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In this paper, we present a finite-volume direct kinetic method, the so-called discrete unified gas kinetic scheme
(DUGKS), for electrostatic plasma. One key feature of this method is the semi-implicit unsplitting treatment of
particle transport and collision, and thus the time step in current DUGKS is not limited by the particle collision
time. In addition, a fourth-order compact MUSCL scheme with a positivity preserving limiter is implemented
in the interface reconstruction, which enables present DUGKS to preserve the favorable conservative property
and positivity of distribution function. Combined with this MUSCL method, the semi-Lagrangian scheme is
used for the particle transport in velocity space to remove Courant-Friedricks-Lewy restriction induced by the
large electric force. As a result, the proposed DUGKS becomes an efficient and stable multiscale scheme. Several
numerical experiments, including plasma sheath, linear Landau damping, collisional nonlinear Landau damping,
and plasma ion acceleration, are performed to validate current DUGKS. A comparative study of current DUGKS
with a general particle in cell (PIC) method which could handle particle collision in a conservative way is
also presented. Theory and numerical experiments demonstrate that DUGKS is preferred for plasma flows
involving small electrostatic perturbation and high collision regimes, while the PIC method is desired for the
field- dominated plasma flows involving a wide range of velocities.
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I. INTRODUCTION

The importance of plasma is constantly increasing in vari-
ous fields, such as semiconductors, space propulsion, material
processing, medicine, and so on [1]. The modeling and nu-
merical simulation of plasma is a quite active research field
in the plasma community for many years. Roughly speaking,
two large classes of mathematical models are available: fluid
and kinetic models. It is well accepted that the fluid models
will become less accurate once the continuum assumptions
begin to break down [2]. Given the multiscale characteristic
of the plasma flow, e.g., the flow may covering a wide range
of Knudsen number (Kn), where Kn is the ratio of particle free
path to characteristic length, the kinetic model is desired if a
unified method is required.

One basic kinetic model for electrostatic plasma simula-
tions is the collisional Vlasov (Boltzmann) equation, coupled
with the Poisson equation. If the Bhatnagar-Gross-Krook
(BGK) collision term [3] is considered, the concerned model
is called the BGK-Vlasov-Poisson (BGK-VP) equations. The
numerical resolution of this kinetic model can mainly be
classified into two categories: particle-based method and
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grid-based method. The particle in cell (PIC) is the well-
known particle-based method, which is based on the tracing
the motion of finite number of macroparticles. The biggest
advantage of the PIC method is its computation economy,
which is easily and efficiently applied to the high-dimensional
problems [4,5]. We refer two celebrated books [6,7] and a
comprehensive review [8] for an overview of PIC method.

One key drawback in traditional PIC method is the unphys-
ical grid-heating, which would lead to the increase of total
energy. Several semi-implicit [9,10] and fully implicit PIC
[11] solvers have been proposed to alleviate this issue. How-
ever, the PIC method suffers from inherent numerical noise,
especially for the plasma flow with a small perturbation [12].
Although some improved methods were proposed [13–15],
there still is not a well-accepted denoising technique in the
plasma community. In the collisional regime, the PIC method
coupled with Monte Carlo collision (PIC-MCC) is usually
used [16,17]. Nevertheless, due to the splitting treatment of
particle transport and collision, the time step and grid spacing
in PIC-MCC are limited by the particle collision time and the
mean free path, respectively. As a result, this method suffers
from the expensive cost in the high collision (hydrodynamic)
regime, where the mean free path is very small with respect to
characteristic length.

An alternative to the PIC method is represented by directly
solving kinetic equation in the phase space [18] by means
of the grid-based method, which is referred to as the direct
kinetic method (DKM) in this paper, such as high-order finite
difference [19,20], finite-element [21–24], finite-volume
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[25–28], and the spectral methods [12,29–32], see
Refs. [33–35] for recent review of these methods. Compared
with the PIC method, as a deterministic method, the DKM
is superior in reducing numerical noise. Another advantage
of DKM is to achieve high-order accuracy for phase-space
discretization, which allows the study of fine-scale detail that
are typically inaccessible in PIC. However, the high-order
schemes sometimes generate spurious oscillations and
become unstable in long-time simulations [27]. Several
efforts have been devoted to deal with numerical oscillations,
such as MUSCL scheme [36,37], essentially nonoscillatory
scheme [38] and weighted essentially nonoscillatory scheme
[20,28,39]. Although most of them enforce the conversation
of mass, all other conserved quantities, i.e., momentum, total
energy, and entropy, can be accurate only to within truncation
error. Besides, positivity preserving (PP) property is also
highly desired in DKM, since nonpositive solution values
may trigger unphysical oscillations. To guarantee positivity,
some other mechanism [23,26,27,40] needs to be considered.

Another basic but very important problem in DKM is the
handling of particle collision. In traditional DKM, the parti-
cle collision and transport process are explicitly uncoupled
through splitting method, which involve high cost in strong
collision regime due to the explicit treatment of collision
term. To develop an efficient DKM for all Kn regimes, the
asymptotic preserving (AP) schemes [41–45] are proposed.
These AP schemes are stable with respect to arbitrary Kn,
while their temporal step sizes are not restricted by Kn.
Among these AP schemes, we especially appreciate favor-
able stability, efficiency, and accuracy of discrete unified gas
kinetic scheme (DUGKS) [46–49] in all Kn regimes. The
previous DUGKS is originally designed for neutral gas flows,
where the conservation and PP property have not got much
attention. However, these two properties are crucial in plasma
simulation, since they affect the stability of the solver. In this
study, we aim to extend the DUGKS to plasma simulation
and improve its conservation and PP property in lengthy
simulations.

To now, the PIC method still represents the preferred
approach in plasma community. Although DKM solver and
PIC seek the same ends, they differ fundamentally in their
approach. Thus, it is necessary to implement the newly
developed DKM solver to benchmark once and again the
PIC code against it. Denavit and Kruer [50] presented a
close quantitative comparison of two methods for two-stream
instabilities and large-amplitude electron oscillations. More
recently, Camporeale et al. [12] compared the computational
efficiency and the cost-effectiveness of a novel DKM, i.e., the
so-called Fourier-Hermite spectral method, and fully implicit
PIC method. Besides, Saini et al. [51] presented a quantitative
comparative study of two methods for the formation of coher-
ent phase-space structures. The previous comparative studies
[12,29,50,51] are only for collisionless plasma with periodic
boundaries.

In this study, we present a novel DUGKS for electro-
static plasma with general boundary conditions, which is a
nontrivial extension of our conserved DUGKS [48,49]. First,
the semi-implicit coupling of particle transport and colli-
sion is implemented in the distribution function (DF) evolu-
tion and flux evaluation, which enables proposed method to

economically and accurately provide a satisfactory solution
for all Kn regimes. Second, a fourth-order compact MUSCL
scheme with PP limiter is used in the reconstruction to
enable present DUGKS to preserve the favorable conser-
vation and positivity. Besides, combined with this MUSCL
method, the Eulerian scheme is imposed on DF evolution
in physical space to easily handle general boundary con-
ditions, while the semi-Lagrangian scheme is used for the
evolution in velocity space to remove Courant-Friedricks-
Lewy (CFL) restriction induced by the large electric field.
Then we present numerical solutions of current DUGKS for
particles-dominant plasma, including linear Landau damping,
collisional nonlinear Landau damping and plasma sheath,
as well as field-dominant plasma, e.g., plasma ion acceler-
ation, and compare those solutions with results of a gen-
eral PIC method which could handle particle collision in a
conservative way.

The rest of the paper is organized as follows. The BGK-VP
system for electrostatic plasma and its nondimensionalization
are introduced in Sec. II. In Sec. III, a novel DUGKS and
general PIC method are described in detail. We present the
results of comparative numerical studies in Sec. IV. Finally, a
summary is given in Sec. V.

II. THE BGK-VLASOV-POISSON SYSTEM

In this section, we recall the BGK-VP system for electro-
static plasma. First, the mathematic model of the BGK-VP
system and its nondimensionalization are introduced. Then
the time-splitting technologies for solving the BGK-Vlasov
equation are reviewed.

In this paper, unless stated otherwise, we focus on the
motion of electron and assume ions form a uniform static
background. If BGK collision model is used [3], then the
motion of electron can be described by BGK-VP equation

∂ f

∂t
+v · ∇ f + q

m
∇φ · ∇v f = − 1

τ
( f − f eq ),

−�φ = q

ε
(ni − n), n =

∫
f dv,

(1)

where f = f (x, v, t ) is the velocity distribution function for
particles moving in D-dimensional velocity space with v =
(v1, . . . , vD) at position x = (x1, . . . , xD) and time t . Here the
potential φ, electron mass m, electron number density n, vac-
uum permittivity ε, elementary charge q, and the background
ion number density ni are the plasma parameters. Besides,
τ is the collision relaxation time, and f eq is the Maxwellian
equilibrium distribution function:

f eq = n

(2πRT )D/2 exp

(
− c2

2RT

)
, (2)

where R = kB/m is the gas constant with Boltzmann constant
kB, T is the temperature, and c = (v − u) is the peculiar veloc-
ity with macroscopic velocity u. In addition, it is well known
that the Debye length λ and the electron plasma frequency ωp

are two important plasma parameters, which are given by

λ =
(

εkBT

q2n

)1/2

, ωp =
(

nq2

εm

)1/2

.
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For simplicity, the following dimensionless variables are
used:

x̄ = x

x0
, T̄ = T

T0
, m̄ = m

m0
, n̄ = n

n0
,

ū = u

u0
, t̄ = t

t0
, f̄ = f

f0
, φ̄ = φ

φ0
, (3)

where x0, T0, m0, and n0 are reference length, temperature,
mass, and number density, which are independent parameters.
Then the reference velocity u0 = √

kBT0/m0, time t0 = x0/u0,
potential φ0 = kBT0/q, and distribution function f0 = n0/u0

D

are further obtained. For the sake of simplicity, we set di-
mensionless collision relaxation time τ̄ = Kn, where Kn is
Knudsen number which is defined as the ratio of the mean
free path and the characteristic length.

In this paper, unless stated otherwise, we chose m0 = me

and n0 = ni, where me is the electron mass. Define the dimen-
sionless Debye length λ̄ = λ/x0, and then the dimensionless
electron plasma frequency is ω̄p = ωpt0 = 1/λ̄. In the rest
of the paper, all variables are dimensionless unless stated
otherwise, but we will drop the bar over the variables for
simplicity. Then the dimensionless BGK-VP system Eq. (1)
can be written as

∂ f

∂t
+ v · ∇ f + ∇φ · ∇v f = − 1

τ
( f − f eq ),

λ2�φ = n − 1, n =
∫

f dv. (4)

For the gas kinetic method, the key is to obtain the distribution
function f . Once the distribution function f is known, the
conservative variables W can be obtained by

W = (n, nu, nEt )
T =

∫
ψ f dv, (5)

where ψ = (1, v, v2/2)T is the collision invariant and Et is the
kinetic energy. Furthermore, the temperature can be computed
from W :

T = 2

D

(
Et − 1

2
u2

)
. (6)

For Eq. (4), the key is to solve the BGK-Vlasov equation
∂ f

∂t
+ v · ∇ f + ∇φ · ∇v f = − 1

τ
( f − f eq ), (7)

which is usually solved by time splitting method [18]. The
traditional time splitting form of Eq. (7) can be written as

∂ f

∂t
+ v · ∇ f =0,

∂ f

∂t
+ ∇φ · ∇v f =0,

∂ f

∂t
= − 1

τ
( f − f eq ).

(8)

Clearly, Eq. (8) shows the particle transport, particle accel-
eration, and particle collision process, respectively. Note that
the first two equations are linear hyperbolic equations, which
can be solved by the conservative scheme based on charac-
teristic line and the last equation has an analytical solution.
Thus, Eq. (8) is not difficult to solve and is widely used in both
particle-based method [16,17] and DKM [52]. However, the
splitting treatment of particle transport and collision process

requires spatial and temporal sizes are less than particle mean
free path and collision time, which will involve expensive cost
in high collision regime. An alternative time splitting form of
Eq. (7) can be written as

∂ f

∂t
+ v · ∇ f = − 1

τ
( f − f eq ),

∂ f

∂t
+ ∇φ · ∇v f =0.

(9)

The main feature of Eq. (9) is the unsplitting treatment
of particle transport and particle collision, which has been
used in several DKM [44,46,48]. Note that slightly differ-
ent from Ref. [49], to have a better comparative study, the
particle transport and particle acceleration are uncoupled in
this study. In the following section, we will present a general
particle-based method with collision term based on Eq. (8)
and develop a novel positivity preserving DKM based on
Eq. (9).

III. NUMERICAL METHODS

In this section, we will present two different kinetic meth-
ods for electrostatic plasma: a novel DKM, i.e., the discrete
unified gas kinetic scheme (DUGKS), and a general PIC
method. The evolution procedure of DUGKS and the general
PIC method will be presented in Sec. III A and Sec. III B,
respectively.

A. Discrete unified gas kinetic scheme

The proposed DUGKS for electrostatic plasma is a posi-
tivity preserving (PP) scheme, where the particle transport is
coupled with particle collision, and a fourth-order MUSCL
scheme with PP limiter is used in interface reconstruction.
The major steps of the method include the update rule of
distribution function, flux evaluation in phase space, and the
interface reconstruction with a PP limiter, which will be
presented in detail as follows.

1. Update rule

The starting point of proposed DUGKS is the Eq. (9). In the
practical implementation, the velocity v is discretized into a
finite set of discrete velocities {vi}, where i = (i1, i2, . . . , iD).
Then Eq. (9) becomes

∂ fi

∂t
+ vi · ∇ fi = 
 i,

∂ fi

∂t
+ ∇φ · ∇v fi = 0,

(10)

where 
 i = −( fi − f eq
i )/τ is the collision term.

The DUGKS uses the idea of the finite volume method.
The physical space and velocity space are divided into the
control volume Vj and Ui, respectively. As a result, integrating
Eq. (10) on physical space volume |Vj | centered at physical
cell j and the velocity space volume |Ui| centered at velocity
cell i, from time tk to tk+1 = tk + �t , one can obtain

f b
j,i = f k

j,i − �t

|Vj |Fk+1/2
j,i +�t

2

[

b

j,i + 
k
j,i

]
, (11)

f k+1
j,i = f b

j,i − �t

|Ui|Gb+1/2
j,i , (12)
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Note that f b
j,i at time tb is the intermedium variable between

f k
j,i and f k+1

j,i . Besides, Fk+1/2
j,i and Gb+1/2

j,i are the physical
and velocity microflux, respectively. The physical microflux
Fk+1/2

j,i is given by

Fk+1/2
j,i =

∑
p

vi · Ap
j f

(
xp

j , vi, tk+1/2
)
, (13)

where xp
j is center of pth face of physical cell j and Ap

j is the
outward normal vector of physical face with area |Ap

j |. The

velocity microflux Gb+1/2
j,i is given by

Gb+1/2
j,i =

∑
q

∇φb
j · Bq

i f
(
x j, v

q
i , tb+1/2

)
, (14)

where v
q
i is center of qth face of velocity cell i and Bq

i is the
outward normal vector of velocity face with area |Bq

i |.
It should be noted that the update rule given by Eq. (11)

is implicit, since unknown conservative variables are required
for the evaluation of f eq,b

j,i and τ b
j in collision term 
 b

j,i. In
order to remove this implicit requirement, similarly to the con-
served DUGKS [48], the conservative variables are updated
as follows. Taking conservation moment ψ on Eq. (11), and
given the conservative properties of the collision operators,
the conservative variables W b

j can then be obtained by

W b
j = W k

j − �t

|Vj |
∫

ψFk+1/2
j dv, (15)

where Fk+1/2
j is the collection of Fk+1/2

j,i at discrete velocity
space vi.

Then Eq. (11) can be written as the following explicit
scheme:

f b
j,i =

(
1+ �t

2τ b
j

)−1[
f n

j,i + �t

2

(
f eq,b

j,i

τ b
j

+ f eq,k
j,i − f k

j,i

τ k
j

)

− �t

|Vj |Fk+1/2
j,i

]
. (16)

Here Eqs. (15) and (16) are the update rule of macroscopic
conservative variables and microscopic distribution function
respectively for Eq. (11). Once f b

j,i is obtained, then one can
get potential φb

j from the Poisson equation

λ2�φb
j = nb

j − 1, (17)

where nb
j = ∫

f b
j,i dv. Then f k+1

j,i can be obtained from

Eq. (12). To now, only physical microflux Fk+1/2
j and velocity

microflux Gb+1/2
j remain to be evaluated.

2. Flux evaluation

In order to evaluate physical microflux Fk+1/2
j , the first

equation in Eq. (10) is integrated within a half time step
h = �t/2 along the characteristic line which ends at the
physical interface center x f (x f = xp

j ),

f (x f , vi, tk + h) − f (x∗
f , vi, tk )

= h

2
[
(x f , vi, tk + h) + 
(x∗

f , vi, tk )], (18)

where x∗
f = x f − vih is the particle trajectories in physical

space.
Similarly to the original DUGKS [46], in order to remove

the implicit collision term 
(x f , vi, tk + h), a new distribution
function f̄ is introduced and defined as

f̄ = f − h

2

 = 2τ + h

2τ
f − h

2τ
f eq. (19)

From Eqs. (18) and (19), one can obtain

f̄ (x f , vi, tk + h) = f̄ +(x f − hvi, vi, tk ), (20)

where the distribution function f̄ + is defined as

f̄ + = f̄ + h

2

 = 2τ − h

2τ
f + h

2τ
f eq. (21)

Now the focus is how to determine f̄ +(x f − hvi, vi, tk ).
With Taylor expansion around the physical interface, one can
obtain

f̄ +(x f − hvi, vi, tk ) = f̄ +(x f , vi, tk ) − hvi · σ f ,i, (22)

where σ f ,i = ∇ f̄ +(x f , vi, tk ) is the physical interface gradi-
ent. The calculation of f̄ +(x f , vi, tk ) and σ f ,i will be presented
in the next section.

Given the conservative properties of the collision term, tak-
ing the conservation moment ψ on Eq. (19), the conservative
variables W (x f , vi, tk + h) can be computed from f̄ :

n =
∑

wi f̄i, nu =
∑

wivi f̄i, nEt = 1

2

∑
wivi

2 f̄i,

(23)

where wi is the weights coefficient at discrete velocity point
vi. Once the conservative variables W (x f , vi, tk + h) are ob-
tained, the equilibrium distribution function can be obtained
from Eq. (2). Then according to Eq. (19), the original distri-
bution function f (x f , vi, tk + h) can be obtained as well:

f = 2τ

2τ + h
f̄ + h

2τ + h
f eq. (24)

As a result, physical microflux Fk+1/2
j can be computed from

Eq. (13).
Similarly, the velocity interface distribution function

f (x j, v f , tb+1/2) can be obtained from

f (x j, v f , tb+1/2) = f (x j, v f , tb) − h∇φb
j · ϕ j, f , (25)

where v f = v
q
i is the velocity interface center and ϕ j, f =

∇v f (x j, v f , tb) is the velocity interface gradient. Then the
velocity microflux Gb+1/2

j can be computed from Eq. (14).
Thanks to semi-implicit coupling of particle transport and

collision in distribution function evolution Eq. (16), the time
step in DUGKS is not restricted by particle collision time,
which will be verified by numerical test in Sec. IV C. So
far, only physical and velocity interface distribution and their
gradient remain to be evaluated.

3. Interface reconstruction and PP limiter

In this section, the interface reconstruction with a PP
limiter is presented to obtain phase interface distribution. Here
we focus on the discretization of one-dimensional transport
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equation, since the extension to higher dimensions is straight-
forward. Take Eq. (25) for instance, the interface distribution
f (x j, v f , tb) can be obtained by reconstruction from cell
distribution f (x j, vi, tb) with a robust fourth-order MUSCL
scheme [36]. The interface distribution function at the velocity
interface v f , at time tb reads

f (x j, v f , tb) =
{

fi,r , ∇φb
j > 0,

fi+1,l , ∇φb
j < 0,

(26)

It should be noted that the reconstructed states: fi,l = fi +
(� f )−i and fi,r = fi + (� f )+i , where fi is the abbreviation
for f (x j, vi, tb) and (� f )±i are the reconstruction increments.
Following [36], this fourth-order MUSCL reconstruction
reads

(� f )−i = − 1
6 (2�∗ f̃i−1/2 + �∗ f̃i+1/2),

(27)
(� f )+i = 1

6 (�∗ f̃i−1/2 + 2�∗ f̃i+1/2),

where

�∗ f̃i−1/2 = minmod(�∗ fi−1/2, 4�∗ fi+1/2),

�∗ f̃i+1/2 = minmod(�∗ fi+1/2, 4�∗ fi−1/2), (28)

and

�∗ fi+1/2 = � fi+1/2 − 1
6�3 f̂i+1/2,

�3 f̂i+1/2 = � f̂i−1/2 − 2� f̂i+1/2 + � f̂i+3/2,

� f̂i−1/2 = minmod(� fi−1/2, 2� fi+1/2,� fi+3/2),

� f̂i+1/2 = minmod(� fi+1/2, 2� fi+3/2,� fi−1/2),

� f̂i+3/2 = minmod(� fi+3/2, 2� fi−1/2,� fi+1/2), (29)

with � fi+1/2 = fi+1 − fi, and the minmod limiter is given by
minmod(y) = max[0, min(y)] + min[0, max(y)].

In order to preserve the positivity of the distribution func-
tion, the PP limiter is imposed [53]

(� f )lim,±
i = θ max((� f )±i ,− fi ), (30)

where θ = {1, flim � 0 ,

min (1,
fi

flim
), flim> 0 , with flim = max[(� f )−i ,

− fi] + max[(� f )+i ,− fi].
Then the finial interface distribution function can be ob-

tained by

fi,r = fi + (� f )lim,+
i , fi,l = fi + (� f )lim,−

i . (31)

And velocity interface gradient ϕ j, f can be further obtained
by

ϕ j, f = [ f (x j, v f ) − f (x j, vi )]/(v f − vi ). (32)

The physical interface distribution f̄ +(x f , vi, tk ) and its
gradient σ f ,i can be calculated in a similar way. Thanks
to the using of this compact MUSCL with PP limiter, cur-
rent DUGKS preserves the favorable conservative property
and positivity of distribution function in lengthy simulations,
while the direct extension of the previous DUGKS [47,48]
using the second-order interpolation scheme with van Leer
slope limiter only well preserve the conservation of total
energy within 100 plasma periods. This statement will be
verified by the numerical test in Sec. IV A.

It is worth noting that, combined with above MUSCL
method, similarly to original DUGKS, the Eulerian scheme
in current DUGKS is used for distribution function evolution
[the first equation in Eq. (10)] in physical space to easily han-
dle general boundary conditions. However, the same treatment
used for the evolution [the second equation in Eq. (10)] in
velocity space would encounter expensive computation cost
when the flow involving large electric forces, since the time
step should meet the CFL condition, i.e., �t < �v/|∇φ|max,
where �v and |∇φ|max are velocity grid spacing and maxi-
mum electric force. Fortunately, different from the physical
space, the homogeneous Dirichlet boundary condition can be
generally used in the velocity space if appropriate discrete
velocities are chosen. In such case, for the evolution in ve-
locity space, the semi-Lagrangian scheme will be a better
choice, which can be processed in two steps. First, we di-
rectly shift the distribution function in velocity space between
cell centers following the characteristic line f (x j, vi, t∗

k+1) =
f (x j, vi − ai�t, tb), where ai = int[∇φ�t

�v ]�v
�t . Second, calcu-

late the distribution at time tk+1 driven by the remain force
ar using above MUSCL reconstruction, i.e., f (x j, vi, tk+1) =
f (x j, vi − ar�t, t∗

k+1), where ar = ∇φ − ai. The advantage
of the semi-Lagrangian scheme presented here will be verified
by the numerical test in Sec. IV D.

Thanks to semi-implicit coupling of particle transport
and collision as well as the using of the semi-Lagrangian
scheme in velocity space, the time step of current DUGKS
is only restricted by CFL condition in physical space, i.e.,
�t = C�xmin/vmax, where C is the CFL number, �xmin

and vmax are minimum grid spacing and maximum discrete
velocity.

4. The iterative algorithm

To provide a more clear understanding of the proposed
DUGKS and its implementation, in this section we present the
iterative algorithm in details. For the sake of simplicity, some
abbreviation for the distribution function f will be used in
the following. For instance, f̄ k+1/2

x f ,i
stands for the distribution

function f̄ in physical interface x f and velocity cell i at t =
tk+1/2, which is equivalent to f̄ (x f , vi, tk+1/2). In summary,
with the initialized f 0

j,i in each cell j, the evolution procedure
of present DUGKS from time tk to tk+1 can be described as
follows:

(1) Reconstruct f̄ k+1/2
x f ,i

at the physical interface x f .

(a) calculate cell distribution function f̄ +,k
j,i according

to Eq. (21);
(b) reconstruct physical interface distribution function

f̄ +,k
x f ,i

from f̄ +,k
j,i according to Sec. III A 3;

(c) calculate physical interface distribution function
f̄ k+1/2
x f ,i

according to Eqs. (20) and (22);

(2) Calculate physical microflux Fk+1/2
j,i at time tk+1/2.

(a) compute interface conversional variables W k+1/2
x f

from Eq. (23);
(b) calculate original physical interface distribution

function f k+1/2
x f ,i

according to Eq. (24);

(c) obtain the physical microflux Fk+1/2
j,i from Eq. (13).
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(3) Update conservative variables W b
j and cell distribution

f b
j,i according to Eqs. (15) and (16).

(4) Calculate electric potential φb
j by solving Poisson

equation Eq. (17).
(5) Compute velocity microflux Gb+1/2

j,i at time tb+1/2.
(a) reconstruct velocity interface distribution function

f b
j,v f

from f b
j,i according to Sec. III A 3;

(b) calculate velocity interface distribution function
f b+1/2

j,v f
from Eq. (25);

(c) obtain the velocity microflux Gb+1/2
j,i from Eq. (14).

(6) Update cell distribution function f k+1
j,i according to

Eq. (12).
If particle collision is not considered, then the computation

of physical microflux in steps (1) and (2) can be much
simplified, which is similar to that of velocity microflux in
step (5).

B. Particle-in-cell method

The PIC presented in this section is based on Refs. [6,54].
First, the update rule of classical collisionless PIC method is
reviewed. Then the particle loading and particle collisions are
addressed, since they are the main sources of numerical noise.
Finally, the iterative algorithm of collisional PIC method is
presented.

1. Update rule

In the PIC method, the distribution function f (x, v, t ) is
discretized into a sum of delta measures in the phase space,
which can be expressed as

f (x, v, t ) =
∑

p

wpδ(x − xp)δ(v − vp), (33)

where wp is the particle weight. As a result, one should
firstly load the particles located at (xp, vp) to approximate the
prescribed distribution f (x, v, t ), which will be introduced in
next section.

For the classical PIC method without collision term, i.e.
τ → ∞, the integration of Eq. (8) in the Lagrangian frame-
work using “leap-frog” scheme is done as follows [6]:

xk+1
p = xk

p + �tvk+1/2
p . (34)

vk+3/2
p = vk+1/2

p + �tEk+1
p . (35)

Then the conservative variables W k+1
j in each physical cell j

can be computed with

W k+1
j =

∑
p

ψwpS
(
x j − xk+1

p

)
, (36)

where S(x j − xp) is the shape function. In this paper, the first-
order spline function is used, which reads

S(x j − xp) =
{

1 − (x j − xp)/�x j , |x j − xp| < �x j,

0 , otherwise.

Then the electrical potential can be solved from the Poisson
equation

λ2�φk+1
j = nk+1

j − 1 . (37)

And the electrical field Ek+1
j in each physical cell can be

computed with Ek+1
j = ∇φk+1

j . If E j is known, then the field
acting on each particle can be computed as

Ek+1
p =

∑
j

Ek+1
j S

(
x j − xk+1

p

)
. (38)

Once the initial particles (xk
p, v

k
p) at time t = tk is prescribed,

the process [from Eq. (34) to Eq. (38)] is ceaselessly repeated
until simulation time is up or the simulation particles keep
nearly constant.

2. Particle loading and collisions

It is well known that the PIC method suffers from numer-
ical noise, which mainly results from the randomization pro-
cess in particle loading and particle collision. Generally, par-
ticle loading is done through random numbers, namely “noise
start” (NS) in this paper, where the macroparticle velocities
are randomized about their mean beamlet velocity [6]. The
general alternative is to apply the acceptance-rejection method
[55], which can be used to load any prescribed distribution
function fv . But this method involves certain numerical noise
which may overwhelm the initial perturbation to be studied,
which will be verified by the numerical test in Sec. IV B.

An alternative loading way is the “quiet start” (QS)
method, where the prescribed distribution fv is approxi-
mated by initially prescribing several monoenergetic beams
of macroparticles without the using of random numbers [6].
In this paper, many equally weighted beams unevenly spaced
in v are used to approximate fv , which can be explained
as follows. First, function fv should be normalized to meet∫ ∞
−∞ fvdv = 1. Then the integration of fv in the velocity space

is evenly divided into Npc sections, where Npc is the total
particle number in each cell. Finally, solve above integration
function and prescribe each particle velocity v. For instance,
when prescribing the slowest particle v1, one should solve
the equation

∫ vx

vmin
fvdv = 1/Npc. Then the slowest particle is

approximated by v1 = (vx + vmin)/2. In a similar way, one
can prescribe each particle. Encouragingly, QS significantly
reduces the numerical noise with a modern particle numbers
but involves multiple-beam-instability, which will be pre-
sented by the numerical test in Sec. IV B.

When the particle collision is considered, the integral
solution of the third equation in Eq. (8) can be expressed as

f k+1 = f k exp(−�t/τ ) + f eq,k[1 − exp(−�t/τ )]. (39)

Equation (39) means that the probability that any given
molecule in the cell undergoes collision is Pj = 1 −
exp(−�t/τ ). Note that the collision only change particle
velocity vp, and this procedure is shown as follows.

Calculate collision probability Pj in each cell and assign a
random number R f to represent each particle. If this random
R f is less than the probability Pj , then this particle is randomly
assigned a new velocity drawn from the Maxwellian distribu-
tion Eq. (2). After all particles in the cell have been processed
in this way, one can obtain the provisional postcollision ve-
locities v∗

p, average velocity u∗
j , and average temperature Tj

∗
of the particles. To enforce conservation of momentum and
energy at the cell level, the provisional postcollision velocities
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should be adjusted, and the final postcollision velocity vp of
each particle is determined by [54]

vp = u j + (v∗
p − u∗

j )
√

Tj/Tj
∗, (40)

where u j and Tj are the average velocity and temperature
of precollision particles. It should be noted that, due to the
splitting treatment of particle collision and particle transport,
the numerical time step in current PIC method should be less
than the particle collision time, which will be presented by the
numerical test in Sec. IV C.

3. The iterative algorithm

To have a better understanding of the collisional PIC, we
present this iterative algorithm in this section. With the initial
loading of the particle velocity v0

p and position x0
p in each cell

j, the evolution procedure of current collisional PIC from time
tk to tk+1 can be briefly shown as follows:

(1) Update particle position xk+1
p according to Eq. (34).

(2) Compute conservative variables W k+1
j in each cell j

from Eq. (36).
(3) Solve Poisson equation Eq. (37), and then obtain the

electrical field Ek+1
j in each cell j.

(4) Update particle velocity vk+3/2
p according to Eq. (35),

where Ek+1
p is obtained from Eq. (38).

(5) Handle the particle collision and update the final parti-
cle velocity vk+3/2

p according to Eq. (40).
It should be noted that the collision process in current PIC

is much efficient than that in the traditional direct simula-
tion Monte Carlo (DSMC) method [55], but it is still time-
consuming. Thus, it is better to skip step (5) if the particle
collision is not taken into consideration.

IV. NUMERICAL EXPERIMENTS

In this section, four numerical experiments, e.g., plasma
sheath, linear Landau damping, collisional nonlinear Landau
damping, and plasma ion acceleration, are implemented to
validate present DUGKS. We also compare the performance
of current DUGKS with the PIC method. For all simulations,
we consider homogeneous Dirichlet boundary conditions for
the distribution function of DUGKS in velocity space and
Poisson equation which is solved by the finite-element method
[56]. For a fair comparison, the same physical grid Nx and nu-
merical time step �t = C�xmin/vmax are used. The velocity
space is discretized by discrete velocity points Nv with equal
weight wi = �v in DUGKS, while discretized by particle
numbers in each cell Npc with equal weight wp = 1/Npc in
PIC unless otherwise stated.

A. Plasma sheath

Now the present DUGKS is applied to simulate plasma
sheath for two main purposes. One is to investigate whether
it can predict reasonable results for this nonequilibrium flow
with nonperiodic boundary conditions, and the other is to
compare its performance with direct extension of previous
DUGKS (DE-DUGKS) [47,48] in lengthy simulations. To
accelerate the convergence, we only consider the electron

dynamic in the collisionless regime. Here the PIC results are
chosen as benchmark solutions.

In our simulation, dimensional domain length L, electron
number density, and temperature are 0.1 m, 1013 m−3, and
11 604 K, and their reference values are set to be 2.35 ×
10−3 m (Debye length), 1013 m−3, and 11 604 K, respectively.
The initial condition is a standard Maxwell distribution. The
velocity space is set to be [−vmax, vmax] with vmax = 8, which
is discretized by Nv = 256 and Npc = 500. The space grid
Nx = 256 and CFL number C = 0.6. Besides, the zero-inflow
boundary conditions are imposed on physical space [40,57].
Here we run this problem up to t = 1000, i.e., 1000 plasma
periods.

Figure 1 shows phase-space plot of distribution predicted
by present DUGKS and PIC. Note that the DE-DUGKS
predicates similar results with the present DUGKS before t =
100, and thus only the present DUGKS results are presented
here. As shown in the figure, two methods present identical
results. At the beginning (t = 5), the electrons fast escape
and leave a net positive charge near the wall. This gives
rise to a potential barrier, i.e., plasma sheath, at the walls,
which prevents remaining electrons to escape unless they have
a large-enough velocity to overcome this sheath potential.
Eventually electrons are confined to interior of domain, and
the system reaches a dynamic steady state (from t = 30 to
t = 45). In Fig. 2, we present plasma density n and electric
potential φ against space x at t = 140. Clearly, the current
DUGKS provides consistent results with PIC, while DE-
DUGKS predicts a higher potential φ.

The disparities between current DUGKS and DE-DUGKS
can be more clearly seen in lengthy simulations. Here the
system L1 norm L1 = ∫∫

f dxdv and total energy ET =
EP + EK , where EP = 1

2

∫
E2dx is potential energy and EK =

1
2

∫∫
f v2dxdv is kinetic energy, are used to diagnose the

kinetic solver. As shown in Fig. 3, DE-DUGKS well preserves
the EK , but it could not preserve the L1 norm [see Fig. 3(a)]
and ET [see Fig. 3(b)] after t = 100. At t = 1000, the system
L1 norm (mass) predicted by DE-DUGKS reduces about 2%
due to the numerical dissipation and nonpositive distribution
function. From the Poisson equation, one can obtain that
EP would increase with the decrease of mass, which further
result in the increase of the ET (about 9%). Encouragingly,
thanks to the using of the MUSCL scheme with PP limiter in
Sec. III A 3, present DUGKS, similarly to PIC, predicts fairly
good conservation both on L1 norm and energy. Besides, we
also present time evolution of electric potential at the center
of domain in Fig. 3(c) and its Fourier spectrum in Fig. 3(d).
The plasma oscillation is well captured in all methods, and
numerical oscillation frequency is consistent with theoretical
value ωp = 1. However, the electric potential predicted by
DE-DUGKS gradually increases, which more clearly reflects
its bad conservative property in lengthy simulations.

The above arguments indicate that in comparison with the
DE-DUGKS, present DUGKS has a better performance on
the conservation of system mass and total energy in long-time
simulations. For this reason, in the following paper, we only
present the results predicted by present DUGKS. To further
verify the capability of current DUGKS, several numerical
experiments and a comparative study with PIC are presented
in following sections.
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FIG. 1. Plasma sheath, phase-space plot of distribution function f at different time predicted by DUGKS and PIC: Nx = 256, Nv = 256,
and Npc = 500.
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FIG. 2. Plasma sheath, macroscopic variables profile at t = 140: Nx = 256, Nv = 256, and Npc = 500. The plasma density n (a) and electric
potential φ (b) against the physical space x.
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FIG. 3. Plasma sheath: Nx = 256, Nv = 256, and Npc = 500. Time evolution of the L1 norm (a) and energy (b), including total energy (ET ),
potential energy (EP), and kinetic energy (EK ). Time evolution of electric potential φ at x = L/2 (c) and its Fourier spectrum (d).

B. Linear Landau damping

Now the classical linear Landau damping is presented
to investigate the performance of DUGKS and PIC for
plasma flow with a weak electrostatic perturbation. The initial
condition is

f 0(x, v) = 1√
2π

[1 + α cos (kx)] exp(−v2/2), (41)

with α = 0.01 and k = 0.5. In our simulation, the phase-
space domain is set to be [0, L] × [−vmax, vmax], where L =
2π/k and vmax = 5. The physical grid Nx = 128 and the CFL
number C = 0.9. The time evolution of electrostatic energy
|E |L2 is used in diagnosing our proposed scheme, given by
|E |L2 = λ2

2

∫
E2dx, where normalized Debye length λ = 1.

Besides, the periodic boundary conditions are used for the
physical space. Here we run this problem up to t = 35.

First, the importance of initial particle loading in PIC is
addressed. Figure 4 shows the comparison between NS and
QS. It can be seen that the distribution function predicted by
both QS and NS agree well with the theoretical distribution.
However, for NS, there are still some fluctuations near v =
0 due to the random noise [see Fig. 4(a)]. Although these
deviations are slight, they strongly affect the predicted results

in a long-time simulation. With NS, Landau damping only can
well be observed before t = 18 [see Fig. 4(b)]. Encouragingly,
with QS, one can observe the electrostatic energy decay over
a longer time, in which the damping rate is consistent with
theoretical one γ = −0.15 [1,34]. This comparison denotes
that QS is desired if initial electrostatic perturbation is weak.
Therefore, in the following part, the QS is used to load
particles unless otherwise stated.

Then we present the performance of DUGKS and PIC
with against different discrete velocity points. Figure 5 shows
the time evolution of electrostatic energy |E |L2 predicted by
DUGKS and PIC. It can be seen that the energy variation
in DUGKS can be well captured even with a low-velocity
resolution, i.e., Nv = 64. In contrast, the energy variation in
the PIC highly depends on the number of particles in each
cell, ranging from 1000 to 128 000.

To further demonstrate their different performance, in
Fig. 6 we present their computational error and efficacy. The
error is calculated as L1 norm of the difference between
numerical electric field solution and reference one (PIC result
with Npc = 256 000). The efficacy is defined as inverse of the
product of error and CPU time, which is a useful indicator of
cost-effectiveness of the algorithm [12]. Clearly, an algorithm
performs well if the efficacy increases notably with increasing
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FIG. 4. Linear Landau damping, the comparisons of noise start (NS) and quiet start (QS): Nx = 128 Npc = 128 000. The initial distribution
function f against velocity space v at x = L/2 (a). Time evolution of the electrostatic energy; the black dot dash line indicates theoretical
damping rate γ = −0.15 (b).

time. As shown in Fig. 6(a), here DUGKS is more accuracy
than PIC. Their different performances can be more clearly
reflected in the efficacy. From Fig. 6(b), it can be seen that
the PIC efficacy scales as the inverse of square root of CPU
time (from 6 s to 576 s), while the DUGKS efficacy increase
exponentially with the increase of CPU time (from 2.1 s to
7.4 s). Hence, in the view of pure cost-effectiveness, it is not
advantageous to increase particles numbers in PIC to reduce
the error. For example, to reach an error of 10−8, the DUGKS
takes about 2.4 s while PIC takes about 287 s, i.e., more than
100 times longer.

It is worth noting that PIC with QS can significantly reduce
numerical noise, but it surfers from artificial multibeam in-
stability [6,29]. Figure 7 shows evolution of energy predicted
by PIC and DUGKS against different initial perturbation α.
Clearly, numerical instability arises in PIC with the decrease
of initial perturbation amplitude. To see long-time Landau
damping, the required particle number should increase as
α decreases. Encouragingly, DUGKS does not involve this

instability and can exhibit long-time Landau damping for a
wide range of perturbation amplitude.

The above arguments indicate that the PIC suffers from
expensive cost due to intrinsic statistical noise, while the
noise-free DUGKS can achieve more accuracy solutions at
a fraction of computational costs with respect to PIC. As a
result, the DUGKS is superior to PIC for the study of warm
plasma dynamics with a small perturbation amplitude.

C. Collisional nonlinear Landau damping

Now nonlinear Landau damping is presented to investigate
the performance of DUGKS and PIC for plasma flow in
different collisional regimes. The initial condition is same as
Eq. (41) but with α = 0.5 and k = 0.5. In our simulation,
phase-space domain is set to be [0, L] × [−vmax, vmax], where
L = 2π/k and vmax = 8. The space grid Nx = 128 and CFL
number C = 0.6. Besides, the Debye length λ and boundary
conditions are same as those of linear Landau damping in
Sec. IV B. Here three flow regimes with Kn = ∞, 1, and 10−3,

FIG. 5. Linear Landau damping; the comparisons of DUGKS and PIC with Nx = 128 against different discrete velocity points. Time
evolution of electrostatic energy predicted by DUGKS (a) and PIC (b). The black dot dash line indicates theoretical Landau damping rate
γ = −0.15.
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FIG. 6. Linear Landau damping; the comparisons of DUGKS and PIC with Nx = 128 against different discrete velocity points. The error
against the discrete velocity points (a). The efficacy against the CPU time costs (in second) (b). The black line indicates the scaling time−1/2.

which correspond to typical collisionless, mild collision, and
strong collision regimes, are investigated. Note that in our
simulation infinite value ∞ is replaced by a big one 1015. For
all simulations, we set Nv and Npc to be 256 and 5000, except
Npc = 1000 for Kn = 10−3.

Figure 8 shows the time evolution of electrostatic energy
|E |L2 with different Kn. As shown in Fig. 8(a), DUGKS and
PIC provide identical results in the collisionless regime. The
decay rate (γ1 = −0.287) and growth rate (γ2 = 0.078) of
electric energy predicted by two methods are consistent with
results in Refs. [18,21,46]. In the presence of mild collision
[see Fig. 8(b)], DUGKS and PIC provide similar results.
However, in the strong collision case Fig. 8(c), obvious de-
viations between two methods can be observed. Similarly
to the previous study [58], the energy predicted by DUGKS
oscillates around a constant value. But the energy predicted
by PIC is damping, because the valid physical process, which
is consistent with splitting treatment of particle transport and
collision, is that physical grid size and time step used in PIC

should be less than particle mean free path and collision time.
As expected, in Fig. 8(d) the energy converges to the expected
one when physical grid Nx increases to 1024, where �t =
9.2 × 10−4 < Kn. Thanks to the coupling of particle transport
and collision, the energy predicted by DUGKS with Nx = 128
can compare favorably with that of PIC with Nx = 1024.

To further verify the capability of present DUGKS, in
Fig. 9 we present phase-space plot of distribution f . It can
be clear seen that two methods present almost same results.
At the beginning, the distribution f evolves in a similar way
for the three cases. However, with the increase of simulation
time, obvious differences can be observed. In the collisionless
case [Fig. 9(a)], the filamentation process is clearly captured,
which has been investigated by various methods [22,46]. In
presence of mild collisions [see Fig. 9(b)], the distribution
f becomes smoother. However, in the strong collision case
Fig. 9(c), some fluctuations occur due to strong oscillating
electric field [see Fig. 8(c)]. It is also worth noting that, al-
though the numerical noise in PIC can be greatly reduced with

FIG. 7. Linear Landau damping: Nx = 128, Nv = 256, and Npc = 128 000. Time evolution of electrostatic energy with different perturba-
tion α predicted by PIC (a) and DUGKS (b).
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FIG. 8. Nonlinear Landau damping. The time evolution of electrostatic energy predicted by DUGKS and PIC for Kn = ∞ (a), Kn = 1
(b), and Kn = 10−3 (c). The time evolution of electrostatic energy predicted by PIC using different physical grids for Kn = 10−3 (d).

QS [see Fig. 9(a)], it is still a pending issue when collision
is involved [see Figs. 9(b) and 9(c)]. Encouragingly, as a
deterministic method, the DUGKS is free of numerical noise.

Finally, we make some discussions about the computa-
tional costs. Table I shows the CPU time of DUGKS and PIC.
Note that the value within brackets is the result without con-
sideration of particle collision. Clearly, the collision process is
time-consuming in both methods, especially the PIC method.
Besides, the computational costs in PIC increase with the
decrease of Kn, while the cost of DUGKS for all simulations
is nearly same. Since numerical time step in PIC is limited by
collision time, the computation cost of PIC is quite expensive

TABLE I. The total CPU time costs (in second) of DUGKS and
PIC for nonlinear Landau damping with different Kn: Nx = 128,
Nv = 256, and Npc = 5000, except Nx = 1024 and Npc = 1000 are
used in PIC for Kn = 10−3. Note that the value within brackets is the
result without collision term.

Kn ∞ 1 10−3

DUGKS 37(21) 36 36
PIC 251(78) 420 7736

in the strong collision regime. As shown in Table I, the CPU
time for Kn = 10−3 of PIC and DUGKS are 7736 s and 36 s,
i.e., more than 200 times longer.

The above arguments indicate that the time step in PIC is
limited by the particle collision time if the accuracy solution
is expected, while the proposed DUGKS removes this limita-
tion due to the semi-implicit unsplitting treatment of particle
collision and transport. As a result, the proposed DUGKS is
superior to PIC for the study of warm plasma dynamics in the
strong collision regime.

D. Plasma ion acceleration

So far, all of the presented numerical experiments are
particles-dominant plasma flow, in which the plasma dynamic
is mainly determined by its self-consistent electric field. In
this section, the field-dominant plasma is presented to inves-
tigate the performance of DUGKS and PIC for plasma flow
involving a wide range of velocities, in which a large external
electric field is imposed and the effect of self-consistent elec-
tric field can be neglected. Plasma ion acceleration is a good
example, which is widely used in ion thrust. For convenience
but without loss of generality, we focus on the ion dynamic
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FIG. 9. Nonlinear Landau damping; phase-space evolution of distribution function at Kn = ∞ (a), Kn = 1 (b), and Kn = 10−3 (c). Note
that Nx = 1024 is used in PIC for Kn = 10−3.

in the collisionless regime and simplify this problem as
follows.

Initially, there are no ions in the domain [0, L], where
L = 0.035 m. The ions enter the domain at the anode x =
0 with a biased Maxwellian distribution, which is given
by [59]

f (x = 0, vin ) = c0nβ2vin exp[−β2(vin−ud )2], vin > 0, (42)

where the inlet number density is n = 1015 m−3 and β2 =
mi/(2kBT ). The propellant is xenon ions, i.e., mi = 131

amu, with temperature T = 1500 K. Note that the coef-
ficient c0 is used to normalize number density and given
by c0 = 2/(a0 + b0), where a0 = exp(−β2u2

d ) and b0 =√
πβu0[1 + erf (βud )]. Thus the inject velocity at anode

is uin = b0/[2β2ud (a0 + b0)]. Besides, the external electric
potential is given by φ = φd [1 − (x/L)6] with anode potential
φd = 100 V. It is worth noting that the analytic solution for
ion distribution function at an arbitrary position x in the
domain can be obtained from the law of energy conservation,
i.e., v2

in = v2 + 2δφ, where δφ = φ − φd , which further can
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FIG. 10. Plasma ion acceleration, the comparison of DUGKS and PIC against different drift velocity: Nx = 128, Nv = 256, and Npc = 256.
Plasma density n (a) and velocity u (b) against the physical space x.

be written as

f (x, v) = c0nβ2
√

v2 + 2δφ exp[−β2(
√

v2 + 2δφ − ud )
2
],

v >
√

−2δφ. (43)

In our simulation, the reference length, temperature, den-
sity, and mass are set to be x0 = L, T0 = T , n0 = n, and m0 =
mi, respectively. Following normalized process in Sec. II, one
can further obtain reference potential φ0 = 0.13 V and β =
1/2. As a result, here the dimensionless simulation domain
is [0, 1] and the anode potential is 773. Besides, the velocity
space is set to be [0, vmax] with vmax = 45 and is discretized by
Nv with velocity weight wi = vmax/Nv and Npc with particle
weight wp = uin�t/(�xNpc). The time step is set to be �t =
0.9�x/vmax. In this study, the inlet boundary, i.e., Eq. (42),
and zero-inflow boundary condition [40] are imposed at x = 0
and x = 1, respectively.

First, we investigate their accuracy with the same phase-
space resolution, i.e., Nx = 128, Nv = 256, and Npc = 256.
Here we run this problem up to t = 1.5. Thanks to the semi-
Lagrangian scheme in velocity space presented in Sec. III A 3,
the time step in DUGKS is not restricted by the large electric
force, i.e., �t ≈ 4�v/|∇φ|max. Figure 10 shows the ions
number density n and velocity u with different drift velocity
ud . It can be seen that both DUGKS and PIC results are
consistent with theoretical solutions, i.e., Eq. (43), which is
integrated using rectangular rule with Nv = 3000. However,
we should point out there are some deviations in temperature
results. Given the similar results, in the following we only
present the results for ud = 3, and the output time is 0.5.

Figure 11 shows the numerical ions temperature T and the
theoretical solution. One can observe that DUGKS tempera-
ture depends on the velocity points Nv , while PIC temperature
is more accuracy even with moderate particles, i.e., Npc =
128. It should be noted that there are still slight deviations
due to the numerical diffusion in physical space. Given the
sharp gradient of the velocity [see Fig. 10(b)], we further
increase physical size Nx but fix Nv = 512 and Npc = 128.
As shown in Fig. 12, the DUGKS and PIC result with Nx =
512 both agree well with theoretical solution, but a slight

deviation still exists in DUGKS due to the numerical diffusion
in velocity space. This diffusion can be more clearly reflected
in distribution function profiles. As shown in Fig. 13(a), two
methods present consistent distribution functions at x = 0
and x = 0.5. However, at x = 1 [see Fig. 13(b)], the current
DUGKS predicts flatter distribution function f , in comparison
with PIC and theoretical solution.

Finally, we compare their computational costs. Table II
shows their CPU time costs with the same parameters as
in Fig. 10. Given the using of fixed velocity points Nv ,
DUGK costs are independent of drift velocity. In contrast, PIC
costs decrease with the increase of drift velocity, due to the
reduction of total number of particles. This indicates that the
particles in PIC are self-adaptive in the whole velocity space,
which is a big advantage to simulate the flow with a wide
range of velocities. To clearly show this view, in Table III we
present the CPU time costs and L2 norm error with respect
to temperature, where the parameters are the same as in
Fig. 12. It can be seen that, in order to obtain same accuracy
temperature, i.e., the L2 is about 5 × 10−2, the DUGKS costs
are about two orders slower than PIC.

The above arguments indicate that proposed DUGKS in-
volves the numerical diffusion, and the discrete velocity points
should be fine enough to resolve the corresponding distri-
bution function. In contrast, PIC can predict more accuracy
results even with moderate particles adaptive in velocity
space. As a result, PIC is superior to DUGKS for the study
of plasma dynamics involving a wide range of velocities.

TABLE II. The total CPU time costs (in second) of DUGKS and
PIC for plasma ion acceleration with different drift velocity at t =
1.5: Nx = 128, Nv = 256, and Npc = 256.

ud 0 1 2 3

DUGKS 37 37 37 37
PIC 24 20 17 14
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TABLE III. The total CPU time costs (in second) and L2 norm
error with respect to temperature of DUGKS and PIC for plasma ion
acceleration with different discrete physical grids at t = 0.5.

DUGKS, Nv = 512 PIC, Npc = 128

Nx Time L2 Time L2

128 26 6.12 × 10−1 3 4.52 × 10−2

256 107 1.91 × 10−1 8 1.41 × 10−2

512 445 5.23 × 10−2 31 6.81 × 10−3

V. CONCLUSIONS

In this paper, we present a stable, efficient and conserva-
tive DUGKS for electrostatic plasma with general boundary
conditions. The current DUGKS not only economically and
accurately provides a satisfactory solution for all Knudsen
number regimes but also preserves the favorable conserva-
tive property and positivity in lengthy simulations. Several
numerical experiments as well as the general PIC results are
presented to validate the current DUGKS.

The current DUGKS is free of numerical noise, which can
achieve more accuracy solutions at a fraction of computational
costs with respect to PIC for the simulation of flows with
small perturbation amplitude, e.g., the linear Landau damp-
ing. Besides, the semi-implicit coupling treatment of particle
collision and transport enables the present DUGKS to be an
efficient scheme in strong collision regimes. The numerical
results suggest that the current DUGKS is superior to PIC
for the study of warm plasma dynamics involving a small
perturbation amplitude and strong particle collision. For these

reasons, we expect that the proposed DUGKS would be a
promising tool for collisonal electrostatic plasma waves.

The PIC is more desired for the study of plasma dynamics
involving a wide range of velocities, e.g., plasma ion ac-
celeration, since the particles are self-adaptive in the whole
velocity space. In contrast, the discrete velocity points in
DUGKS should be fine enough to resolve the corresponding
distribution function which requires expensive computational
cost. This issue will be more serious in high-dimensional
simulations. Adaptive grid method and other advance tech-
nologies should be considered.

Clearly, either DUGKS or PIC has its pros and cons. One
may want to use one or another method depending on the
specific problem. We hope that the information given in this
paper will help the researchers to make this choice. Finally,
it should be noted that one often quoted that PIC is superior
to the direct kinetic method in the numerical efficiency is
mainly because the large noise level of PIC is accepted.
For example, the noise in PIC, usually simulated with 100
macroparticles in per cell, exceeds the thermal noise level in
typical space plasmas by several orders of magnitude. With
the development of modern parallel computer hardware and
the implementation of adaptive grid method, the efficiency of
direct kinetic method will be much improved. These improve-
ments will be considered in our future work.
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