7].

One of the most popular models for multicomponent fluid
flow simulations in the LBM is the pseudopotential model
[8]. The pseudopotential method is used to simulate a vari-
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ety of problems, such as multicomponent turbulence flows
[9], multicomponent fluid flows in porous media [10–13],
multicomponent particulate fluid flows [14,15], and many
other problems. However, this method has some limitations,
such as the existence of spurious currents at the interface
[16–18], and the numerical instability in the large viscosity
ratio multicomponent fluid flow simulations [19,20]. These
limitations have shown up in research conducted by previous
researchers. For example, Ghassemi and Pak [11] have studied
the relative permeability of two immiscible fluids flowing in
porous media using the original pseudopotential method. In
their research, the simulation was performed up to a viscosity
ratio of three due to the limitation of the pseudopotential
method. Yang and Boek [21] stated in their study that the
results of the two-component Poiseuille flow simulation with
the pseudopotential method, in the viscosity ratio of 10 are
not accurate and there is some noise in the vicinity of the
interface. Berghout and Van den Akker [22] investigated
the droplet formation at an aperture by using the pseudopo-
tential method. In their research, they stated that, because
of the limitations of the method, they used the equivalent
viscosity assumption for both fluids, which is an enormous
simplification.

In recent years, several scientific efforts have been made
to improve the performance of the pseudopotential multi-
phase and multicomponent models. Some researchers tried
to reduce the spurious current by making sufficient spatial
isotropy in the calculation of intercomponent interaction,
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see, e.g., Refs. [16–18]. Other studies have been focused on
the improvement of the force method in the pseudopotential
model. In the multiphase and multicomponent pseudopoten-
tial method provided by Shan and Chen, they proposed the
shifting velocity method for applying interphase force [23].
This force model has an error term that depends on the fluid’s
viscosity [24]. Other models have also been used to apply the
interphase interaction force in the pseudopotential method.
Kupershtokh et al. [25] used the exact difference method in
the two-phase pseudopotential model. They showed by using
this force model, to apply the interphase interaction force,
the dependency of the phase density on the viscosity that
exists in the original pseudopotential model disappears, and
the stability of the model increases. In the EDM model, the
error term is not dependent on the viscosity [24]. Li et al. [26]
evaluated a modified force model, based on Gou’s force model
[27], in their two-phase pseudopotential method.

On the other hand, one of the limitations in applying the
low viscosity and simulating a high viscosity ratio flow is
the instability of LBM collision models. Some researchers
have tried to improve the multicomponent pseudopotential
method by using a more stable collision method. Porter et al.
[1] used the multiple relaxation time (MRT) collision model
combined with the explicit force (EF) scheme to achieve a
dynamic viscosity ratio of up to 1000 and the lowest kinematic
viscosity of 0.0067 lattice units. Otomo et al. [2] achieved
a dynamic viscosity ratio of 1000 and a minimum kinematic
viscosity of 0.0017 by using the regularized collision model.

Geier et al. [28] presented a collision model based on
central moments that satisfies a higher degree of Galilean
invariants associated with the collision operator in the LBM.
Recently, De Rosis [29] presented a collision model based
on the nonorthogonal sets of central moments. This model
has the same stability as the orthogonal central moments
models, but the complexity of equations is greatly reduced,
and implementation of the method is easy.

This study aims to provide a computationally stable and
accurate method for simulating high-viscosity-ratio multi-
component fluid flows by studying the capabilities of the
nonorthogonal central moment collision model for multicom-
ponent fluid flow simulation by using the pseudopotential
model. In this research, it is attempted by developing the
pseudopotential model based on the non-orthogonal central
moments model and using the advantages of the EDM force
scheme to present a model for simulating high-viscosity-ratio
multicomponent fluid flows. A CUDA computational code is
developed and implemented in the present simulations, and
the capabilities of this model are investigated.

II. NUMERICAL METHOD

A. Nonorthogonal central moment lattice Boltzmann method

The LBM is a mesoscopic model proposed by McNamara
and Zanetti in 1988 [30]. This method is based on the cal-
culation of the distribution function for particles that move
and collide on a lattice. The lattice Boltzmann equation with
a force term can be expressed as [31]

fi(x + eiδt, t + δt ) = fi(x, t ) + �i + Fi, (1)

FIG. 1. D2Q9 model.

where fi is the distribution function for different lattice direc-
tions, ei = [exi , eyi ] is the discrete particle velocity, and x and t
represent the location of the fluid nodes and time, respectively.
� is the collision operator and F is an external force. The
right side of the equation shows the effect of particle collisions
and external forces on the change in the distribution function.
Equation (1) can be written in two steps, including collision
and streaming, to simplify the numerical algorithm [32]:

collision:

f �
i (x, t + δt )= fi(x, t ) + �i + Fi, (2)

streaming:

fi(x + eiδt, t + δt ) = f �
i (x,t + δt ), (3)

where f �
i is the postcollision distribution function. In the

present study, the D2Q9 model is used to simulate two-
dimensional fluid flow. According to Fig. 1, the D2Q9 model
has nine discrete particle velocities that take the following
values:

ei =
⎧⎨
⎩

(0, 0) i : 0
(1, 0)(0, 1)(−1, 0)(0,−1) i : 1, 2, 3, 4
(1, 1)(−1, 1)(−1,−1)(1,−1) i : 5, 6, 7, 8.

(4)

The macroscopic density (ρ) and velocity (U) will be ob-
tained from the following equations:

ρ(x, t ) =
8∑

i=0

fi(x, t ), (5)

ρU(x, t ) =
8∑

i=0

ei fi(x, t ). (6)

Now, to define the collision operator, the central moments K
are obtained as [29]

kxmyn =
8∑

i=0

fiē
m
x,iē

n
y,i, (7)

where m = 0, 1, 2 and n = 0, 1, 2 and ē is defined as

ēx,i = ex,i − ux,

ēy,i = ey,i − uy.
(8)
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To perform the transformation from the distribution functions’
space to the central moments’ space, the transformation ma-
trix T , according to the Ref. [29], is defined as follows:

T = [|T 0〉, . . . , |T 8〉], (9)

where |T i〉 are column vectors that are defined by

|T̄0〉 = ||ēi|0〉
|T̄1〉 = |ēxi〉,
|T̄2〉 = |ēyi〉,
|T̄3〉 = |ē2

xi + ē2
yi〉,

|T̄4〉 = |ē2
xi − ē2

yi〉,
|T̄5〉 = |ēxiēyi〉,
|T̄6〉 = |ē2

xiēyi〉,
|T̄7〉 = |ēxiē

2
yi〉,

|T̄8〉 = |ē2
xiē

2
yi〉. (10)

By transforming the particle distribution functions to the
moment space, central moments will be obtained as follows:

k0 = ρ,

k1 = kx,

k2 = ky,

k3 = kxx + kyy,

k4 = kxx − kyy,

k5 = kxy,

k6 = kxxy,

k7 = kxyy,

k8 = kxxyy. (11)

Also, the equilibrium central moments keq are obtained by
replacing fi with f eq

i through Eqs. (7) and (11). Based on the
order-three expansion of the Maxwell equilibrium distribution
function, the discrete equilibrium distribution function can be
obtained from the following equation [33,34]:

f eq
i (x, t ) = wiρ

[
1 + ei · U

c2
s

+ (ei · U)2

2c4
s

− (U)2

2c2
s

+ (ei · U)3

6c6
s

− ei · U
2c4

s

U2

]
, (12)

where wi is the weight factor of the D2Q9 lattice model, and
cs is the lattice speed of sound. Now, the postcollision central
moments k�

i can be calculated by

k�
i = ki + ωi

(
keq

i − ki
)
, (13)

where ωi is the relaxation frequency related to ki. Only the
ω4 and ω5 relaxation frequencies are related to the fluid’s
kinematic viscosity ν according to the following equations:

ω4,5 = 1

τ
, (14)

ν = (τ − 0.5)c2
s , (15)

where τ is the relaxation time. The ω3 frequency is related to
the bulk viscosity, and the other frequencies are related to the
higher-order moments. In this study, all frequencies except ω4

and ω5 are considered equal to one according to Ref. [29].
Now, by multiplying the inverse of the transformation ma-

trix with the postcollision moments, the postcollision distri-
bution functions can be obtained. To apply the external force,
the EDM model can be used. This force model is extracted
directly from the Boltzmann equation and is not dependent
on the collision model. Hence, the EDM model can be used
in each collision model [25]. Therefore, the postcollision
distribution functions with the external force term can be
obtained through the relation presented in Eq. (A1).

B. Multicomponent pseudopotential method

The multicomponent pseudopotential method was pro-
posed by Shan and Chen in 1993 [23]. This method works
based on the interparticle attraction and repulsion forces in
the LBM. In the Shan-Chen multicomponent model, the LBM
equation can be written as

f σ
i (x + eiδt, t + δt ) = f σ

i (x, t ) + �σ
i + F σ

i . (16)

In this equation, σ is a components counter. If the lattice
Boltzmann equation with the central moments collision op-
erator is rewritten in the matrix form, then this will be

f σ
i (x + eiδt, t + δt ) − f σ

i (x, t )

= T −1Sσ T
(

f eq,σ
i (x, t ) − f σ

i (x, t )
) + F σ

i . (17)

In this equation, f eq,σ

i , in accordance with the pseudopotential
method, is obtained from Eq. (12), by using the effective ve-
locity (Ueq). According to Refs. [28,29] the central moments,
moments displaced by the velocity, in the multicomponent
model is defined as displaced moments by the effective ve-
locity Ueq. So, by replacing fi with f eq,σ

i through Eqs. (7)
and (11) and several algebraic manipulations the following
expressions for equilibrium central moments can be obtained:

keq,σ

0 = ρσ ,

keq,σ

1 = keq,σ

2 = keq,σ

4 = keq,σ

5 = keq,σ

6 = keq,σ

7 = 0,

keq,σ

3 = (2/3)ρσ ,

keq,σ

8 = (1/9)ρσ − ρσ (Ueq)2. (18)

As can be seen from Eq. (18), with the usage of these central
moments, all operations except keq,σ

8 = kxxyy are independent
of the choice of the coordinate system. In Eq. (17), Sσ is the
diagonal matrix of the relaxation frequencies and is defined as

Sσ = diag
[
ωσ

0 , ωσ
1 , ωσ

2 , ωσ
3 , ωσ

4 , ωσ
5 , ωσ

6 , ωσ
7 , ωσ

8

]
. (19)

The following equation is used to calculate the intercompo-
nent force Fint in the Shan-Chen model:

F σ
int (x, t ) = −Gψσ (x, t )

∑
i

wiψ
σ ′

(x + eiδt, t )ei, (20)

where G is an amplifying coefficient associated with the sur-
face tension, which by changing it, it is possible to adjust the
surface tension. ψ is an effective density, which is considered
equal to ρ in this study. In this research, an isotropy order
of 10 is implemented to calculate the intercomponent forces

043311-3



FARSHAD GHARIBI AND MAHMUD ASHRAFIZAADEH PHYSICAL REVIEW E 101, 043311 (2020)

according to the Ref. [17]. To conserve momentum in the
absence of external force, according to Refs. [1,23,35], the
effective velocity of fluid (Ueq) can be obtained as follows:
Since only the ω1 and ω2 relaxation frequencies are related to
momentum, the following equation must be satisfied for the
momentum conservation:(

T

[∑
σ

T −1Sσ T
(

f eq,σ

i (x, t ) − f σ
i (x, t )

)])
1,2

= 0, (21)

where 1 and 2 indicate the rows of the transformation ma-
trix. Since the transformation matrix T depends only on the
effective velocity, and noting that Sσ

1,2 = ωσ
1,2, the previous

equation is simplified to(∑
σ

ωσ
j

∑
i

ēi
(

f eq,σ
i (x, t ) − f σ

i (x, t )
) = 0

)
j=1,2

= 0. (22)

Given that, in this study, ωσ
1,2 are considered to be 1, after sim-

plification, the effective velocity will be obtained as follows:

Ueq =
∑

σ ρσ Uσ∑
σ ρσ

. (23)

To apply the surface-wetting condition, the fluid-solid adhe-
sive force Fs in the vicinity of the solid is obtained through
[36]

F σ
s (x, t ) = −Gσ

s ψσ (x, t )
∑

i

ωiS
′(x + eiδt, t )ei, (24)

where S′ is considered equal to one for solid lattices and
equal to zero for fluid lattices, and Gσ

s controls the strength of
the fluid-solid adhesive force. For a two-component system,
usually G1

s = −G2
s . The total force Ftot is obtained by the

summation of all volume forces. In the EDM model, the effect
of the total force is considered as a change in the equilibrium
distribution function. In this model, presented by Kopershtokh
et al. [25], a force term is added to the Boltzmann equation by
the following equation:

F σ
i = f eq,σ

i

(
ρσ , Ueq + F σ

tot

ρσ

)
− f eq,σ

i (ρσ , Ueq). (25)

Also, the actual velocity of the fluids (U∗σ ) is calculated in
half-time step, using this model:

ρσ U∗σ =
∑

i

ei fi + F σ
tot�t

2
, (26)

where �t is the time step. The actual mixture velocity is also
calculated as follows:

U∗ =
∑

σ ρσ U∗σ∑
σ ρσ

. (27)

III. RESULTS AND DISCUSSION

In this section, using the proposed model described in
the previous sections, several test cases have been studied
to show the abilities and accuracy of the proposed method
to simulate multicomponent fluid flow. These cases include
the investigation of static droplets and fluid flow in the two-
dimensional (2D) channel. In the case of static droplets,

FIG. 2. A schematic view of the geometry of static droplet
simulation.

several tests include: the Laplace law test, the magnitude
of the spurious current, the independence of surface tension
on the viscosity ratio, the highest viscosity ratio to achieve,
and the hydrophobic and hydrophilic behavior of the surface
have been studied. Also, in the case of the 2D channel, the
velocity profile in different cases and the relative permeability
prediction have been investigated. It is worth noting that all the
results presented in this study are based on the lattice units.

A. Static droplets

In this simulation, a static circular droplet embedded in
a different suspending fluid is investigated. This simulation
is studied in a square domain with the periodic boundary
conditions in all its sides. Figure 2 shows a schematic of
this simulation. Physically, the system should be relaxed to
equilibrium, and according to the Laplace law, the pressure
difference between inside and outside of the droplet should
be balanced by the surface tension [20]. To investigate
the capability of the proposed model to simulate the high
dynamic viscosity ratio, a droplet with a radius of R = 40
is investigated in a domain with the dimension of 254 × 254
and the amplitude factor of G = 2.0. Figure 3 shows the
density of the droplet for a dynamic viscosity ratio of M =
105 after 104 time steps. Figure 4 shows the magnitude of

FIG. 3. The density contour of the droplet with radius of R = 40
and dynamic viscosity ratio M = 105.
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FIG. 4. The contour of spurious velocity for the droplet with the
radius of R = 40 in the dynamic viscosity ratio of M = 105.

spurious velocity in this dynamic viscosity ratio. As the results
show, the proposed model has a high capability to simulate a
dynamic viscosity ratio in the order of 104. In this simulation,
the kinematic viscosity of the surrounded fluid is set as ν1 =
3.33 × 10−5, while in the models presented in Refs. [1] and
[2], the lowest fluid kinematic viscosity is ν1 = 0.0067 and
ν1 = 0.0017, respectively.

To examine the Laplace law and calculate the surface ten-
sion, a domain with the dimension of 254 × 254 is considered.
The density of both fluids in this simulation is considered to
be one, and the investigations are carried out for three dy-
namic viscosity ratios of 1, 5000, and 0.0002. Figure 5 shows
the results of this simulation for the amplifying coefficients
of G = 2 and G = 2.5. By changing the coefficient G, the
surface tension, which can be obtained from the slope of the
line dP − R−1, is changed and different surface tension can be
obtained by adjusting G, as can be seen in Fig. 5. According
to Fig. 5 it can also be seen that, contrary to the results of the
original Shan-Chen model, which was reported by Dong et al.
[37], in the presented model, the surface tension in a wide
range of the dynamic viscosity ratios is not dependent to the
dynamic viscosity ratio, as it should be expected.

FIG. 5. The pressure difference between the inside of droplet and
the surrounding fluid in terms of the inverse of the droplet radius for
the surface tensions of 0.21 and 0.1.

FIG. 6. Maximum spurious velocity magnitude for different vis-
cosities in the dynamic viscosity ratio of M = 1.

To determine the magnitude of the spurious velocity and
the dependence of the spurious velocity on the viscosity of the
fluids, a droplet with a radius of 24 in a domain with 62 × 62
lattice nodes is investigated. The dynamic viscosity ratio in
this simulation is set as 1 and the surface tension is set as
0.075 (lattice units). The maximum spurious velocity resulting
from the simulation for different kinematic viscosity in the
range of 0.0001 to 0.35 is investigated. Figure 6 shows the
maximum spurious velocity in terms of kinematic viscosity in
this simulation. In this figure, the results are compared with
the results presented by Refs. [1] and [2]. Figure 7 shows the
magnitude of the spurious velocity for the different dynamic
viscosity ratio for a droplet with a radius of 24 and the surface
tension of 0.075 (lattice units) in a 62 × 62 lattice domain.
As can be seen, the spurious velocities in this model are
less than the previous models at dynamic viscosity ratios less
than 300 but, unfortunately, with increasing dynamic viscosity
ratio, an increase in the magnitude of the spurious velocities
is observable for isotropy order of 10.

Furthermore, the capability of the model to produce differ-
ent contact angles is studied. The simulation is investigated
in a 256 × 128 domain, with the upper and lower boundaries
solid, and the right and left boundaries periodic. A semicir-
cular droplet of a component is placed on the bottom wall,
and simulations for different Gs values are investigated. The
results of this simulation, shown in Fig. 8, show tha,t by
adjusting Gs, different contact angles can be achieved.

FIG. 7. Maximum spurious velocity for different dynamic vis-
cosity ratios (kinematic viscosity of surrounding fluid is 0.0067).
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FIG. 8. Interface shape of droplet for different contact angles for
Gdroplet

s = (−1.1, −0.8, −0.6, −0.2, 0, 0.6, 1.1) for the flattest to
the most curved surface.

B. Multicomponent concurrent channel flow

In this section, two-dimensional multicomponent fluid flow
driven by a volume force is investigated. The geometry of this
two-component fluid flow is shown in Fig. 9.

The nonwetting (nw) phase, the phase that is not in direct
contact with the solid surface, is considered as a film layer
between the wetting (w) phase that covers the surface of the
solid in this geometry. The dynamic viscosity ratio is defined
as M = μnw

μw
. Given the analytical solution of the Poiseuille

flow, the velocity of the fluid in the 2D channel is as follows
[38]:

u (y) = Fext
2ρwνw

(b2 − a2) + Fext
2ρnwνnw

(a2 − y2), 0 < |y| < a,

u (y) = Fext
2ρwνw

(b2 − y2), a < |y| < b,

(28)

where νw and νnw are kinematic viscosities of the wetting and
nonwetting phases, ρw and ρnw are densities of the wetting
and nonwetting phases, and Fext is an external volume force.

In this simulation, the fluid current is made by a volumetric
force. The solid walls are applied by using the bounce-back
boundary condition, and the periodic boundary condition is
applied at the sides vertical to the direction of the flow. Also,
Gs = 0 is set, which results in a 90◦ contact angle. To be sure
about the accuracy of numerical simulations, the effect of the
lattice resolution should be analyzed. Therefore, a channel
structure with a saturation of 0.44 and a dynamic viscosity
ratio of M = 1 is considered to investigate the effect of grid
size on the accuracy of the computations. The resolution of
the domain was changed from 30 × 30 to 254 × 254 lattice
nodes. Figure 10 shows the variation of normalized average
velocity and normalized maximum velocity of the channel

FIG. 9. A view of the geometry of multicomponent fluid flow in
the channel.

FIG. 10. Normalized average velocity and normalized maximum
velocity of the channel flow in terms of grid size.

flow with the number of lattice nodes (mentioned in one
direction). In this figure, the results are normalized by the
analytical results. As is observed in this figure, the results
have good accuracy for lattice nodes of 62 × 62 and higher
domain resolution. For other saturations and viscosity ratios
also need approximately the same resolution to be lattice
independent. Hence, to have grid-independent results with
excellent accuracy, a 126 × 126 lattice domain is chosen for
the present calculations. Figure 11 shows the density profile
of the components and the total density of mixture for the
channel flow with a dynamic viscosity ratio of M = 0.0002,
and Fig. 12 shows the contour of the nonwetting fluid’s
density and the streamlines in the channel.

Due to the fact that there is always some mixing in the im-
miscible multicomponent fluid flow simulation, in many stud-
ies, including Refs. [2,39–41], a distribution for the viscosity

FIG. 11. The density profile of different components in the chan-
nel flow for M = 0.0002, a = 25, and G = 2.5.
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FIG. 12. The density contour and streamlines of nonwetting fluid
in the two-component channel flow for M = 0.0002, a = 25, and
G = 2.5.

has been used to simulate the two-phase or two-component
fluid flow. In this study, according to the Ref. [2], a profile
for viscosity is considered based on the mass fraction of
the fluids, such that the fluid mixed outside the interface
has a viscosity similar to that of the base fluid in which it
is mixed. Figures 13 and 14 show the velocity profiles of
concurrent channel flow for the dynamic viscosity ratio of
5000 and 0.0002. In these figures, the velocity is normalized
by the analytical maximum velocity. In Fig. 13 the maximum
velocity is 0.00245, and in Fig. 14 the maximum velocity is
0.00096. In these simulations, the lowest viscosity is set to
0.000167. According to these velocity profiles, it can be seen
that the proposed model simulates the immiscible fluid flow
for the dynamic viscosity ratio of 5000 and 0.0002 with good
accuracy, which is very well consistent with the analytical
solution.

In the following, the relative permeability Kr in the two-
component channel flow is investigated. The analytical equa-
tion of the relative permeability in terms of the wetting phase

FIG. 13. The velocity profile perpendicular to the flow direction
for the channel flow with the dynamic viscosity ratio of M = 5000.

FIG. 14. The velocity profile perpendicular to the flow direction
for the channel flow with the dynamic viscosity ratio of M = 0.0002.

saturation Sw and nonwetting phase saturation Snw for the
two-component Poiseuille flow is as follows [38]:

Kr,w = 1
2 S2

w(3 − Sw ), (29)

Kr,nw = Snw

[
3

2
M + S2

nw

(
1 − 3

2
M

)]
. (30)

Figures 15 and 16 show the relative permeability in terms of
saturation degree for two wetting and nonwetting fluids with
the dynamic viscosity ratios of 0.002 and 0.0002, respectively.
As can be seen from these figures, there is good agreement
between the relative permeability obtained from the proposed
method and that of the analytical solution for two immiscible
fluids.

FIG. 15. Relative permeability of wetting and nonwetting fluid
for the dynamic viscosity ratio of M = 0.002.
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FIG. 16. Relative permeability of wetting and nonwetting fluid
for the dynamic viscosity ratio M = 0.0002.

Figures 17 and 18 shows the relative permeability of the
nonwetting and wetting fluid for the dynamic viscosity ratio
of 500, respectively. Also, Figs. 19 and 20 show the relative
permeability of the nonwetting fluid and wetting fluid for the
dynamic viscosity ratio of 5000, respectively. It is observed
that, in these dynamic viscosity ratios, the wetting relative
permeability has a convex curve with values less than one,
but the nonwetting relative permeability curve is concave and
its values are more than one. As can be seen from these
figures, the results have good consistency with the analytical
solution, while in the Ref. [1], the results were reported only
for dynamic viscosity ratios up to 100. The results show that,
when the dynamic viscosity of the wetting fluid is less than
that of the nonwetting fluid, the relative permeability of the
nonwetting fluid varies greatly and the nonwetting relative
permeability curve becomes concave. The relative perme-

FIG. 17. Relative permeability of nonwetting fluid in the two-
component channel flow for the dynamic viscosity ratio of M = 500.

FIG. 18. Relative permeability of wetting fluid in the two-
component channel flow for the dynamic viscosity ratio of M = 500.

ability in some degree of saturation is significantly higher
than 1.

C. Coding and computational cost

One of the advantages of the LBM is its high capacity
for parallel processing. Notably, the central-moments (CMs)
and EDM models are completely compatible with the inherent
parallelizability of the LBM. Therefore, the proposed model
is coded in parallel in the CUDA-C language. The implementa-
tion of the proposed method on GPU is based on Refs. [5,6].
The codes were run on two different machines: a machine
equipped by a Tesla-M2050 graphics card with 448 CUDA

cores and an AMD CPU 2200 GHz processor and another
machine equipped by a GTX-980 graphics card with 2048
CUDA cores and an Intel CPU 3200 GHz processor. Table I
shows the performance of implementation for different lattice

FIG. 19. Relative permeability of nonwetting fluid in the two-
component channel flow for the dynamic viscosity ratio of M =
5000.

043311-8



SIMULATION OF HIGH-VISCOSITY-RATIO … PHYSICAL REVIEW E 101, 043311 (2020)

FIG. 20. Relative permeability of wetting fluid in the two-
component channel flow for the dynamic viscosity ratio of M =
5000.

domains and on different processors in terms of one million
lattice site updates per second (MLUPS). According to this
table, it can be seen that the proposed model has a high
potential for parallelization. Table II shows the duration of 105

time steps for the BGK and CMs models. As can be seen, in
the presented model, CMs with the isotropy order of 10 (CMs-
10th), the duration time is about twice of the BGK model with
an isotropy order of 4 (BGK-4th). Although the increase in
computation time is undesirable, the proposed model brings
great advantages in the stability and flexibility of the multi-
component lattice Boltzmann method. Also, with the high ca-
pability of the model for parallel processing, the computation
time can be considerably decreased, as shown in Table I.

IV. CONCLUSIONS

In this research, the development of the nonorthogonal
central moments model for multicomponent fluid flow sim-
ulation by the pseudopotential method is investigated. Based
on the nonorthogonal central moments’ collision operator,
using the capabilities of the EDM force model, and as well as

TABLE I. Performance of implementation in MLUPS (double
precision floating point).

Nodes GPU-GTX980 GPU-TeslaM2050 CPU-Intel74790k

64 × 64 37.23 12.41 2.56
128 × 128 39.96 14.37 2.44
256 × 256 42.55 15.71 1.03
512 × 512 42.62 15.50 1.04

using the multirange model for the intercomponent interaction
force, we introduce a robust pseudopotential multicomponent
framework for modeling immiscible flows with high viscos-
ity ratios. Numerical computations of the proposed method
were done by using a GPU code written in the CUDA-C
programming language. The results showed that the CUDA

parallel significantly accelerated computation. For example,
the comparison of MLUPS between the GTX-980 GPU and
one core of the Intel74790k CPU on the 512 × 512 lattice
gives a ratio of 42.62

1.04 , an improvement of about 41 times.
The accuracy of the results of this model was confirmed

by using the Laplace law test, simulating a static droplet in
the periodic domain, simulating hydrophilic and hydrophobic
behavior of the wall surface, studying two-component concur-
rent flow between two flat plates, and predicting relative per-
meability in the channel. The results show the good accuracy
and high capability of this model. The static droplet is simu-
lated with the dynamic viscosity ratio of 105, and the relative
permeability is calculated for a dynamic viscosity ratio in the
range of 0.002 to 5000 using this method. All results indicate
that the proposed model has a high capability for creating a
high viscosity ratio in the two-component fluid flow and has
high stability for fluid simulation with the viscosity near zero.

TABLE II. Duration time (in seconds) of 105 iterations of BGK
and CMs models on GPU-GTX980.

Nodes CMs-10th BGK-10th CMs-4th BGK-4th

64 × 64 33 23 25 16
128 × 128 114 76 90 51
256 × 256 417 261 332 175
512 × 512 1691 1093 1334 735
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