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Enabling simulations of grains within a full rotation range in amplitude expansion of
the phase-field crystal model
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This paper introduces improvements to the amplitude expansion of the phase-field crystal model that enable
the simulation of grains within a full range of orientations. The unphysical grain boundary between grains,
rotated by a crystal’s symmetry rotation, is removed using a combination of the auxiliary rotation field described
in our previous work and an algorithm that correctly matches the complex amplitudes according to the differences
in local rotation.
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I. INTRODUCTION

The microstructure plays a crucial role in determining the
properties of many modern industrially important materials.
Since experiments are expensive and the relationships be-
tween chemical composition, thermomechanical processing,
and the final microstructure are complex, computer simula-
tions are an important step in the design of new materials.
In order to be able to competitively price the final product,
material production usually occurs in large batches of mate-
rial. Computer simulations able to efficiently model processes
occurring on such a large span of spatial and temporal scales
are scarce, and frequently include a hierarchy of different
models for modeling processes on different scales that ex-
change parameters. Discontinuous transitions between the
different scales sometimes introduce nonphysical phenomena
that are hard to eliminate, therefore making use of a single
model preferable. In order to enable modeling of the mi-
crostructure on diffusive time scales, the phase-field-crystal
(PFC) model was developed [1,2]. A recently developed am-
plitude expansion of the PFC model (APFC) [3,4] can predict
the microstructure of materials in relatively large simulation
domains, and in combination with effective mesh refinement
techniques (AMR) [5,6] can span many different scales in a
continuous manner.

The PFC and APFC models were successfully applied
to the study of many different phenomena such as ferro-
magnetic [7] and ferroelectric [8] effects, the effects of hy-
drodynamic velocity on the microstructure formation [9],
the study of grain boundary motion and polycrystalline
films [3,4,10], structural phase transitions [11–13], and grain
boundary energies [14,15]. The models were improved to
cover a wide range of possible materials, including materials
with different crystal lattices [13,14,16–21] in two and three
dimensions, materials with spatial anisotropy [22], liquid
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crystals [23,24], binary systems [20,25,26], and multicom-
ponent alloys [27], improved to achieve instantaneous me-
chanical equilibrium [28] and tune the energy of defects and
interfaces [15].

In our recent work [6], we presented a way to achieve
adaptive mesh refinement in APFC models using an auxiliary
local rotation field. The local rotation field was derived from
the fields used in the computation, but was itself never used
in calculations. It was used only to convert the amplitude
equations in a system, aligned with the local grain, where the
so-called beats in the amplitudes disappeared and the AMR
algorithm was able to coarsen the mesh.

In this paper we show how the local rotation field can be
used to eliminate an unphysical grain boundary described by
Spatschek and Karma [26], occurring between grains rotated
by a crystal’s symmetry rotation, and enable APFC simula-
tions with a whole range of grain orientations. This can enable
APFC simulations of industrially important thermomechani-
cal processes where grain rotation occurs, such as the hot and
cold forming of metallic materials.

II. APFC MODEL

The PFC model operates on a local atomic density function
ψ which minimizes the free energy functional [1,2,14,28]
given here in terms of dimensionless field ψ tracking the
deviations of the atomic density field from its average:

F =
∫

dr
{

�B

2
ψ2 + Bx ψ

2
(1 + ∇2)2ψ − t

3
ψ3 + v

4
ψ4

}

(1)
where �B = Bl − Bx. Parameter Bl is related to the compress-
ibility of the liquid state and Bx is related to the elastic moduli
of the crystalline state. The choice of t and v determines the
magnitude of the amplitudes and the liquid-solid miscibility
gap. The single-mode solution of the PFC equation in the
solid phase has honeycomb symmetry within a certain range
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of parameters and the solution can be approximated as [3–5]

ψ ≈
3∑

j=1

Aje
ikj·x +

3∑
j=1

A∗
j e

−ikj·x (2)

where Aj are the complex amplitudes of waves aligned with
the wave vectors

k1 = k0(−�i√3/2 − �j/2),

k2 = k0 �j,
k3 = k0(�i√3/2 − �j/2). (3)

In order to be able to compare our results with already
published results, we used the same free energy functional and
dynamic equations for our APFC model as in Hirvonen et al.
[14]. The free energy and the dynamic equations are

F = cA

∫
dr{(�B/2)A2 + (3v/4)A4 − 2t (

3∏
j=1

Aj + c.c.)

+
3∑

j=1

[Bx|L jA j |2 − (3v/2)|Aj |4]}, (4)

∂Aj

∂t
= −[�B + BxL2

j + 3v(A2 − |Aj |2)]Aj + 2t
∏
k �= j

A∗
k (5)

where L j = ∇2 + 2k j · ∇ and A2 = 2
∑3

j=1 |Aj |2. The dy-
namic equations are derived using nonconserved, dissipative
dynamics. We chose the same set of parameters as Hirvonen
et al. [14] (Bl = 1, Bx = 0.98, t = −1/2, v = 1/3, cA =
7.95 eV, a0 = 2.46 Å).

III. LIMITATIONS OF THE APFC MODEL

The amplitude expansion of the PFC model approximates
the solution for the atomic density function ψ with a sum
of atomic density waves aligned with the first three vectors
of the reciprocal lattice as described in Eq. (2). A complex
amplitude Aj describes density variation in the direction cor-
responding to its wave vector. In case the grain is rotated
relative to the initially chosen set of base vectors, the rotation
is expressed through the beats in the complex amplitudes
A′

j = A0
j e

i(k j (ϑ )−k j )·x where A0
j and k j (ϑ ) are the complex

amplitudes and base vectors in a system, aligned with the
rotated grain.

The real rotation of the grains is therefore determined by
two disconnected parts of the model, the beats in the complex
amplitudes which express the rotation of the grain relative
to the initially chosen base vectors, and the rotation of the
initially chosen set of base vectors. The unphysical grain
boundary in the APFC model appears due to the model’s
inability to connect both expressions of grain rotation.

A grain with complex amplitudes (A1, A2, A3), rotated by
60◦, can be represented by beats in the complex amplitudes
corresponding to 60◦ rotation. As a 60◦ rotation of the crystal
lattice, in a system with 60◦ rotational symmetry, corresponds
to a reassignment of complex amplitudes to base vectors, it
could also be represented by the amplitudes (A∗

2, A∗
3, A∗

1 ) with
no beats. Since the APFC model cannot connect both repre-
sentations for physically the same grain, an unphysical grain

FIG. 1. The figure presents (a) atomic density around a wedge
defect, (b–j) base vectors rotated to match the rotation of the local
lattice expressed through (k) the beats in the complex amplitudes,
(l) free energy density, and (m) rotation of the base vectors. Because
a wedge defect breaks the rotational symmetry of the crystal, en-
circling it once will shift the directions in which the basis vectors
point by one symmetry rotation of the crystal lattice. As the APFC
model cannot connect the rotation expressed through the beats with
the rotation of the base vectors, an unphysical grain boundary occurs
as seen in (l).

boundary [26] with characteristics of a 60◦ grain boundary
forms in the model where both representations meet.

This phenomenon prevents the application of the APFC
model to the study of processes where grain rotation occurs,
or grain rotation cannot be feasibly limited to less than half of
the crystal’s symmetry rotation. The limit on grain rotations is
enforced in most published studies [5,14,15,29], which either
study only grain boundaries at lower angles or resort to using a
different simulation setup for grain boundaries with mismatch
angles above half of the crystal symmetry rotation.

To highlight this limitation of the APFC model and its con-
sequences, we calculated the complex amplitudes Aj around
the core of a wedge defect where the rotational symmetry
of the crystal lattice is broken. The chosen wedge defect
exhibits a sevenfold rotational symmetry in its core as shown
in the center of Fig. 1(a), whereas the normal lattice has
sixfold rotational symmetry. The initial condition that yields
this wedge dislocation is obtained by ϑ (x, y) = 0 − [2π +
atan2(y, x) mod 2π ]/6 + π/6, A′

j = A0
j e

i(k j [ϑ (x,y)]−k j )·x. Due
to the nature of the wedge defect, encircling it one time
will yield a 60◦ rotation of the lattice vectors (one symmetry
rotation of the crystal lattice) and show an unphysical grain
boundary in the APFC model due to the mentioned limitations
of the model. Since pairs of wedge disclinations appear on
the grain boundaries in graphene frequently studied with the
APFC model [15], and pairs of complementary disclinations
are equivalent to dislocations [30], the example also highlights
a detail that occurs in many APFC simulations.

Figure 1(a) shows the atomic density function around a
wedge defect in the center of the image. Figures 1(b)–1(j)
show the local orientation of the base vectors at different
points around the wedge defect. The misalignment of the local

043309-2



ENABLING SIMULATIONS OF GRAINS WITHIN A FULL … PHYSICAL REVIEW E 101, 043309 (2020)

TABLE I. A list of wave vectors, their rotation, and correspond-
ing amplitudes. The matching amplitudes when the rotation is shifted
by one crystal’s symmetry rotation in either direction are shown in
the table’s last two columns.

Direction Rotation Amplitude Amplitude (+60◦) Amplitude (−60◦)
+k1 0 A1 A∗

2 A∗
3

−k2 60 A∗
2 A3 A1

+k3 120 A3 A∗
1 A∗

2

−k1 180 A∗
1 A2 A3

+k2 240 A2 A∗
3 A∗

1

−k3 300 A∗
3 A1 A2

lattice with the initial choice of base vectors is expressed
through the beats in the complex amplitudes presented in
Fig. 1(k). Encircling the wedge defect from above [Figs. 1(b)–
1(f)] rotates the atomic lattice by 30◦ clockwise. Encircling
the same defect core from below [Figs. 1(b) and 1(g)–1(j)]
rotates the atomic lattice by 30◦ counterclockwise. This means
that the rotation expressed by the beats differs by 60◦ on the
line where both expressions of the rotation meet [Figs. 1(j)
and 1(f)], therefore creating an unphysical grain boundary
in the APFC model. Figure 1(k) shows the real part of the
first complex amplitude Re(A0). The frequency of the beats
gradually increases when encircling the defect core from
either side, but as the rotation of the lattice expressed through
the beats is different, in Figs. 1(j) and 1(f) where both rotations
meet, the beats on both sides do not match, and an unphysical
grain boundary is formed, as also presented in a free energy
plot in Fig. 1(l). Figure 1(m) shows the rotation of the atomic
lattice that is expressed through the beats ranging from −30◦
to +30◦.

IV. DESCRIPTION OF IMPROVEMENTS TO THE MODEL

Our model introduces a set of locally rotated complex
amplitudes [6] Aϑ

j :

Aj = Aϑ
j eiδk j (ϑ )·x (6)

where ϑ is a local rotation field and k j (ϑ ) = k j + δk j (ϑ )
are rotated basis vectors. The local rotation field ϑ is incre-
mentally derived from the complex amplitudes Aj based on
the observation that, when the rotation of the basis vectors
matches the rotation of the local grain, the beats disappear
and therefore the gradient of the locally rotated amplitudes is
zero:

∇Aϑ
j = (∇Aj )e

−iδk j ·x + Aj (−iδk j )e
−iδk j ·x = 0. (7)

We incrementally update the local rotation field using

δk j (ϑ ) = ∇Aj

iA j
= k j (ϑ ) − k j (8)

where we average the rotation angle derived from (8) over all
complex amplitudes. Due to the rotational covariance of the
operator L j , the conversion between the basis vectors rotated
by a different amount can be separated from the operator
evaluation, and the adaptive mesh can coarsen in all grains,
regardless of the orientation. The use of local rotation adds no

Algorithm 1. Local rotation adjustment. Parameters p, q,
Amin. amp., and ϑmax. phase are heuristic.

for each computation node do

Find optimal rotation ϑopt:

if |Aϑ
j | > Amin amp. for all j then

In solidified regions: from gradient

for all j ∈ {1, 2, 3} do

δkj(ϑcurrent) = Re
∇A

ϑcurrent
j

iA
ϑcurrent
j

)

ϑx,j = 1 + kj(ϑcurrent) · δkj

ϑy,j = (kj(ϑcurrent) × δkj) · êz

end for

ϑopt = ϑcurrent + atan2(
∑

j ϑy,j/3,
∑

j ϑx,j/3)

else

In liquid regions: drop towards zero

ϑopt = 0

end if

Smooth the changes

ϑnew = p × ϑcurrent + q × ϑopt

Prevent skipping beats

dϑ = max{all neighbours NN} |ϑNN − ϑnew| modulo 60◦

kϑ = dx dϑ/ϑmax. phase

if kϑ > 1 then

ϑnew = ϑcurrent + (ϑnew − ϑcurrent)/kϑ

end if

ϑcurrent = ϑnew

end for

for 10× propagate local rotation into liquid regions do

for each computation node do

if |Aϑ
j | > Amin. amp. then

mark node as “rotation is set”

else if this node has a marked NN then

ϑcurrent = average ϑ over all marked NN

mark node as “rotation is set”

end if

end for

end for

additional error to the calculations (see the Appendix). To ap-
ply an operator L j on a locally rotated field X ∈ {Aϑ

j , Lϑ
j Aϑ

j },
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−k1 , A∗
1

−k2 , A∗
2

−k3 , A∗
3

k1 , A1

k2 , A2

k3 , A3

ϑ = 55◦

k1 , A1

k2 , A2

k3 , A3

−k1 , A∗
1

−k2 , A∗
2

−k3 , A∗
3

ϑ = 0◦

(b)(a)

FIG. 2. Wave vectors in two neighboring computational nodes with different local rotations [(a) ϑ = 0◦, (b) ϑ = 55◦]. Our algorithm
matches the complex amplitudes that correspond to the wave vectors that point in the closest directions. A2 in the left computational node (a) is
therefore matched with the complex amplitude A∗

1 in the right computational node (b), as the angle between the corresponding wave vectors is
only 5◦.

the local rotation is treated separately as in [6]:

Lϑ
j X ϑ

j = e−iδkj·xL jXj . (9)

In the current paper, we present a way to eliminate the un-
physical grain boundary between grains rotated by a crystal’s
symmetry rotation, using a local rotation field in combination
with an algorithm that uses the local rotation field to correctly
match the complex amplitudes corresponding to base vectors
pointing in most similar directions in the entire simulation
domain. The unphysical grain boundary in the APFC model
occurs because the model cannot connect the rotation of the
base vectors for the amplitudes with the rotation expressed
through the beats of the complex amplitudes. To solve this
problem, our algorithm correctly matches the complex ampli-
tudes based on the total rotation, expressed through both beats
and the rotation of base vectors.

Numerical implementation of the algorithm uses a lookup
table to match the correct complex amplitudes. We calculate a
local rotation field that tracks the rotation expressed through
the beats in the complex amplitudes as in [6]. When operating
with values from different computational nodes in the same
calculation, we correct the values for the differences in the
local rotation as in [6], and if the difference in the local rota-
tion exceeds half of the crystal’s symmetry rotation we match
the amplitudes that correspond to the most similar physical
directions. In effect this means that when the neighboring
computation nodes differ in rotation by 60◦ we use A∗

2 of the
second node instead of A1 when calculating the values of oper-
ators in the first computation node. The approximation of the
single-mode solution (2) is the sum of planar waves directed
at angles that are multiples of the crystal’s symmetry rotation.
Table I lists the wave vectors, the angles they form with the
first wave vector k1, the complex amplitudes Aj matching
the selected wave vector, and the wave vectors we obtain
with one crystal’s symmetry rotation (±60◦). Our algorithm
finds the best matching complex amplitudes in neighboring
computational nodes by comparing the local rotation of both
nodes. If the local rotation ϑ differs by more than half of the

crystal’s symmetry rotation (|ϑL − ϑR| > 30◦), the algorithm
matches the complex amplitude A1 in one computational node
with A∗

2 or A∗
3 in the other computational node, depending on

the sign of the difference. A full list of matching amplitudes is
presented in Table I. In Fig. 2, the wave vectors in two neigh-
boring computational nodes with different local rotations are
shown. The algorithm used is the same as in [6], with the
following two additions. First, when an operator is evaluated
on a locally rotated field, the matching amplitudes from
neighboring nodes are used. In case the differences in local
rotations between nodes are greater than half of the crystal’s
symmetry rotation, the matching algorithm uses Table I to find
appropriate matching amplitudes. Second, after the optimal
local rotation is found in all regions where |Aϑ

j | > Amin. amp.

for all j, the calculated local rotation is copied from each
computation node where it is set to all its neighbors where
the local rotation is still unset. This process of propagating
the local rotation is repeated ten times.

The first improvement eliminates the unphysical grain
boundary occurring between grains that differ in orientations
by more than half of the crystal’s symmetry rotation. The
second improvement is required as the lattice rotation is phys-
ically undefined in liquid regions, which initially fill the whole
computational domain, and is there set to zero by default.
Without the second improvement, the incremental updates to
the local rotation start from zero and result in a continuous
transition of local rotation across grain boundaries, regardless
of the misorientation between grains, which prevents the first
improvement from finding the correct matching amplitudes
on the interface. Propagating the calculated local rotation into
regions where it is yet undefined provides good starting points
for the algorithm and enables convergence to correct values
even where the correct values change discontinuously at the
grain boundary.

The presented improvements to the APFC model change
the calculations only in areas where the APFC model gives
incorrect results due to the unphysical grain boundary prob-
lem described in Sec. III. Correct matching of the complex
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FIG. 3. Free energy on the grain boundary in armchair config-
uration at a mismatch angle of 50.1◦. The top row (a) shows an
unphysical grain boundary that is formed between grains at mismatch
angles larger than half of the crystal’s symmetry rotation [26]. The
middle row (b) shows the same grain boundary as formed in simu-
lations with our improved algorithm that correctly matches complex
amplitudes at different rotations, and therefore the unphysical effects
do not occur. The bottom row (c) shows the local rotation as used in
our improved algorithm.

amplitudes introduced by the presented algorithm limits the
effective rotations of the atomic lattice to one lattice sym-
metry rotation with correct periodicity, matching the physical
description of the crystal. The improvement therefore only
removes existing errors in the model and has no effect on the
calculations in the vast majority of the computational domain,
where the APFC model is known to work correctly. The
origin of the unphysical grain boundary problem might also
be seen as a problem with incorrect period of the parameter
describing atomic lattice rotation. In the APFC model the
lattice rotation is taken as a parameter with values in interval
[0, 2π ), and the unphysical grain boundary occurs as the
lattice rotation is physically really a value on a much smaller
interval [0, ϑsymmetry rotation), with periodicity in both intervals.
Complex amplitude matching based on the real, physical
rotation of the atomic lattice introduced in the presented
improvements changes the effective lattice rotations to the
interval and periodicity that match the physical properties of
the crystal lattice.

V. RESULTS

Figure 3 shows a grain boundary at a 50.1◦ tilt angle.
Without amplitude matching, the result is a grain boundary
that would correspond to an effective tilt angle of 50.1◦,
which is impossible as the crystal’s symmetry rotation of
60◦ limits the effective tilt angles to 30◦. With the amplitude
matching algorithm, the amplitudes on both sides of the grain
boundary that correspond to wave vectors pointing in the
most similar directions are properly matched and the result
is a grain boundary with a similar structure to a 10◦ =
60◦ − 50◦ grain boundary, as expected. We calculated the

grain boundary energies with our improved algorithm and
compared them with results published by Hirvonen et al. [14].
Our improvements result in the removal of the unphysical
effects from improper matching of complex amplitudes on
different sides of the grain boundary. In Fig. 4, we show the
calculated grain boundary energies in comparison to [14]. In
our calculations, we used two different ways of constructing
a grain boundary: like [14] we constructed a grain boundary
in armchair (AC) configuration using two grains that form a
vertically oriented grain boundary and used a horizontal grain
boundary for the zigzag (ZZ) configuration. The results of cal-
culations obtained without the amplitude matching algorithm
agree well with previous results, and the small differences
can be explained by numerical errors introduced by the use
of the adaptive mesh refinement techniques and differences
in construction of the grain boundaries. Larger differences
occur only at tilt angles outside of the range in which a
specific grain boundary construction is applicable (above 30◦
for AC configuration and below 30◦ for ZZ configuration) and
in both cases using a local rotation scheme in combination
with AMR techniques reduces the error. Results obtained
with our amplitude matching algorithm show a continuous
transition between the results obtained with APFC (AC) and
APFC (ZZ) configurations at an appropriate angle, confirming
the successful removal of the unphysical effects on the grain
boundaries.

The grain boundaries were constructed by seeding the
simulation domain with a crystal phase upon two opposite
rotations, as seen in Fig. 5. The rotation was chosen in such a
way that the atomic density on the line between the domains
with different orientations is exactly periodical. Before the
start of the simulations, we melted the crystal phase in a small
area around the grain boundary line. To calculate the grain
boundary energy, we averaged the free energy density in the
marked area in Fig. 5. The area matches the period of the
initial atomic density in the y direction and extends into pure,
undeformed crystal in the x direction. We used sufficiently
large simulation domains (L = 512π/2) to ensure that the
centermost area remains periodic in the direction along the
grain boundary and the crystal is undeformed at both ends of
the marked area. The adaptive mesh refined by four levels to
�x = π/2 × 24 ≈ 25.13 in the bulk lattice, indicating that the
bulk lattice was undeformed in the simulations. Due to these
properties of the area over which we averaged the free energy
density, the grain boundary energy can be calculated as

γ = �F/�y (10)

where �F = F� − Fcrystal,� is the increase in free energy in
the marked area and �y is the grain boundary length (in the
horizontal grain boundary configuration the axes are switched
appropriately).

The effects of our improvements in an example of a simu-
lation with many grains are presented in Fig. 6. Twelve seeds
with rotations in a full rotation range (θ ∈ [−30◦,+30◦))
were grown in undercooled melt using the algorithm pre-
sented in this paper and compared to our previous work [6].
We can see that the improvements remove unphysically high
grain boundary energies on the grain boundaries where the
impinging grains are at a tilt angle above 30◦. Presuming
a completely uniform distribution of grain orientations, this
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FIG. 4. The grain boundary energy as a function of tilt angle. Values for models APFC [armchair (AC)] and APFC [zigzag (ZZ)]
were published by Hirvonen et al. [14] and are in good agreement with our model. Our model without amplitude matching in AC and ZZ
configurations matches previously published results. Amplitude matching in either configuration successfully removes the unphysical increase
in grain boundary energy observed when the tilt angle is more than half of the crystal’s symmetry rotation away from a configuration in which
complex amplitudes from both impinging grains are completely aligned.

results in the removal of the unphysical effects on half of the
grain boundaries.

VI. CONCLUSIONS

Presented paper describes an improvement to the APFC
model that removes the unphysical grain boundary, which
occurs in the model between grains, rotated by a crystal’s
symmetry rotation. Presented improvement enables APFC

FIG. 5. Grain boundary construction and calculation of free en-
ergy. In order to calculate the free energy of a symmetric tilt grain
boundary, we simulate two impinging grains, each rotated by an
angle at which the microstructure in the middle of the grains repeats
periodically, presuming an infinite simulation domain. We calculate
the free energy per grain boundary length from the average free
energy in the marked regions.

simulations of industrially important processes where grains
rotate or grain rotation cannot be feasibly limited.

Rotation of grains expressed through the beats in the com-
plex amplitudes is connected with the rotation of the base vec-
tors through an auxiliary local rotation field [6] and a lookup
table connecting local rotation to rotation of base vectors
for the amplitudes. Grain boundary energies calculated with
the improved algorithm match previously published results
in correct ranges of values. The improved algorithm enables
calculations of grain boundary energies in the entire range
of misfits using a single simulation setup where previous
approaches required separate simulation setups for armchair
and zigzag grain boundary configurations.
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APPENDIX: EQUIVALENCE OF APFC CALCULATIONS
IN ROTATED AND NONROTATED SYSTEMS

Rotational covariance of the free energy in the APFC
model requires that the dynamic equations of the model and
free energy density do not depend on the rotation of the
initially chosen base vectors.

The conversion of complex amplitudes Aj between systems
with differently rotated base vectors k j is a multiplication
with rotation conversion factor e−iδk j ·x as written in Eq. (6)
[5]. The following Appendix provides a proof that the same
conversion also holds for all rotationally covariant fields. As
a consequence, the calculations performed in systems with
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FIG. 6. Grain boundary energies in an example simulation.
Twelve seeds with rotations in a full rotation range [θ ∈
(−30◦, +30◦)] were placed in undercooled melt. The images in the
top row show free energy density in the full simulation domain,
as calculated (a) with the algorithm published in [6] and (b) the
algorithm presented here. We can see that our improved algorithm
removes the unphysical effects on grain boundaries. The images
in the bottom row show (c) the local rotation field and (d) the
reconstructed microstructure.

different rotations of base vectors can be combined with no
additional error. Free energy density, elastic energy, and all
measurable fields do not change when using local rotation in
the calculations.

1. Definitions

�ϑ = {∇2 + 2ik j (ϑ ) · ∇}, (A1)

� = �ϑ=0, (A2)

k j (ϑ ) = k j + δk j . (A3)

k j (ϑ ) is k j rotated by ϑ , for all j ∈ {1, 2, 3}, using cyclical
indices in text.

X is a field expressed in a system with nonrotated base
vectors k j , and X ϑ is the corresponding field in the system
with rotated base vectors k j (ϑ ).

[ ∂Aj

∂t ] is the time derivative of the complex amplitude Aj

and [ ∂Aj

∂t ]
ϑ

is the corresponding time derivative expressed in
the rotated system.

In general, a symbol without superscript ϑ marks the same
field in the nonrotated system.

2. Proof

Lemma 1. From

X ϑ (x) = e−iδk j ·xX (x) (A4)

it follows that

�ϑX ϑ = e−iδkj·x�X. (A5)

The conversion between fields, derived by applying the
operator �ϑ to the original field X ϑ (�ϑX ϑ and �X ), is multi-
plication with the same conversion factor as when converting
between the original rotated and nonrotated fields X ϑ and X .

Proof.

∇X ϑ =
= (∇X )e−iδkj·x + X (−iδk j )e

−iδkj·x, (A6)

∇2X ϑ =
= (∇2X )e−iδkj·x + 2(∇X )(−iδk j )e

−iδkj·x

+ X [−(δk j )
2]e−iδkj·x, (A7)

(e+iδkj·x)�ϑX ϑ = (e+iδkj·x){∇2X ϑ + 2ik j (ϑ ) · ∇X ϑ } (A8)

= (∇2X ) + 2(∇X )(−iδk j ) + X [−(δk j )
2]

(A9)

+ 2ik j (ϑ ) · ∇X + 2ik j (ϑ ) · (−iδk j )X

(A10)

= (∇2X ) + 2ik j (∇X ) (A11)

− 2ik j (ϑ )(∇X ) (A12)

+ X [−k2
j − k j (ϑ )2 + 2k j · k j (ϑ )] (A13)

+ 2ik j (ϑ ) · (∇X ) (A14)

+ 2ik j (ϑ ) · (−iδk j )X (A15)

= �X (A16)

+ X {−k2
j − k j (ϑ )2 + 2k j · k j (ϑ ) (A17)

− 2i2k j (ϑ )2 + 2i2k j (ϑ ) · k j} (A18)

= �X + X {−k2
j + k j (ϑ )2} (A19)

= �X (A20)

where k j (ϑ )2 = k2
j as rotation preserves distance. �

Lemma 2. From

X ϑ (x) = e−iδk j ·xX (x) (A21)

it follows that

(�ϑ )nX ϑ = e−iδkj·x(�)nX (A22)

for all positive integers n, n ∈ Z+.
The conversion between fields, derived by applying the

operator �ϑ to the original field X ϑ n times, is multiplication
with the same conversion factor as when converting between
the original rotated and nonrotated fields X and X ϑ .
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Proof. Proof is by induction. The induction base (n = 1) is
proven in Lemma 1. To prove the induction step (n → n + 1),
we observe that (�ϑ )nX ϑ = Y ϑ is a field in the rotated system
that corresponds to the field (�)nX = Y in the nonrotated
system for which Eq. (A4) holds by induction presumption.
Then

(�ϑ )(n+1)X ϑ = �ϑ (�ϑ )nX ϑ (A23)

= �ϑY ϑ = e−iδkj·x�Y (A24)

= e−iδkj·x��nX = e−iδkj·x�(n+1)X. (A25)

�
Lemma 3. From

X ϑ (x) = e−iδk j ·xX (x) (A26)

it follows that

Pn(�ϑ )X ϑ = e−iδkj·xPn(�)X (A27)

for all positive integers n, n ∈ Z+, where

Pn(�) =
n∑

i=0

ai�i, (A28)

Pn(�ϑ ) =
n∑

i=0

ai(�ϑ )i (A29)

is a polynomial function of the operators � and �ϑ of
degree n.

Proof.

Pn(�ϑ )X ϑ =
n∑

i=0

ai(�ϑ )iX ϑ (A30)

=
n∑

i=0

aie
−iδkj·x(�)iX = e−iδkj·xPn(�)X (A31)

where we used Lemma 2 for all powers of the operators. �
Theorem 1. The calculation results obtained in the locally

rotated system and the nonrotated system are equivalent,
meaning that the rotation conversion factor for the complex
amplitudes Aj and e−iδkj·x converts also the results between
both systems.

Proof. Since the conversion between rotated and nonro-
tated complex amplitudes is Aϑ (x) = e−iδk j ·xA(x) it is equiva-
lent to prove that the dynamic equations for the APFC model
give equivalent results in both rotated and nonrotated systems,
or [

∂Aj

∂t

]ϑ

= ∂Aj

∂t
e−iδkj·x (A32)

for all j ∈ {1, 2, 3}.
We use the following properties of the APFC model:

|Aj |2 = AjA
∗
j , (A33)

L̃ϑ
j = (1 − �ϑ )(−r − 3ψ

2

−{�ϑ }2), (A34)

Lϑ
j = �ϑ , (A35)

∏
k:k �= j

A∗
k = A∗

j+1A∗
j−1, (A36)

k1 + k2 + k3 = 0, (A37)

k1(ϑ ) + k2(ϑ ) + k3(ϑ ) = 0, (A38)

e+iδkj+1·xe+iδkj−1·x = e+i{k j+1(ϑ )+k j−1(ϑ )−k j+1−k j−1}·x

= e+i{−k j (ϑ )+k j }·x

= e−iδk j ·x, (A39)

Aϑ2 = 2
∑

j

=3 |Aϑ
j |2

= 2
3∑

j=1

Aϑ
j Aϑ∗

j

= 2
3∑

j=1

e−iδkj·xAje
+iδkj·xA∗

j

= 2
3∑

j=1

|Aj |2 = A2, (A40)

∏
k �= j

Aϑ∗
k = e+iδkj+1·xAj+1e+iδkj−1·xAj−1

= e−iδkj·xAj+1Aj−1. (A41)

It follows that

[
∂Aj

∂t

]ϑ

= (A42)

= −[�B + BxLϑ2
j + 3v(Aϑ2 − |Aϑ

j |2)]Aϑ
j

+ 2t
∏
k �= j

Aϑ∗
k (A43)

= −e−iδkj·x�BAj

− e−iδkj·xBxL2
jA j

− e−iδkj·xA2Aj

− e−iδkj·xe−iδkj·xAje
+iδkj·xA∗

j A j

− e−iδkj·x2t
∏
k �= j

A∗
k (A44)

= e−iδkj·x
{
−[�B + BxL2

j + 3v(A2 − |Aj |2)]Aj

+ 2t
∏
k �= j

A∗
k

}
(A45)

= e−iδkj·x ∂Aj

∂t
(A46)

where we used Lemma 3 for Lϑ2
j Aϑ

j .
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Or for the APFC model published in [5,6]

∂Aj

∂t
= L̃ jA j − 3Aj |Aj |2 − 6Aj

∑
k:k �= j

|Ak|2

− 6ψ
∏

k:k �= j

A∗
k (A47)

we obtain the same equivalence:

[
∂Aj

∂t

]ϑ

= (A48)

= L̃ϑ
jA

ϑ
j

− 3Aϑ
j |Aϑ

j |2 − 6Aϑ
j

∑
k:k �= j

|Aϑ
k |2

− 6ψ
∏

k:k �= j

Aϑ∗
k (A49)

= e−iδkj·xL̃ jA j

− e−iδkj·x3AjAjA
∗
j e

−iδkj·xe+iδkj·x

− e−iδkj·x6Aj

∑
k:k �= j

AkA∗
ke−iδkk ·xe+iδkk ·x

− 6ψA∗
j+1e+iδkj+1·xA∗

j−1e+iδkj−1·x (A50)

= e−iδkj·x
{
L̃ jA j

− 3Aj |Aj |2 − 6Aj

∑
k:k �= j

|Ak|2

− 6ψ
∏

k:k �= j

A∗
k

}
(A51)

= e−iδkj·x ∂Aj

∂t
(A52)

where we used Lemma 3 for L̃ϑ
jAϑ

j �
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