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Discrete unified gas kinetic scheme for all Knudsen number flows. IV. Strongly inhomogeneous fluids

Baochao Shan ,1 Peng Wang,1 Yonghao Zhang,2 and Zhaoli Guo1,*

1State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
2James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde,

Glasgow G1 1XJ, United Kingdom

(Received 3 December 2019; accepted 2 March 2020; published 8 April 2020)

This work is an extension of the discrete unified gas kinetic scheme (DUGKS) from rarefied gas dynamics
to strongly inhomogeneous dense fluid systems. The fluid molecular size can be ignored for dilute gases, while
the nonlocal intermolecular collisions and the competition of solid-fluid and fluid-fluid interactions play an
important role for surface-confined fluid flows at the nanometer scale. The nonequilibrium state induces strong
fluid structural-confined inhomogeneity and anomalous fluid flow dynamics. According to the previous kinetic
model [Guo et al., Phys. Rev. E 71, 035301(R) (2005)], the long-range intermolecular attraction is modeled
by the mean-field approximation, and the volume exclusion effect is considered by the hard-sphere potential in
the collision operator. The kinetic model is solved by the DUGKS, which has the characteristics of asymptotic
preserving, low dissipation, second-order accuracy, and multidimensional nature. Both static fluid structure and
dynamic flow behaviors are calculated and validated with Monte Carlo or molecular dynamics results. It is shown
that the flow of dense fluid systems tends to that of rarefied gases as the dense degree decreases or the mean flow
path increases. The DUGKS is proved to be applicable to simulate such nonequilibrium dense fluid systems.
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I. INTRODUCTION

The hydrodynamics of nanoscale fluid systems exhibits
many peculiar behaviors compared to that at the macroscopic
level [1], which has drawn growing interest in the research
of lab-on-a-chip [2], storage, conversion and exploitation of
energy [3–6], water purification [7,8], nanomanufacturing
[9,10], carbon sequestration in metal organic frameworks
[11], gas separation [12,13], and so on. Although the particle-
based molecular dynamics (MD) and direct simulation of
Monte Carlo (DSMC) have been commonly used to study
such systems, these techniques are usually computationally
intensive [1], and suffer huge statistical noise, especially for
flows near the equilibrium state [14] or in the high-density
regime [15]. Therefore, a numerical scheme with high ac-
curacy and applicability to a wide range of flow regimes is
desirable for the study of nanometer scale fluid flows.

The Knudsen number (Kn), which is defined as the ratio
of fluid molecular mean free path (MFP) to the characteristic
length of flow field [14], is normally taken as the criterion
number to characterize flow regimes from the continuum flow
(Kn < 0.001) to the free molecular flow (Kn > 10) in rar-
efied gas dynamics. The Navier-Stokes (NS) equation can be
adopted to simulate fluid flow in the continuum flow regime,
while the NS equation with slip boundary condition is usu-
ally employed in the slip flow regime (0.001 < Kn < 0.1),
where the rarefaction effects can no longer be neglected
[5,16–18]. However, the NS equation (with slip boundary
condition) fails to capture the nonequilibrium effects in more
rarefied flow regimes, e.g., the transition and free molecular
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flow regimes, where the continuum assumption becomes to-
tally invalid [15]. Besides, it also fails when fluid properties or
transport coefficients vary significantly over a molecular size
[19]. Consequently, the NS equation cannot be employed to
capture nanoscale fluid behavior, since both cases may happen
in a dense fluid system at the nanometer scale.

The Boltzmann equation is well recognized to work in all
the flow regimes ranging from continuum flow to free molec-
ular flow [20,21]. However, it is only valid for dilute gases
with homogeneous properties, i.e., satisfying the following
conditions: (1) ignorable molecular size; (2) localized binary
collision between molecules; (3) molecular chaos hypothesis
[1,15,22]. For a dense fluid system at the nanometer scale,
molecular size cannot be ignored since it is comparable to
the characteristic length or the MFP. Thus, the Boltzmann
equation breaks down for such systems.

The Boltzmann equation was extended into dense gas
system by Enskog [23] and later modified by Van Beijeren
and Ernst [24], known as the Enskog theory and the revised
Enskog theory, respectively. Although molecular size and the
collisional transfer of momentum and energy (nonlocal colli-
sions) are considered in such theory, it still assumes molecular
chaos and uses the rigid spherical model [23]. In addition,
molecular interactions (fluid-fluid and fluid-solid) become
predominant on dynamical and structural properties of dense
fluids in the nanoscale fluid flows. Therefore, the Enskog the-
ory is also not sufficient to describe the state of a dense fluid
system at the nanometer scale. To overcome this limitation,
the effects of a long-range smooth attractive tail is added to
the hard-core repulsion of the Enskog equation, known as the
Enskog-Vlasov equation [25–27], to model the intermolecular
potential effects in dense fluids, where the long-range interac-
tions are dealt with by a collective mean field.
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Based on the Enskog-Vlasov equation, the nanoscale fluid
flow is studied by Davis [28] and Vanderlick and co-workers
[29,30], where the kinetic equation yields the exact Yvon-
Born-Green equations for the density distributions at equilib-
rium. The molecular size, nonlocal collisions, and molecular
interactions (fluid-solid and fluid-fluid) were simultaneously
considered. However, the collision operator in their theory
is quite difficult in practical applications. Later, a tractable
kinetic model was proposed by Guo et al. [22] to account for
the strong inhomogeneity in dense fluid systems. Following
the Chapman-Enskog analysis, the original kinetic equation
was employed to study the equilibrium and dynamic behaviors
of confined fluids on the macroscale level. However, only
the no-slip cases were studied in their paper. Besides, the
hydrodynamic equation [22] is only applicable to contin-
uum flows, since it retains up to the first-order terms in
the Chapman-Enskog series. Thus, the nonequilibrium effects
are not properly captured. In this study, the discrete unified
gas-kinetic scheme (DUGKS) [31] is extended to solve the
kinetic model [22] for strongly inhomogeneous confined fluid
systems, which can capture the rarefaction effects as well.

Combining the advantages of the lattice Boltzmann method
(LBM) [32] and the unified gas kinetic scheme (UGKS)
[15], the DUGKS [31] was proposed recently for rarefied
gas flows, which is applicable to the entire flow regimes. It
has been successfully applied to low-speed isothermal flows
ranging from the continuum to free molecular flow regimes
[31], compressible flows considering heat transfer and shock
discontinuity [33], flows of binary gas mixtures [14], Boussi-
nesq flows [34], multiscale heat transfer [35–37], thermally
induced nonequilibrium flows [38], rarefied gas flow in mi-
crochannels [39], solid-liquid phase change problems [40],
immiscible two phase flows [41] etc. The capability of the
DUGKS to tackle multiscale problems has been thoroughly
discussed in these studies, and a rigorous theoretical analysis
of its unified preserving properties was also made recently
[42]. However, the DUGKS is based on the Boltzmann equa-
tion, which is not sufficient for dense fluid systems with strong
inhomogeneity at the nanometer scale [1,4,9,22].

The purpose of this paper is to extend the DUGKS to
nonequilibrium dense fluid systems with strong inhomogene-
ity at the nanometer scale based on the kinetic model [22],
where the effects of volume exclusion and long-range fluid-
fluid and fluid-wall interactions are simultaneously taken into
account.

II. KINETIC MODEL FOR NANOSCALE DENSE
FLUID SYSTEM

The Enskog theory considers the effects of finite size of
molecules and nonlocal collisions of hard-sphere fluids [4,23],
which are ignored in the Boltzmann equation. Combining the
Enskog equation and the mean-field theory to account for the
volume exclusion effects and the long-range intermolecular
attractions, respectively, the evolution of velocity distribution
function for a dense fluid can be described by the following
kinetic equation [22]

∂t f + ξ · ∇r f − m−1∇r(φext + φm) · ∇ξ f = �( f ), (1)

where f (r, ξ, t ) is the velocity distribution function of molec-
ular velocity ξ at spatial position r and time t ; ∂t represents the
partial derivative in terms of time t ; m is the molecular mass;
∇r and ∇ε represent gradient operators in terms of space r and
velocity ξ, respectively; φext is the external potential term; φm

relates to the attractive part of the fluid-fluid potential; and
�( f ) is the extended Enskog collision operator. Following the
projection method for hard-sphere fluids [9,43], �( f ) can be
further divided as the superposition of a Boltzmann collision
term �B and an excess collision term �E . The Boltzmann
part �B is modeled by the Bhatnagar-Gross-Krook (BGK)
relaxation process [22],

�B = − f − f eq

τ
, (2)

where τ is the relaxation time, and f eq is the Maxwellian local
equilibrium distribution function,

f eq = n

(
1

2πRT

)3/2

exp

[
− (ξ − u)2

2RT

]
, (3)

where n is the number density, R is the gas constant, T is the
constant temperature of the isothermal system, and u is the
flow velocity. The macroflow variables can be calculated from
the moments of the distribution function,

n =
∫

f dξ, u = n−1
∫

ξ f dξ. (4)

Note that only the isothermal case is considered in this
paper, and the temperature is given as a constant. The excess
collision term �E accounting for volume exclusion effects of
intermolecular repulsion is expressed as [22]

�E = −V0 f eq(ξ − u) · [2Aχ (n̄) + Bn̄], (5)

where V0 is related to molecular diameter σ , i.e., V0 =
2πσ 3/3 [23,44]; n̄ = ∫

w(r′)n(r + r′)dr′ is the local average
density (LAD) with w(r) being a weight function [45], which
was commonly used in the free energy density functional
theory (DFT) to study inhomogeneous fluid systems [29,45];
χ is the radial distribution function (RDF) for homogeneous
hard-sphere fluids [46]. To account for the inhomogeneity
of a dense fluid system, the RDF χ in Eq. (5) is evaluated
with the LAD, rather than the local density n. Meanwhile, the
parameters A and B are two gradient operators defined by [22]

A = 1

D

∫
|r′|<σ/2

r′n̄(r + r′)dr′, (6)

and

B = 1

D

∫
|r′|<σ/2

r′χ [n̄(r + r′)]dr′, (7)

where σ is the effective molecular diameter, and D is equal to
πσ 5/120.

The external potential φext includes all external potentials,
such as the wall potential φw and that driving the fluid to flow.
The wall potential can be represented by the 10-4-3 potential
for a planar wall [29],

φw(z) = 2πεw f

[
2

5

(
σw f

z

)10

−
(

σw f

z

)4

− σ 4
w f

3
(z + 0.61
)3

]
,


 = σw f /
√

2, (8)

043303-2



DISCRETE UNIFIED GAS KINETIC SCHEME … PHYSICAL REVIEW E 101, 043303 (2020)

or the 10-4 potential [47],

φw(z) = 2πεw f

[
2

5

(
σw f

z

)10

−
(

σw f

z

)4]
, (9)

where εw f and σw f are the energy and range parameters of
wall-fluid interactions, respectively, and z is the perpendicular
distance from the wall. Note that the 10-4-3 wall potential is
a result of the integration of a continuous distribution of all
the solid molecules interacting with gas molecules through the
12-6 Lennard-Jones (LJ) potential. Consequently, the 10-4-3
wall potential is approximately equivalent to the 12-6 poten-
tial of fluid-solid molecules in the MD simulations. For more
general geometrics, the potential at a position can be measured
from those of all solid molecules. The empirical parameters
between the interactive molecules are chosen exactly the same
as those in the MD simulations.

The mean-field theory is adopted to account for the long-
range intermolecular attraction, where a gas molecule is con-
sidered to move under the average attraction of molecules in
the system [48]. According to the decomposition principle
of the pairwise intermolecular potential [49], the molecular
interaction part acts when the distance between molecules is
larger than the effective diameter σ , and thus φm in Eq. (1) can
be expressed as

φm(r) =
∫

|r′|>σ

n(r + r′)φatt (|r′|)dr′, (10)

where φatt is the attractive part of the Lennard-Jones (LJ)
fluids, which can be represented as

φatt (r) =
{

0, r < σ

4ε f f
[( σ f f

r

)12 − ( σ f f

r

)6]
, r > σ

, (11)

where ε f f and σ f f are the energy and range parameters of
fluid-fluid interactions, respectively, and r is the distance be-
tween two fluid molecules. Meanwhile, the interaction range
of wall atoms and fluid atoms can be represented by the
effective diameter σ as [9,50]

σ ≈ 1 + a1Tr

1 + a2Tr + a3Tr
2 , (12)

where Tr = kBT/ε is the reduced temperature, with a1 =
0.2977, a2 = 0.331 63, and a3 = 0.001 047 71.

III. DUGKS FOR THE KINETIC MODEL

In this section, the DUGKS will be employed to solve the
kinetic equation (1). Before implementation, a transformation
is conducted on Eq. (1) for convenience,

∂t f + ξ · ∇r f = �B + G, (13)

where G is a total force term as a combination of volume
exclusion effects, long-range intermolecular attraction, sur-
rounding wall potentials, and other outside forces, which in
the current work can be expressed as

G = −{∇φext + ∇φm + V0RT [2Aχ (n̄) + Bn̄]}ξ − u
RT

f eq,

(14)

where the derivative of distribution function f in terms of
particle velocity ∇ξ f was approximated by its equilibrium
state ∇ξ f eq, due to the fact that f eq is the leading part of the
distribution f and the gradient of f eq has the most important
contribution to the gradient of f [48], especially for high fluid
density cases as in the current work

∇ξ f ≈ ∇ξ f eq = −ξ − u
RT

f eq. (15)

Since the original DUGKS does not include the external
force term G, we will update Eq. (13) by two steps: (1)
employ the standard updating rules as originally described in
[14,31,33] [see Secs. III A and III B]; (2) treat the external
force term G by the Strang splitting technique [51–53] [see
Sec. III C].

A. Updating in the standard DUGKS

For the original DUGKS without considering the external
force term G, Eq. (13) can be written as

∂t f + ξ · ∇r f = �B. (16)

Adopting the midpoint rule for time integration of the convec-
tion term, and the trapezoidal rule for the collision term of the
evolution equation (16), we can discretize it into the following
form for the cell j (r j is the cell center) from time tn to tn+1 as

f n+1
j − f n

j + 
t

|Vj |F n+1/2 = 
t

2

(
�n+1

j − �n
j

)
, (17)

where the superscript (n + 1) and n represent time tn+1 and
tn, respectively; the subscript j represents space r j at the cell
center, F n+1/2 is the microflux across the cell interface, i.e.,

F n+1/2 =
∫

∂Vj

(ξ · n) f (r, tn+1/2)dS, (18)

where ∂Vj and |Vj | are the cell surface and cell volume of the
cell Vj , respectively; n is the outward unit vector normal to the
surface.

By introducing two auxiliary distribution functions f̃ and
f̃ + as

f̃ = f − 
t

2
�B = 2τ + 
t

2τ
f − 
t

2τ
f eq, (19)

f̃ + = f + 
t

2
�B = 2τ − 
t

2τ + 
t
f̃ + 2
t

2τ + 
t
f eq, (20)

Eq. (16) can be rewritten as

f̃ n+1
j = f̃ +,n

j − 
t

|Vj |F n+1/2. (21)

Since the BGK collision operator �B satisfies the following
conservative laws,∫

�Bdξ = 0,

∫
ξ�Bdξ = 0, (22)

the evolution can be done explicitly according to Eq. (21)
by tracking auxiliary distribution function f̃ , instead of the
original distribution function f . The density and velocity can
be calculated as

n =
∫

f̃ dξ, nu =
∫

ξ f̃ dξ. (23)
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B. Flux evaluation

In order to update f̃ from tn to tn+1 according to Eq. (21),
the microflux across the cell interface ∂Vj needs to be evalu-
ated first, the key point of which is to reconstruct the original
distribution function f n+1/2 at time tn+1/2 on the cell interface.
Similar to the treatment in the above updating rule, we inte-
grate Eq. (16) along the characteristic line within a half time
step, i.e., h = 
t/2 with the trapezoidal rule for the collision
term,

f (ri j, ξ, tn + h) − f (ri j − ξh, ξ, tn)

= h

2
[�(ri j, ξ, tn + h) + �(ri j − ξh, ξ, tn)], (24)

where ri j is the center of the cell interface between cell i and
cell j.

By introducing two auxiliary distribution functions f̄ and
f̄ + expressed as

f̄ = f − h

2
�B = 2τ + h

2τ
f − h

2τ
f eq, (25)

f̄ + = f + h

2
�B = 2τ − h

2τ + h
f̄ + 2h

2τ + h
f eq

= 2τ − h

2τ + 
t
f̃ + 3h

2τ + 
t
f eq, (26)

Equation (16) can be transformed into the following form:

f̄ (ri j, ξ, tn+1/2) = f̄ +(ri j − ξh, ξ, tn). (27)

According to Eqs. (22) and (25), the density and velocity can
also be obtained from f̄ ; i.e.,

n =
∫

f̄ dξ, nu =
∫

ξ f̄ dξ. (28)

Meanwhile, f̄ + and f̃ + satisfy the following relationship,
which will be used to evaluate the f̃ + in Eq. (21):

f̃ + = 4
3 f̄ + − 1

3 f̃ . (29)

Once f̄ (ri j, ξ, tn+1/2) is evaluated from Eq. (27), the orig-
inal distribution function f (ri j, ξ, tn+1/2) at interface center
ri j can be calculated according to the relationship between
f̄ and f in Eq. (25), after which the microflux is obtained
according to Eq. (18). Thus, the main task is to construct the
f̄ +(ri j − ξh, ξ, tn) in Eq. (27), and to obtain f̄ (ri j, ξ, tn+1/2)
consequently.

Generally, f̄ +(ri j − ξh, ξ, tn) can be expanded around
f̄ +(ri j, ξ, tn) [31] or f̄ +(ri, ξ, tn) [33] by assuming a linear
relationship. Considering a significant density oscillation may
occur in a nanoscale dense fluid system, we will expand it
around the cell center value and employ the Van Leer limiter
[54]. The linear relationship and limiter can be expressed as

f̄ +(ri j − ξh, ξ, tn) = f̄ +(r j, ξ, tn) + [(ri j − ξh) − r j] · γ j,

(ri j − ξh) ∈ Vj, (30)

where γ j is the corresponding slope at the cell Vj . Taking the
component in the x direction, for example, the slope can be
written as

γ j,x = [sign(s1) + sign(s2)]
|s1||s2|

|s1| + |s2| , (31)

FIG. 1. The evolution procedure from time tn to tn+1 in the Strang
splitting method. f n∗ and f n∗∗ represent the solutions from the
preforcing step and the standard DUGKS, respectively.

where

s1 = f̄ +(x j ) − f̄ +(x j−1)

x j − x j−1
, s2 = f̄ +(x j+1) − f̄ +(x j )

x j+1 − x j
. (32)

Up to now, all the variables needed for the evolution
equation, i.e., Eq. (21), are solved, where the external force
term G is not included. The Strang splitting algorithm [51]
will be introduced below regarding how to couple the external
force term G into the standard DUGKS evolution [52,53] as
described above.

C. Strang splitting method for external force

In the Strang splitting method, a half time step integration
is implemented on distribution functions before and after the
standard DUGKS procedure, which is called the preforcing
and postforcing step, respectively. The preforcing step, the
standard DUGKS and the postforcing step can be respectively
written as

∂t f = 0.5G, (33)

∂t f + ξ · ∇r f = �B, (34)

∂t f = 0.5G. (35)

The evolution from time tn to tn+1 in the Strang splitting
algorithm can be seen in Fig. 1.

In the preforcing and/or postforcing step, integrating
Eqs. (33) and/or (35) over a time step 
t , we have

f ∗ = f + 
t

2
G(n, u), (36)

where f ∗ is a solution from the preforcing or postforcing step.
According to Eq. (19), we have the following relations,

f̃ = 2τ + 
t

2τ
f − 
t

2τ
f eq(n, u), (37)

f̃ ∗ = 2τ + 
t

2τ
f ∗ − 
t

2τ
f eq(n∗, u∗), (38)
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where the density and velocity can be calculated as

n∗ = n, u∗ = u + 0.5G
t . (39)

Coupling Eqs. (36)–(38), f̃ ∗ can be calculated from f̃ by
the following equation:

f̃ ∗ = f̃ + 
t

2τ
[ f eq(n, u) − f eq(n∗, u∗)]

+ (2τ + 
t )
t

4τ
G(n, u). (40)

D. Relaxation time

Based on the LAD method [55], the relaxation time τ in
the collision operator �B of Eq. (2) is determined by

τ = μ(n̄)

nkBT
, (41)

where kB is the Boltzmann constant, and μ(n̄) is the viscosity
of homogeneous dense fluid evaluated at the LAD n̄ expressed
as [23]

μ(n̄) = 5.0

16σ 2

√
kBT

π
n̄V0(Y −1 + 0.8 + 0.7614Y ), (42)

where the parameter Y and the radial distribution function χ

are calculated by [44–46]

Y = n̄V0χ (n̄), χ (n̄)= 1 − 0.5η

(1−η)3 , η= n̄V0

4
.

(43)

E. Boundary condition

In the kinetic models, appropriate boundary conditions
should be given for the distribution functions at the solid walls
[31]. The surface slip significantly depends on the relative
strength between fluid-wall and fluid-fluid interactions, which
can be characterized by the ratio of energy parameter εw f to
ε f f [56]. With the decrease of the ratio εw f /ε f f , the boundary
transforms from wetting to nonwetting, and the slip increases
correspondingly. In this study, the bounce-back boundary
condition is employed for a no-slip boundary condition to
simulate the wetting cases, where gas molecules adsorb on
the wall and form an adsorption layer when hitting the solid
molecules, rather than the usual diffuse or specular reflection.
The slip boundary condition for the nonwetting cases can also
be achieved by the bounce-back boundary condition with a
slip velocity, which is determined by the fluid-solid interac-
tions. Note that, even in the nonwetting case, weak adsorption
layers may form near the wall, as shown in Fig. 8(b). In this
paper, we mainly focus on the wetting case with a no-slip
boundary condition, and the detailed bounce-back scheme can
be found in Guo et al. [31].

F. Algorithm

The standard procedure of the DUGKS from time tn to tn+1

is the same as the previous study [33]. The difference lies in
how to couple the external force G by the Strang splitting
technique with the standard DUGKS [52,53], as shown in

FIG. 2. Fluid molecules confined between two parallel plates at
the nanometer scale.

Fig. 1. Detailed computational procedures can be summarized
in the following steps:

(1) Preforcing step calculation with a half time step h =

t/2.

(a) Determine the local average density n̄, which can be
found in Bitsanis et al. [57], Tarazona [45], or Vanderlick
et al. [29].

(b) Calculate the radial distribution function χ accord-
ing to Eq. (43).

(c) Compute the gradients of the radial distribution
function and local average density according to Eqs. (6)
and (7), respectively.

(d) Coupling the force term G into the Strang splitting
algorithm according to Eq. (40).
(2) The standard DUGKS evolution from time tn to tn+1.

(a) Calculate f̄ + from f̃ at the cell interface according
to Eq. (26).

(b) Compute the gradient of f̄ + in each cell according
to Eq. (31).

(c) Calculate the distribution function f̄ + at (ri j − ξh)
according to Eq. (30).

(d) Determine the distribution function f̄ at the cell
interface and time tn+1/2 according to Eq. (27).

(e) Calculate the conserved flow variables from f̄ ac-
cording to Eq. (28).

(f) Determine the original distribution function f at
cell interface and time tn+1/2 from f̄ (ri j, ξ, tn+1/2) and
f eq(ri j, ξ, tn+1/2) according to Eq. (25).

(g) Calculate the flux Fn+1/2 through each cell interface
from f n+1/2 according to Eq. (18).

(h) Determine f̃ + at the cell center and time tn accord-
ing to Eq. (29).

(i) Update the cell-averaged f̃ in each cell from tn to
tn+1 according to Eq. (21).
(3) Postforcing step (the same as the preforcing step).

IV. MODEL VALIDATION

In this part, the static fluid structure and flow behaviors
of dense fluid systems confined between two plates with a
separation of H at the nanometer scale, as sketched in Fig. 2,
are studied. For such a system, the fluid molecular size can
no longer be neglected comparing to the channel width H,
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(a)

(b)

(c)

FIG. 3. Density distributions of LJ fluids confined between two
parallel plates with 10-4-3 LJ potential at the temperature of T = 1.2
ε f f /kB; Monte Carlo results can be found in Ref. [58].

which means that the Boltzmann equation fails under this
circumstance.

A. Static fluid structure

The equilibrium structure of the LJ fluids with three
different channel widths is first tested. In the simulation,
the 10-4-3 LJ potential is exerted on the fluid molecules
by the top and bottom plates, while the 12-6 LJ potential
is employed for fluid molecular interactions. The channel
widths and pore-averaged density, which is defined as n0 =∫ H

0 n(y)dy/H , are displayed in Fig. 3, while the fluid system
temperature is taken as Tr = 1.2 for all three cases. Mean-
while, the solid-fluid energy parameter εw f equals fluid-fluid
energy parameter ε f f , meaning the strengths of solid-fluid
interactions and fluid-fluid interactions are approximately the
same.

(a)

(b)

FIG. 4. Density (a) and velocity (b) profiles of Couette flow for
LJ fluids in confined plates with 10-4 potential. MD results can be
found in Ref. [55]. The dotted line in the bottom panel represents
the linear distribution of the velocity profile predicted by the conven-
tional hydrodynamic model, which ignores the competition between
the fluid-fluid and fluid-solid interactions.

As shown in Fig. 3, the density profiles in all the cases
oscillates significantly across the channel due to the combined
effects of external wall potential, volume exclusion effects,
and long-range intermolecular interactions. The unique den-
sity structures agree well with the Monte Carlo results [58]
in all three cases, including the magnitudes and locations of
peaks as well as their oscillation tendency. No bulk regions
appear for these narrow channels, i.e., H = 2.5σ [Fig. 3(a)]
and H = 3.6σ [Fig. 3(b)], while the fluid will become homo-
geneous near the center region with the increase of channel
width [Fig. 3(c)]. Due to the strong repulsion from the solid
molecules, it is hard for fluid molecules to approach the
boundary and there will be a vacuum layer between the first
fluid layer and the wall, with the thickness equaling δ. The
capability of capturing the critical changes in fluid structure
reveals the applicability of the present DUGKS in predicting
the fluid structure induced by external wall potential and fluid
molecular interactions.

B. Dynamic behaviors

1. Couette flow

The second test case is the Couette flow, with the top and
bottom plates moving with a velocity of U = 0.5

√
kBT/m

in the x and −x directions, respectively, as shown in Fig. 2.
In the computation, the grid size in the y direction is set to
be 
y = 0.01σ , which is fine enough to produce grid inde-
pendent solutions. Meanwhile, eight Gauss-Hermite discrete
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(a)

(b)

FIG. 5. Effects of channel width on density (a) and velocity (b)
profiles of Couette flow with the 10-4-3 wall potential.

velocities distributed in [−4
√

2kBT/m, 4
√

2kBT/m] are used
to discretize the velocity space in each direction. Although the
local Knudsen number can be very high, as will be discussed
later, the set of 8 × 8 discretized velocities is sufficient to
capture the nonequilibrium effects of the current problem, as
we have tested. The Courant-Friedrichs-Lewy (CFL) number
is set to be 0.1. The fluid is confined between two 10-4 walls
with a separation of H = 7.178σ , in which the pore-averaged
density of the confined fluids is n0 = 0.593σ−3 with the
temperature of Tr = 1.0.

The static structure and dynamic behaviors of the LJ fluids
for Couette flow are also satisfactorily captured by the current
DUGKS compared to the MD results [55], as shown in Fig. 4.
Three adsorption layers with decreasing intensity are observed
in the vicinity of each wall, while there is no obvious bulk
region near the center of the channel [Fig. 4(a)]. As shown
in Fig. 4(b), the velocity distribution of Couette flow deviates
from linearity, as a result of fluid inhomogeneity induced by
the competition of the wall-fluid and fluid-fluid interactions.
Thus, it is essential to take the wall potentials and fluid
molecule interactions into account at the nanometer scale,
which greatly affects the density [Fig. 4(a)] and velocity
[Fig. 4(b)] distributions across the channel.

The effects of flow channel widths on density and veloc-
ity distribution of Couette flow are also investigated. In the
simulation, the top and bottom plates move with a velocity of
U = 0.01

√
kBT/m in opposite directions. The confined fluids,

with an averaged density of n0 = 0.561σ−3 at the temperature
of Tr = 1.2, are simulated with the 10-4-3 potentials from
the top and bottom walls, respectively. Meanwhile, the energy
parameter of the wall-fluid interactions εw f is four times that
for fluid-fluid interactions ε f f . As is shown in Fig. 5, there
are two obvious adsorption layers in the vicinity of each wall,

(a)

(b)

FIG. 6. Density (a) and velocity (b) profiles under different
channel-width conditions for Poiseuille flow, where L = H − 2δ.

after which a weakly third adsorption layer occurs. All three
adsorption layers coincide together, indicating a similar effect
is exerted on fluid molecules from the wall. The bulk region
increases with the channel width H increasing. The velocity
profile tends to be linearly distributed across the channel with
the increase of the channel widths H [Fig. 5(b)]. This is be-
cause the inhomogeneity of the fluid system becomes weaker
in larger scale systems. It also means that there is a critical
value for the channel width, over which the inhomogeneity of
the system can be ignored. The determination of the critical
value will be studied in the future.

2. Poiseuille flow

Finally, we take the Poiseuille flow as our third test case.
Adopting the same parameters as presented in Fig. 3(b) and
exerting a driving force of Gx = 0.02ε f f /σ in the x direction,
the previous static problem transforms into the Poiseuille flow.

The Poiseuille flow is studied under different channel-
width conditions. As shown in Fig. 6(a), the density fluctuates
across the whole flow domain as H = 3.6σ , while a bulk
region may occur with the increase of channel width. This
is because the competition between the solid-fluid and fluid-
fluid interactions becomes weaker near the center region of a
larger channel, and the influences from the wall are limited. In
Fig. 6(b), the velocity is normalized by the maximum velocity
umax and the distance is normalized by effective flow domain
length L = H − 2δ. As we can see, the velocity profile ap-
proaches the Navier-Stokes solution with the increase of the
channel width, which further supports our assessment that the
fluid system becomes more homogeneous in large systems.
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(a)

(b)

FIG. 7. The density and velocity profiles for Poiseuille flow
in confined 10-4-3 LJ channels at the temperature of Tr = 1.2:
(a) wetting case, εw f /ε f f = 1.0; (b) nonwetting case, εw f /ε f f =
0.25. The velocity profiles were normalized by the external driving
force Gx . The pore-averaged density is 0.561σ−3 and the channel
with is 7.5σ . The locations were normalized by the length of the
flow domain L = H − 2δ.

The density and velocity profiles for Poiseuille flow with
the wall separation of H = 7.5σ at the temperature of Tr =
1.2 are shown in Fig. 7, where the velocity is normalized by
the external driving force Gx and the location is normalized
by the flow domain L. For the wetting case (εw f /ε f f = 1.0),
fluid molecules accumulate near the wall due to the strong
solid-fluid interactions, and the velocity is much smaller than
the analytical Poiseuille solution across the channel. When the
ratio εw f /ε f f decreases to 0.25, the walls become nonwetting,
and the density oscillation becomes much flatter, compared to
the wetting case in Fig. 7(a). However, the adsorption layers
near the wall still exist, but with much smaller magnitude.
Meanwhile, the velocity becomes much higher than that under
wetting conditions, implying a significant effect of wettability
on flow velocity.

We want to point out that the computational efficiency of
the DUGKS is much higher than that of the MD simulations.
In one of our test cases of the Poiseuille flow under the
same working condition, the computing time of the DUGKS
running with a single core is about 10 min, while it is more
than 7 h of MD simulations running with 24 cores to obtain
satisfactorily stable results.

3. Multiscale characteristics of a dense fluid system

The Knudsen number is commonly used as a key crite-
rion number in multiscale analysis from continuum flow to

FIG. 8. The variation of local effective Knudsen number across
the channel with the 10-4-3 potential, where H/σ = 3.6, nσ 3 =
0.476, Tr = 1.2, and εw f = ε f f .

free molecular flow in rarefied gas dynamics. However, fluid
molecular movements are frequently disrupted by the walls
or other molecules due to the small dimension of the flow
path or the dense arrangements of the fluid molecules in the
case we study, which means that the molecules cannot move
freely. Thus, the Knudsen number in this paper is actually the
effective Knudsen number, which is borrowed from rarefied
gas dynamics for the current dense fluid system. According
to the difference in defining the characteristic lengths, the
average effective Knudsen number Kn and local effective
Knudsen number Kn∗ can be defined as

Kn = λ

H
, Kn∗ = λ

ρ/|∇ρ| , (44)

where λ is the gas mean free path, and ρ/|∇ρ| is the local
characteristic length. According to dense gas theory [4,23],
the mean free path is determined by

λ = 1√
2nπσ 2χ

. (45)

On one hand, the average effective Knudsen number is
calculated as Kn = 0.06, according to Eq. (44) and the
parameters in Fig. 3(b), from which we may deduce that
the nonequilibrium effects are not very obvious; on the other
hand, the density varies sharply near the wall, resulting in an
enormous local characteristic length, where the local effective
Knudsen number can be as high as 106.976. Beyond that, it
is almost smaller than 0.5 near the center region, and even
as small as 0.000 58 in certain places. The violent fluctuation
of the local effective Knudsen number, as shown in Fig. 8,
implies the strong inhomogeneity of the dense fluid system
across the channel.

Meanwhile, the mechanism of rarefaction effect in a dense
fluid system may be very different from that in a rarefied
one. For the Poiseuille flow of rarefied gases, the rarefaction
effect mainly occurs at the gas-solid interface showing as a
velocity slip, which is attributed to the infrequent collisions
between the gas and solid molecules. However, the density
is strongly inhomogeneous in dense fluid systems, which
means the amount of gas molecules between the adjacent
adsorption layers is very small, even close to the vacuum,
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where the rarefaction effect may occur, rather than at the
fluid-solid interface. The detailed mechanism of rarefaction
effect in a dense fluid system is very complicated, and needs
deeper investigation in the future. According to our test
cases, the velocity profile does not converge using lower-order
Gauss-Hermite quadrature of velocity space, for example,
four discretized velocity points in the x and y directions,
respectively. This phenomenon suggests rarefaction effects do
exist in a dense fluid system and the system is a multiscale
one. The numerical results demonstrate the capability of the
DUGKS in simulating fluid flows for all the effective Knudsen
numbers.

V. CONCLUSIONS

It is a challenging task to capture the nonequilibrium ef-
fects of dense fluid flows at the nanometer scale. In this paper,
the DUGKS is extended to strongly inhomogeneous fluid
systems, where the external wall potential, volume exclusion
effects, and long-range intermolecular attractions are simul-
taneously taken into account. These nonequilibrium effects
are coupled into a unified force term, which is conveniently
incorporated into the DUGKS by the Strang splitting method.
The time step of the DUGKS is not limited by particle colli-
sion time in multiscale flow regimes, which indicates that the
DUGKS is an ideal tool to simulate dense fluid flow dynamics,
since the effective Knudsen number may vary significantly
under different conditions.

The static fluid structures and dynamic flow behaviors
agree well with Monte Carlo simulation and/or MD results,
which proves the capability of our model to capture the
nonequilibrium effects of dense fluid systems at the nanome-
ter scale where the local effective Knudsen number can vary
from the order of 0.0001 to the order of 100. There will
be a vacuum between the first fluid layer and the wall due
to the strong repulsion, while several adsorption layers may
occur due to the competition of solid-fluid and fluid-fluid
interactions. It is also found that the density distribution across
the channel is not affected by the fluid flow. The velocity
profile of the Couette flow deviates from the linear distri-
bution, while the velocity profile of Poiseuille flow deviates
from the Navier-Stokes solution significantly as a result of the
inhomogeneous nature of the dense fluids at the nanometer
scale.

In our future work, more practical boundary conditions will
be considered to propose in the future, which may serve as a
powerful tool between the connections of MD simulation and
the Navier-Stokes equation.
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