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Solving fermion problems without solving the sign problem: Symmetry-breaking wave functions
from similarity-transformed propagators for solving two-dimensional quantum dots
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It is well known that the use of the primitive second-order propagator in path-integral Monte Carlo calculations
of many-fermion systems leads to the sign problem. This work will show that by using the similarity-transformed
Fokker-Planck propagator, it is possible to solve for the ground state of a large quantum dot, with up to
100 polarized electrons, without solving the sign problem. These similarity-transformed propagators naturally
produce rotational symmetry-breaking ground-state wave functions previously used in the study of quantum dots
and quantum Hall effects. However, instead of localizing the electrons at positions that minimize the potential
energy, this derivation shows that they should be located at positions that maximize the bosonic ground-state
wave function. Further improvements in the energy can be obtained by using these as initial wave functions in a
ground-state path-integral Monte Carlo calculation with second- and fourth-order propagators.
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I. INTRODUCTION

Two-dimensional, circular parabolically confined quantum
dots are not only physical systems of great experimental
interests [1] but are also mathematical models par excellence
for the numerical study of the many-fermion problem. In
contrast to real atoms, where the hydrogen atom’s partition
function is divergent [2], these “Hooke’s atoms” [3] only
have bound states, with convergent partition functions. This
lack of additional complications allows us to focus attention
solely on the effect of interaction and Fermi statistics. In this
work we compute the ground-state energy of up to N = 100
spin-polarized electrons, the largest many-fermion quantum
dot by the Monte Carlo method to date.

Quantum dots have been extensively studied by traditional
methods of quantum many-body theory, such as Hartree-Fock
(HF) [4], density functional theory (DFT) [5,6], configuration
interaction (CI) [7], coupled-cluster (CC) [8,9], variational
Monte Carlo (VMC) [10,11], diffusion Monte Carlo (DMC)
[9,12,13], and path-integral Monte Carlo (PIMC) [14–19],
with varying degrees of accuracy. However, with increasing
number of electrons (say N > 10), basis-function-based meth-
ods, such as CI and CC, simply cannot keep up with the
exponential growth of needed basis functions. For N > 20,
even VMC and DMC have difficulties in constructing a good
trial wave function involving many excited states. In principle,
since PIMC does not require an initial trial wave function,
it can be used to treat large quantum dots. However, PIMC
can only extract the ground state at large imaginary time,
and if many short-time antisymmetric propagators are used,
then the resulting sign-problem will overwhelm the ground-
state signal. One can side-step the sign problem in DMC
and PIMC by invoking the fixed-node or the restricted-path
approximation [19,20]. These approximations have worked
surprising well and currently the ground-state energy of the
largest spin-balanced quantum dot with N = 60 has been

obtained using PIMC [19]. Here, we propose a new way of
solving the fermion problem in large quantum dots without
invoking any prior assumptions.

In Ref. [18], it was suggested that fourth-order propagators
can be used in PIMC to reduce the number of antisymmetric
propagators used and thereby reduce the severity of the sign
problem. This is indeed a workable scheme for up to N ≈
30. However, beyond that, the sign problem remains severe at
large imaginary time.

In this work, we overcome this fundamental problem by
reducing the length of the imaginary time needed by doing
PIMC on symmetry-breaking wave functions that are already
very close to the ground state, that is, we apply a fermion
ground-state path-integral Monte Carlo (FGSPIMC) method
to quantum dots. While the bosonic GSPIMC method is well
known [20,21], the fermionic version has only been tried
previously in the context of shadow wave function [22].

To derive such a symmetry-breaking wave function, we
first derive, from a new perspective, some basic results on
similarity transformed propagators in Sec. II. In Sec. III,
we show that the harmonic oscillator has the remarkable
property that if its propagator is similarity-transformed by
its ground-state wave function, the resulting Fokker-Planck
propagator, even if only approximated to first order, yields
the exact partition function of the harmonic oscillator. We
show in Sec. IV that, when these Fokker-Planck propagators
are antisymmetrized in the many-fermion case, they yielded
the exact ground-state energies of noninteracting fermions in
a harmonic oscillator. That is, a many-fermion problem has
been solved exactly without knowing the exact propagator, the
exact wave functions, or having to solve any sign problem. In
Sec. V, we show that in the presence of pair-wise repulsive
Coulomb interactions, the resulting Fokker-Planck propaga-
tor naturally produces spontaneous symmetry-breaking (SSB)
wave functions previously used in the studies of quantum dots
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and quantum Hall effects [4,23–25]. For quantum dots, we
show that a variational version of these SSB wave functions
can already yield energies to within 1% of the best ground-
state energies. In Sec. VI, we show that this remaining 1%
can be recovered by doing a FGSPIMC calculation using
a fourth-order propagator. In Sec. VII, we summarize our
conclusions and suggest future applications of this work.

II. SIMILARITY TRANSFORMED PROPAGATORS

For completeness, we will derive here some basic results
in a new way. Let the imaginary-time propagator (or density
matrix) of the Hamiltonian operator H be

G(x, x′; τ ) = 〈x|e−τH |x′〉, (1)

then corresponding partition function

Z (τ ) =
∫

dx G(x, x; τ ) (2)

is invariant under the similarity transformation

Z (τ ) =
∫

dx〈x|φe−τHφ−1|x〉

=
∫

dxφ(x)G(x, x; τ )φ−1(x)

=
∫

dx G(x, x; τ ), (3)

provided that φ(x) is nonvanishing and real at all x,

φ(x) �= 0. (4)

Therefore, Z (τ ) can also be computed from the transformed
propagator

G̃(x, x′; τ ) = 〈x|e−τ H̃ |x′〉,
corresponding to the transformed Hamiltonian

H̃ = φ(x)Hφ−1(x). (5)

Since φ(x) is nonvanishing everywhere, it can always be
written as

φ(x) = e−S(x), (6)

which defines S(x). We will call S(x) the action of the wave
function. For a single-particle Hamiltonian in D-dimension of
the separable form,

H = − 1
2∇2 + V (x) = K + V (x),

the transformed Hamiltonian is

H̃ = e−S(x)KeS(x) + V (x).

Since K is only a second-order derivative operator, the general
operator identity

eCKe−C=K+[C,K]+ 1
2! [C,[C,K]]+ 1

3! [C,[C,[C,K]]], ...

(7)

with C = −S(x), terminates at the double commutator term:

e−S(x)KeS(x) = K − [S, K] + 1
2 [S, [S, K]].

From the definition of K = − 1
2∇2, one has

[S, K] = ∇S · ∇ + 1
2∇2S, [S, [S, K] = −(∇S)2

and therefore the transformed Hamiltonian is

H̃ψ = (K + D + EL )ψ,

where D is the drift operator

Dψ = ∇ · [v(x)ψ],

with drift velocity v(x) = −∇S(x) and

EL(x) = 1

2
∇2S − 1

2
(∇S)2 + V = Hφ(x)

φ(x)

is the local energy function. The transformed imaginary time
propagator is then

G̃(x, x′; τ ) = 〈x|e−τ (K+D+EL )|x′〉. (8)

The present derivation of this fundamental result on the basis
of Eq. (7) is new, as far as the author can tell.

If EL is a constant, then because of the nonvanishing
condition Eq. (4), φ(x) must be the bosonic ground state
ψ0(x) of H . In this case, Eq. (8) is the Fokker-Planck (FP)
propagator whose long time stationary solution is the square
of the ground-state wave function: φ2(x) = ψ2

0 (x).
Even in cases where EL is not a constant, the advantage

of using the transformed propagator Eq. (8) is that low-order
approximates of G̃(x, x′; τ ) can be far more accurate than low-
order approximates of G(x, x′; τ ). For example, a first-order
(in τ ) approximation of Eq. (8) is

G̃1(x, x′; τ ) = 〈x|e−τK e−τD|x′〉e−τEL (x). (9)

Since as shown in Ref. [26],

〈x|e−τK |x1〉 = (2πτ )−D/2 exp

[
− 1

2τ
(x − x1)2

]
,

〈x1|e−τD|x0〉 = δ[x1 − x(τ )],

where x(τ ) is the solution to the drift equation with initial
position x0:

dx
dτ

= v(x) = −∇S(x), (10)

the resulting first-order propagator is

G̃1(x, x0; τ ) =
∫

dx1〈x|e−τK |x1〉〈x1|e−τD|x0〉e−τEL (x0 )

= 1

(2πτ )D/2
exp

{
− 1

2τ
[x − x(τ )]2

}
e−τEL (x0 ).

(11)

This is to be compared with the first-order approximation of
G(x, x0; τ ):

G1(x, x0; τ ) =
∫

dx1〈x|e−τK e−τV |x0〉

= 1

(2πτ )D/2
exp

[
− 1

2τ
(x − x0)2

]
e−τV (x0 ).

(12)
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The transformed propagator Eq. (11) replaces the bare
potential V (x), which can be highly singular, by EL(x),
which can be a nonsingular and less fluctuating. It also
replaces the aimless Gaussian random walk in G1(x, x0; τ )
by Gaussian random walks along trajectories of the veloc-
ity field v(x) = −∇S(x) produced by the trial wave func-
tion. This transformed propagator G̃1(x, x0; τ ) is the ba-
sis for doing DMC [27,28] with importance-sampling and
is the generalized Feynman-Kac path integral [29] when
φ(x) �= ψ0(x). In the next section, we will show that this
FP propagator produces a remarkable result for the harmonic
oscillator.

III. TRANSFORMED HARMONIC PROPAGATORS

Consider a D-dimensional harmonic Hamiltonian with en-
ergy in units of h̄ω and length in units of

√
h̄/mω,

H = − 1
2∇2 + 1

2 x2.

In this case, one can take φ(x) = ψ0(x), the exact ground-state
wave function with action

S(x) = 1
2 x2,

and a constant EL,

EL = 1

2
∇2S − 1

2
(∇S)2 + 1

2
x2 = D

2
≡ E0, (13)

which is the exact ground-state energy.
The solution x(τ ) to the drift equation with initial position

x0 is then simply

dx
dτ

= v(x) = −∇S(x) = −x → x(τ ) = x0e−τ ,

giving the first-order transformed propagator Eq. (11):

G̃1(x, x0; τ ) = 1

(2πτ )D/2
exp

[
− (x − x0e−τ )2

2τ

]
e−τEL .

(14)

This is to be compared to the exact FP propagator, correspond-
ing to the Ornstein-Uhlenbeck [30] process:

G̃(x, x0; τ )= 1

[2πT (τ )]D/2
exp

[
− (x − x0e−τ )2

2T (τ )

]
e−τEL ,

(15)

with

T (τ ) = 1
2 (1 − e−2τ ). (16)

In the limit of τ → ∞, this exact FP propagator correctly
gives

G̃(x, x0; τ ) → 1

πD/2
exp[−x2]e−τE0 = ψ2

0 (x)e−τE0 , (17)

which is proportional to the square of the ground-state wave
function. By contrast, the first-order transformed propagator
G̃1(x, x0; τ ) → 0 as τ → ∞ and bears no resemblance to any
wave function. This seems to be a very poor approximation to
the exact propagator. However, if one computes the partition

function from this single transformed propagator,

Z =
∫

dxG̃1(x, x; τ )

= 1

(2πτ )D/2

∫
dx exp

[
− 1

2τ
x2(1 − e−τ )2

]
e−τEL

= [2πτ (1 − e−τ )−2]D/2

(2πτ )D/2
e−τD/2 =

(
e− 1

2 τ

1 − e−τ

)D

= [2 sinh(τ/2)]−D, (18)

then the result is exactly correct. That is, when the exact
ground-state wave function, which knows nothing about τ ,
is used to derived the transformed propagator, the resulting
single propagator calculation produces the correct Z (τ ) at all
τ , i.e., at all temperatures!

The only difference between the transformed first-order
propagator Eq. (14) and the exact FP propagator Eq. (15)
is that the variance of the Gaussian distribution is τ rather
than T (τ ). This single propagator calculation of Z (τ ) is exact
because the variance of the Gaussian distribution, after doing
the integral, is canceled by the initial normalization constant
and the integral is actually independent of the variance. This
suggests that the solution to the drift equation, which is
purely classical, is of unexpected importance for understand-
ing quantum statistical dynamics, at least for the harmonic
oscillator. In the next section, we will see how the drift
term alone exactly solves the problem of many noninteracting
fermions in a harmonic oscillator.

IV. NONINTERACTING FERMIONS IN A
HARMONIC OSCILLATOR

In Eq. (17), one sees that the exact FP propagator yields
the square of the ground-state wave function in the limit of
τ → ∞ with

x(τ ) → 0 and T (τ ) → 1
2 .

In the first-order transformed propagator Eq. (14), one also
has x(τ ) → 0 as τ → ∞. What is left is then a Gaussian
distribution with variance τ . If one now regards this variance
τ as just a variational parameter and dissociates it from being
the imaginary time needed to be set to infinity, then the choice
of τ = 1 would give the correct ground-state wave function
(but not its square). This seems to be a rather contrived
way of obtaining the ground-state wave function from the
transformed propagator, but its utility is the following.

Consider N noninteracting particles in a D-dimensional
harmonics oscillator. According to the above discussion, each
particle’s ground-state wave function would be (unnormal-
ized)

ψ0(xi ) = exp

[
− 1

2τ
(xi − si )

2

]
,

with τ = 1 and where si = x(τ → ∞) → 0. However, for
our purpose of antisymmetrization, we will only let each si

approach close to zero but not exactly zero. For N spin-
polarized fermions, as long as all si are distinct, one can
construct the antisymmetric determinant wave function

�(x1, x2 . . . xN ) = det
∣∣ exp

[ − 1
2 (xi − s j )

2
]∣∣. (19)

043304-3



SIU A. CHIN PHYSICAL REVIEW E 101, 043304 (2020)

 240

 241

 242

 0  0.1  0.2

E

Δx

N=40

 440

 442

 444

 0  0.1  0.2
E

Δx

N=60

 676

 680

 684

 688

 0  0.1  0.2

E

Δx

N=80

 946

 950

 954

 0  0.1  0.2

E

Δx

N=100

FIG. 1. The energy of N noninteracting, spin-polarized fermions
in a 2D harmonic oscillator. For N = 40, 60, 80, 100, the exact
energies, indicated by the horizontal blue line, are 240, 440, 676,
and 945, respectively. The calculated lowest energies, at or near
the smallest value of 	x, are 240.06(4), 440.05(3), 677.2(1), and
947.4(2). See text for details.

Remarkably, this simple wave function gives the exact energy
of N noninteracting fermions in a harmonic oscillator so long
as all si are close to zero but remain distinct from one another.

Recall that for a two-dimensional harmonic oscillator, the
energy spectrum is given by e(nx, ny ) = nx + ny + 1 (in units
of h̄ω). There is one state with energy 1, two states with
energy 2, three states with energy 3, and so on. The num-
ber of closed-shell states are N = 1 + 2 + 3 + 4 + · · · cor-
responding to energy E = 1 + 22 + 32 + 42 + · · · , etc. For
example, when N = 10, E = 30. Even when the shells are
not closed for N = 40, 60, 80, 100, simple counting gives the
exact energies as E = 240, 440, 676, 945. In Fig. 1, we show
the energies computed from Eq. (19) in these four cases as
{s j} approaches zero.

These four calculations were done by generating N posi-
tions of si randomly near the origin with approximate sepa-
rations of 	x. This is necessary to prevent si from overlap-
ping, causing the determinant to vanish. The square of this
wave function (no sign problem) is then sampled using the
Metropolis et al. [31] algorithm. To compute the energy, it is
necessary to compute the inverse of the matrix in Eq. (19).
With decreasing 	x, particles are closer to each other and
closer to the origin. For N up to 60, one sees that the calcu-
lation gives the correct energy up to statistical uncertainties.
For N > 60, there is a systematic bias due to the limitation of
double precision in Fortran. When N is large, the determinant
is nearly vanishing and the routine for inverting the matrix
is increasingly inaccurate. This prevents the calculation from
being done at a 	x sufficiently small to give the correct
result. This is shown in the case of N = 80 and N = 100. The
use of multiprecision arithmetic would alleviate this purely
numerical problem.

This wave function Eq. (19) for computing the noninter-
acting fermion energy is much simpler than antisymmetrizing
excited states of the harmonic oscillator or using the exact
harmonic oscillator propagator [18]. The reason why this
wave function Eq. (19) is exact can be seen from formulas
given in Refs. [23,24]. Here, we can give a simple example
to illustrate the idea. For N = 2, the (unnormalized) antisym-
metrized wave function is

�(x1, x2) = e−[(x1−s1 )2+(x2−s2 )2]/2 − e−[(x1−s2 )2+(x2−s1 )2]/2

= e−[(x1−s1 )2+(x2−s2 )2]/2(1 − e−(s1−s2 )·(x1−x2 ) ).

(20)

In the limit of si → 0, the wave function to first order in s1, s2

is just

�(x1, x2) = (s1 − s2) · (x1 − x2)e−(x2
1+x2

2 )/(2τ ), (21)

which is proportional to the correct two-fermion wave func-
tion in the harmonic oscillator. Note that we must have s1 �=
s2, otherwise the wave function vanishes.

V. SPONTANEOUS SYMMETRY-BREAKING
WAVE FUNCTIONS

From this point onward, we will only discuss the case of
D = 2. For N fermions in a harmonic oscillator with Coulomb
interactions, the Hamiltonian is given by [13]

H = −1

2

N∑
i=1

∇2
i + 1

2

N∑
i=1

x2
i +

∑
i> j

λ

xi j
, (22)

where xi j = |xi − x j |. The similarity transformed propagator
will yield the corresponding antisymmetric wave function

�D(x1, x2 . . . xN ) = det

∣∣∣∣ exp

[
− 1

2τ
(xi − s j )

2

]∣∣∣∣. (23)

Here, we will let the variance of the Gaussian distribution,
τ , usually set to 1, be allowed to vary. As before, each
si = xi(τ → ∞) is a stationary point of the trajectory xi(τ )
obeying the drift equation

dxi

dτ
= −∇iS(x1, x2 . . . , xN ), (24)

with S(x1, x2 . . . , xN ) being the action of the many-particle
bosonic ground-state wave function:

�B(x1, x2 . . . xN ) = e−S(x1,x2...,xN ).

Note that the set of stationary points satisfying dxi/dτ =
0 correspond to ∇iS({xi}) = 0, and they are positions that
minimize S({xi}) or that maximize the bosonic wave function.
(The case of multiple local maxima will be discuss in later
sections.) In the noninteracting case, we have seen in the pre-
vious section that antisymmetrizing the exact bosonic ground
state produces the exact fermionic ground state.

With the added Coulomb interaction, the exact bosonic
ground state is known only for two particles at coupling λ = 1
with

S(x1, . . . xN ) = 1

2

2∑
i=1

x2
i − ln(1 + x12), (25)
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and E0 = 3. The drift equations from Eq. (24) are then

dx1

dτ
= −x1 + x̂12

1 + x12
,

dx2

dτ
= −x2 + x̂21

1 + x12
,

→ dxcm

dτ
= −xcm, and

dx12

dτ
= −x12 + 2x̂12

1 + x12
.

Since the drift equations are just first-order differential equa-
tions, they can be solved easily by any numerical method to
arrive at their stationary points. In the above case, the station-
ary points can be gotten simply by setting the τ -derivatives to
zero:

scm = 0 and s12 = x̂12(0)

→ s1 = 1
2 x̂12(0), s2 = − 1

2 x̂12(0).

The two stationary points s1 and s2 are antipodal points on a
circle of radius R = 1/2, oriented by the initial vector x̂12(0),
which is entirely arbitrary. Thus, any two such antipodal
points on the circle can be stationary points of the above
drift equation. However, when a specific pair of points is
inserted into the fermion wave function Eq. (23), the resulting
wave function no longer respects the rotational symmetry of
the original Hamiltonian. Thus, the transformed propagator
naturally produces a spontaneous symmetry-breaking wave
function, which has been extensively discussed in the litera-
ture [4,23,24], notably by Yannouleas and Landman [4,24,25].
In these earlier discussions, such a wave function was simply
viewed as an ansatz, and it is therefore entirely reasonable
to take {si} as particle positions that minimize the classical
potential energy [11,23,24]. In this case, they would be an-
tipodal points on a circle with R = 21/3/2 = 0.62996. Here,
our derivation of this wave function from the transformed
propagator showed that these stationary points are to be
determined by the maximum of the bosonic wave function.

In Fig. 2 we compare the energies computed from the
fermion wave function Eq. (23) using these two sets of sta-
tionary points with that from a five-fermion-propagator PIMC
calculation using an optimized fourth-order propagator, as de-
scribed in Ref. [18]. The top line gives the energy from using
stationary points minimizing the potential energy. The bottom
line gives the energy from using stationary points maximizing
the bosonic wave function. This comparison clearly shows
that one should use stationary points from the latter rather
than from the former. Moreover, the fermion wave function
Eq. (23) is optimal with R = 1/2; any other radius yields a
higher energy.

The rotational symmetry of this wave function can be
restored by integrating over the angle of x̂12(0), basically sum-
ming the wave function over all antipodal points on the circle.
Such a symmetry-restored wave function [24,25] should have
lower energy and may account for the difference of 0.0085(5)
between this wave function’s energy and that of PIMC. We
will not bother correcting the symmetry-restoration energy
here, since later on, such a symmetry-restoration is done
automatically when we perform a ground-state path-integral
Monte Carlo calculation in Sec. VI.

For three particles, the exact bosonic ground state is un-
known. However, from the above discussion, by symmetry,
the three stationary points must form an equilateral triangle
with energy minimized by their distance from the origin. To

 3.5

 3.6

 3.7

 3.8

 3.9

 4.0

 0  2  4  6  8  10  12  14

E

t

N=2

FIG. 2. Two-fermion energies at coupling λ = 1. Symbols are
results from a five-fermion-propagator PIMC calculation using an
optimized fourth-order fermion propagator [18] yielding a minimum
energy of 3.600(4) at imaginary time t = 10. The top and the bottom
line denote energy 3.6171(6) and 3.6085(5), respectively. See text for
detail.

control the overall size of the triangle, we do not need the
exact bosonic ground state; it is sufficient to use a trial ground
state with action

S(x1, x2, . . . xN ) = 1

2

N∑
i=1

x2
i −

∑
i> j

λxi j

1 + bxi j
. (26)

Here, the pairwise correlation function is well known to
satisfy the 2D cusp condition with parameter b varying the
strength of the correlation. (The cusp condition here is due
to the bosonic ground state only and has nothing to do with
whether the two particles are in a relative a spin-triplet or
singlet state.) The resulting drift equation

dxi

dτ
= −∇iS(x1, x2 . . . , xN ) = −xi +

∑
j �=i

λx̂i j

(1 + bxi j )2

(27)

can be solved numerically for any N to obtain the set of
stationary points {si}. With this correlator, as λ → 0, si → 0,
and the wave function Eq. (23) reduce to the exact wave
function for N noninteracting fermions of the last section.

In Fig. 3, we compare the three-fermion energy at coupling
λ = 1 using various form of the wave function Eq. (23) to that
of a five-fermion-propagator PIMC calculation. The top most
horizontal line is the energy resulting from using stationary
points from minimizing the potential energy. The equilateral
triangle is at R = 0.83. The next line down uses the correlation
function of the exact two-fermion solution Eq. (25) giving
R = 0.75. This shows that the correlation function which is
exact for two-body may not be good enough for more than
two bodies. The third line gives the energy using Eq. (26)
at b ≈ 1, but keeping τ = 1, yielding R ≈ 0.50. Finally, the
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FIG. 3. Three-fermion energies at coupling λ = 1. Symbols
show the five-fermion-propagator PIMC energy of 6.768(4) at t =
9. From the top down, the four horizontal lines are three-fermion
energies of 6.907(1), 6.882(1), 6.858(1), 6.822(1), respectively, com-
puted from various forms of the wave function Eq. (23). See text for
detail.

lowest line corresponds to allowing τ to vary in addition to
b. The minimum energy at b = 1.7, τ = 1.1, which shrank R
to ≈0.38 but broadened the Gaussian, is substantially better
than varying b alone. The resulting energy is above the PIMC
result by less than one percent.

As shown in Sec. IV, since our determinant wave function
is exact in the noninteracting limit, it should be good at weak
couplings. We therefore test the wave function here in the
strong coupling limit of λ = 8. In Table I, the resulting ener-
gies from this two-parameter wave function for a 2D quantum
dots with up N = 100 spin-polarized electrons are shown
under the column SBWF, short for “symmetry-breaking wave
function.” The SBWF energies at this strong coupling are
comparable to the two-fermion-propagator, fourth-order prop-
agator results B2 from Ref. [18]. Since B2 is still a PIMC
calculation, the energy needs to be extracted at an imaginary
time of τ ≈ 3–4. At this value of τ , with more particles,
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FIG. 4. Stationary points for the 10-, 30-, 60-, and 100-particle
wave function at λ = 8 with each dot’s radius set equal to

√
τ .

the free-fermion determinant propagator is increasingly near
zero, and its inversion needed for computing the Hamiltonian
estimator limits the particle size to N ≈ 40. Here, SBWF is
like that of a free determinant propagator at only τ = 0.4–0.8
and therefore can be used for up to N = 100 fermions, or
more. Energies in other columns will be described in the next
section.

With increasing number of fermions, Table I shows that
b increases, weakening the interparticle repulsion, and τ de-
creases, making each Gaussian smaller. Both act to increase
the particle density, but the quantum dot continues to expand
in size with increasing number of fermions. This is shown in
Fig. 4, where the stationary points of wave function Eq. (27)
is plotted for 10, 30, 60, and 100 particles, with dot radius
set equal to

√
τ . (This gives a crude picture of the one-body

density of the Bosonic wave function.) While the stationary
points’ concentric ringlike structure is very clear for 10 to 60
particles, and is similar to those determined by the classical
potential energy [32], this ringlike structure is less clear for
100 particles. With increasing number of particles, there are
many stationary configurations which are not strictly ringlike

TABLE I. Comparison of N spin-polarized 2D electron ground-state energies E0/h̄ω at coupling λ = 8.

N τ b SBWF B2[18] GSPI2 GSPI4 PIMC[15] CI[7] DMC[12,13]

4 0.80 0.60 28.217(3) 28.266(5) 27.927(3) 27.818(5) 27.823(11) 27.828
6 0.80 0.65 61.257(5) 61.403(7) 60.686(4) 60.475(6) 60.42(2) 60.80 60.3924(2)
8 0.70 0.67 104.21(1) 104.45(1) 103.425(8) 103.161(9) 103.26(5) 103.0464(4)
10 0.70 0.68 156.75(1) 156.77(1) 155.57(1) 155.23(1)
20 0.65 0.70 537.56(2) 538.07(3) 534.71(5) 534.1(1)
30 0.60 0.75 1091.60(4) 1091.7(1) 1086.5(1) 1085(1)
40 0.60 0.74 1795.74(9) 1795.9(1) 1787.9(5)
50 0.55 0.76 2636.73(6) 2627.0(3)
60 0.50 0.78 3604.45(7) 3593(1)
80 0.50 0.78 5893.2(3)
100 0.45 0.80 8618.1(3)
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and only differ minutely in energy. Our algorithm for solving
the drift Eq. (27) simply evolves a set of random initial
positions for a long time, and therefore has no way of picking

out only concentric ringlike configurations. It is also possible
that at large N , rotational symmetry is broken entirely without
any trace of discrete circular symmetry.

VI. FERMION GROUND-STATE PIMC

As we have shown in the last section, the determinant wave function Eq. (23) allows one to obtain excellent variational
energies for up to 100 fermions (or spin-polarized electrons) in a 2D quantum dot. To lower the energy further, one can do a
fermion ground-state path-integral Monte Carlo (FGSPIMC) calculation based on that trial function via

E0 = lim
τ→∞

∫
dX′dX1dX�D(X′)G(X′, X1; τ )HG(X1, X; τ )�D(X)∫
dX′dX1dX�D(X′)G(X′, X1; τ )G(X1, X; τ )�D(X)

, (28)

where G(X′, X; τ ) can be either the commonly used second-order primitive propagator

G2(X′, X; τ )=e− τ
2 V (X′ )det

∣∣∣∣ exp

[
− (x′

i − x j )2

2τ

]∣∣∣∣e− τ
2 V (X)

or the fourth-order propagator corresponding to B2 of Ref.
[18]. To preserve the upper bound property of the Hamiltonian
estimator, it is necessary to evaluate H only at the middle
of the integral. With antisymmetric propagators, evaluating
H at any other position destroys this upper bound property.
This greatly limited the choice of G(X′, X; τ ). If G2(X′, X; τ )
is used, then Eq. (28) is a four-bead calculation, having
essentially four antisymmetric free-propagators. If the fourth-
order propagator G4(X′, X; τ ) is used, each requiring two
antisymmetric free-propagators, then Eq. (28) is a six-bead
calculation. Both will then have sign problems, with the latter
more severe. However, this GSPIMC calculation will still be
better than doing a straightforward PIMC calculation. This
is because for a PIMC calculation, the ground-state energy
can only be extract at a relatively large imaginary time, such
as τ ≈ 8, whereas evolving from �D(X), one only needs

 103.0

 103.2
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 103.8

 104.0

 0   1   2   3   4

E

τ

G2

2G2

G4

FIG. 5. Ground-state PIMC calculations for eight spin-polarized
electrons in a 2D harmonic oscillator at coupling λ = 8 via Eq. (28).
G2 and G4 are second and fourth-order imaginary time propagators
respectively.

τ ≈ 3 or less. This then greatly reduces the sign problem for
determining the ground-state energy of a large quantum dot.

In Fig. 5, we show various GSPIMC calculations for the
ground-state energy of eight spin-polarized electrons at λ = 8.
Since G4 uses two free-fermion propagators, we also com-
puted the case with 2G2(τ ) = G2(τ/2)G2(τ/2), which is two
second-order propagators at half the time step. The dramatic
improvement in using G4 is clearly visible. The flatness of
the energy curve at large τ argues strongly that its energy
is close to being exact. This is indeed the case, as shown in
Table I, where the single G2 and G4 energies are shown under
columns GSPI2 and GSPI4, respectively. While G4 clearly
refines the energy toward the exact, its improvement over that
of G2 is a mere ≈0.2% in the case of N = 8. By comparison,
G2 lowers the SBWF energy by ≈0.8%. Since G4 is a six-bead
calculation, due to the sign problem, it can only be used up to
N ≈ 30. G2 remains effective for quantum dots twice as large,
up to N ≈ 60.

Since PIMC will diffuse away any asymmetry of the initial
wave function and approach the exact symmetric ground
state, doing a GSPIMC will automatically restore the broken
symmetry of the initial state.

While the use of GSPIMC for solving bosonic systems is
fairly common, its application to fermions, due to the sign
problem, has not been as prevalent. The only other compa-
rable method is the use of fermionic shadow wave function
[22] (FSWF). However, the use of FGSPIMC here can take
advantage of a fourth-order propagator, which is more difficult
to implement in FSWF. Reference [22] has considered various
choices for the free propagator, but if one views Eq. (28) as a
form of fermion PIMC, then the natural choice is to use of the
antisymmetric determinant propagator as done here.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we have shown that (1) similarity-transformed
propagators, in the case of quantum dots, can naturally pro-
duce spontaneous symmetry-breaking (SSB) wave functions
for solving many-fermion problems. This is a theoretical
advance in that such a SSB wave function was previously
regarded only as an ad hoc ansatz. (2) Our derivation show
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that the particle positions of such a SSB wave function should
be determined by maximizing the many-body bosonic wave
function, rather than just minimizing the potential energy. (3)
The use of such SSB wave function in solving the many-
fermion problem via VMC is far simpler than using a deter-
minant of excited states plus Jastrow correlators. (4) We have
further demonstrated the usefulness of using higher-order
propagators in the context of doing fermion GSPIMC.

A natural generalization of this work is to solve for case
of spin-balanced quantum dots [19], with equal number of
spin-up and spin-down electrons. However, the resulting SSB
wave function now works less well due to spin-frustration.
Take the example of N = 6 with N↑ = 3 and N↓ = 3. In
each case of N↑ = 3 or N↓ = 3, the preferred configuration
is an equilateral triangle. Therefore, for N = 6, the minimum
energy configuration should be the interlacing of two equi-
lateral triangles, forming a hexagon, with alternating spin at
each vertex. However, for N = 6, the configuration which
maximizes the bosonic wave function (or that of minimizing
the potential energy) is a pentagon with a single particle at the
center [32]. Therefore, one spin-up (or down) particle must be
at the center. Such a wave function then frustrates the desired
spin assignment and further breaks the spin-up/spin-down
symmetry of the system. Moreover, for N↑ = N↓ = N/2, there

are N!/(2(N/2)!) distinct ways of assigning N/2 up spins
and all are possible SSB wave functions. At this time, there
is no known rule for determining which spin state will give
the lowest energy. Alternatively, one can try to restore the
spin-symmetry by summing over all states of distinct spin
configurations. Such a multideterminant calculation would
require an order of magnitude more effort and would be best
done in a future publication.

For atomic calculations, there will not be SSB states. The
calculation will most likely be similar to that of solving the
noninteracting 2D harmonic oscillator, with {s j} approaching,
but not equal to, zero. However, for nuclei calculations, since
our method is exact for noninteracting fermions in a harmonic
oscillator (which is essentially the shell-model), our method
may be useful for calculating α-particle clustered nuclei such
as C12, O16, Ne20, etc., since α-particle clustering can be
viewed as a SSB state.
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