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Time and cost are two main hurdles to acquiring a large number of digital image I of the microstructure
of materials. Thus, use of stochastic methods for producing plausible realizations of materials’ morphology
based on one or very few images has become an increasingly common practice in their modeling. The accuracy
of the realizations is often evaluated using two-point microstructural descriptors or physics-based modeling
of certain phenomena in the materials, such as transport processes or fluid flow. In many cases, however,
two-point correlation functions do not provide accurate evaluation of the realizations, as they are usually unable
to distinguish between high- and low-quality reconstructed models. Calculating flow and transport properties
of the realization is an accurate way of checking the quality of the realizations, but it is computationally
expensive. In this paper a method based on machine learning is proposed for evaluating stochastic approaches for
reconstruction of materials, which is applicable to any of such methods. The method reduces the dimensionality
of the realizations using an unsupervised deep-learning algorithm by compressing images and realizations of
materials. Two criteria for evaluating the accuracy of a reconstruction algorithm are then introduced. One,
referred to as the internal uncertainty space, is based on the recognition that for a reconstruction method to be
effective, the differences between the realizations that it produces must be reasonably wide, so that they faithfully
represent all the possible spatial variations in the materials’ microstructure. The second criterion recognizes
that the realizations must be close to the original I and, thus, it quantifies the similarity based on an external
uncertainty space. Finally, the ratio of two uncertainty indices associated with the two criteria is considered
as the final score of the accuracy of a stochastic algorithm, which provides a quantitative basis for comparing
various realizations and the approaches that produce them. The proposed method is tested with images of three
types of heterogeneous materials in order to evaluate four stochastic reconstruction algorithms.
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I. INTRODUCTION

Materials with complex morphology, both human made
and natural, are ubiquitous [1,2]. Characterizing their
morphology—the shape and size of their microscopic ele-
ments and the way they are connected together—is a critical
first step toward understanding the properties of complex
materials and modeling the phenomena that occur there. Thus,
over the past several decades a large set of microstructural
descriptors has been developed theoretically [1,2] and applied
to characterization of a wide variety of complex materials.
At the same time, many models have also been proposed
for describing the morphology of materials that, due to their
complexity, their development has entailed making various
simplifications and approximations.

With the tremendous advances in instrumentation, image-
based characterization of complex materials, as well as their
direct use in computing their properties is gradually becom-
ing the preferred approach. For example, recent advances
in imaging techniques have played a fundamental role in
gaining deeper understanding of porous materials and their
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properties [3–15]. Producing high-quality images entails,
however, investing a significant amount of time and resources.
One fruitful approach to addressing this problem is based on
developing computational methods by which one is able to
use one or very few images in order to reconstruct a large
ensemble of plausible realizations of the same materials, so as
to gain a better understanding of the uncertainties associated
with computing their properties based on their images. Devel-
opment of such approaches, which are necessarily stochastic
methods [16–21], has recently made considerable progress
[22–34], to the point that they may be used to design new
materials with novel properties [35].

Stochastic reconstruction approaches may be divided into
three main groups: object-based, statistical, and image-based
methods, all of which are based on the availability of a limited
amount of experimental data. In other words, having access
to a dataset is an essential aspect of all such methods. In
the object-based methods, the morphological statistics are
extracted from the available images in the form of deter-
ministic values or probability distributions. Then, some of
the properties are selected from their distributions and, using
an optimization technique such as simulated annealing, the
initial “objects”—patterns of the morphology—are generated
and inserted in the simulation grid until all the predefined
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constraints on the morpholohy are satisfied. Object-based
methods provide satisfactory results if the morphology is
relatively simple.

In the statistical methods various spatial correlation func-
tions describing the relationship between the microstructural
properties are used to reconstruct realizations of a material
[16,17,20–23,25,27,28,31–39] using an optimization tech-
nique. In order to capture specific features, various correla-
tions functions, including two- [1,2,14] and three-point [15]
correlation functions, have been developed and computed.
Provided that the correlation functions include a measure
of the connectivity of the clusters of the various phases of
a multiphase material, the statistical methods often provide
accurate reconstruction [22,26].

The most recent reconstruction algorithms are based on
direct use of two- or three-dimensional (3D) images of ma-
terials. In these algorithms [25,27,30,40–42] digitized images
I are directly sampled without extracting any particular statis-
tics or correlations functions. Such methods are able to infer
rich information from the images and, hence, are capable of
producing high-quality realizations of materials and can be
used with both pixel- and pattern-based reconstruction algo-
rithms. The former generates each block in the computational
grid separately, whereas the latter reconstructs a group of
blocks together, which is computationally more efficient and
mimics better extended correlations and connectivity in the
microstructures.

Given the variety of the stochastic reconstruction methods,
an important issue is a critical evaluation of their accuracy
and efficiency. The evaluation may be in terms of the mi-
crostructural statistics that are not used in generating the
realizations, or based on computing the physical properties of
materials, such as their permeability and elastic strength. The
latter comparison is, of course, precise but requires intensive
computations. Furthermore, comparing the realizations gener-
ated by various reconstruction algorithms based on relatively
simple statistics, such as the porosity, which do not often shed
much light on the complexity of the microstructure, might also
not be a valid way of evaluating them.

In this paper we describe an efficient methodology based
on machine learning that allows evaluating and ranking of
various stochastic algorithms for reconstruction of 2D or 3D
discrete or multiphase and continuous images. The methodol-
ogy evaluates the realizations generated by the reconstruction
algorithms in order to identify the optimal method that pro-
duces models of the images with maximum similarity with
the original I, and a reasonable range of variability between
the realizations, so that they are not more or less identical.
To this end, we develop an autoencoder deep-learning (DL)
method in order to reduce the dimensionality of microstruc-
tural images. Then a quantitative measure is introduced for
quantifying the performance of stochastic algorithms for ma-
terials reconstruction.

The reason for using the DL is its ability for capturing
the latent complex features in the realizations. Such features
cannot be captured or analyzed by the regular statistical
methods [43], whereas the DL can represent them highly
accurately. Furthermore, as we show below, the standard two-
point descriptors, or even a multiple-point connectivity func-
tion, cannot accurately differentiate the differences between

the realizations generated by various stochastic reconstruction
methods, as they produce a slim uncertainty space around
the I.

The rest of this paper is organized as follows. We first
explain two microstructural descriptors that we will use to
evaluate the realizations of a complex material. Section III
explains the methodology that we propose based on machine
learning. We then describe four stochastic reconstruction al-
gorithms that are evaluated in this paper. The methodology is
tested in Sec. V with three distinct types of materials and their
images. Section VI provides a summary of the paper.

II. MICROSTRUCTURAL DESCRIPTORS

We first describe two microstructural descriptors [1,2] that
have been used in some of the stochastic reconstruction of
materials. To begin with, we define a phase-indicator function
of materials consisting of phases 1 and 2 with volumes �1

and �2 and volume fractions ϕ1 and ϕ2, where �1 ∪ �2 = �

and �1 ∩ �2 = 0. Then, the indicator function of phase i is
defined by

I (i)(x) =
{

1, x ∈ �i

0, x ∈ �i
, (1)

with I (1)(x) + I (2)(x) = 1. The interface between the two
phases is defined by the indicator function

M(x) = |∇I (1)(x)| = |∇I (2)(x)|, (2)

which is nonzero when x is on the interface.
An important microstructural descriptor is the lineal-path

function L(i)
2 (x1, x2) that provides information on the phase

connectedness for short-range connectivities and has been
used in many of the past reconstruction works. If we define
a function,

λ(i)(x1, x2, α) =
{

1, x1, x2 ∈ �i(α)
0, x1, x2 ∈ �i(α)

, (3)

for a sample α, then the lineal-path function for phase i is
given by

L(i)
2 (x1, x2) = 〈λ(i)(x1, x2, α)〉, (4)

where the averaging is over the samples α. The chord-length
probability density function L(i)

c (z) for phase i is very similar
to L(i)

2 (z) in the sense that it represents a line segment with
its interior points in one of the two phases and the end points
on the interface between the two phases. More precisely, it
represents the probability of finding a chord of length �c

between two points in phase i, which is related to Li
2(z) via

L(i)
2 (z) = ϕi

∫ ∞
0 (y − z)L(i)

c (y)H (y − z)dy∫ ∞
0 yL(i)

c (y)dy
, (5)

where H (x) is the Heaviside step function.
We also define a multiple-point connectivity function

p(i)
m (h; m) that quantifies the long-range connectivity of a

material, as it represents the probability of having a sequence
of m connected points in phase i of a material in a specific
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direction h and is defined by

p(i)
m (h; m) = Prob{I (x) = 1, I (x + h) = 1, . . . ,

I (x + mh) = 1}, (6)

where I (x) is the indicator function defined earlier. p(i)
m (h; m)

accounts for curvilinearity and complexity in a microstruc-
ture, as it calculates the probability of finding multiple con-
nected points by considering a tolerance core around a target
direction.

III. THE DEEP-LEARNING METHODOLOGY

Unsupervised learning is a type of learning that helps
identifying previously unknown patterns in datasets without
pre-existing labels and is also known as self-organization
that allows modeling of probability densities of given input
data. In our work we use an autoencoder DL neural net-
work (NN) to reduce the dimensionality of the realizations
of materials, which is an unsupervised DL algorithm that
utilizes backpropagation in order to set the target values to
be equal to the inputs. \textrmThe algorithm maps the inputs
X = {x(1), x(2), . . . , x(i)}, x(i) ∈ �n onto the output y(i) by de-
termining a function hw,b(x) ≈ x, where n is the number of
pixels or voxels in the image and w and b denote the weights
and biases (see below). Generally speaking, the NNs consist
of two parts, namely the encoder � and the decoder �, such
that

� : χ → F,

� : F → χ,

(�,�) = arg min�,� ‖X − (� ◦ �)X‖2,

(7)

where ◦ denotes the convolution operation. F represents the
feature map or the latent layer. Recall that the encoder op-
erator � compresses each realization to just three numbers
(x, y, z) that, in the present work, is the same as F. The
decoder � starts from the three “coordinates” (x, y, z) and re-
constructs the initial images in the second phase. As described
in Ref. [44], the autoencoder attempts to learn the function
hw,b(x), which is an approximation to the identity function, in
order to produce an output similar to x(i). Although the iden-
tity function may seem trivial to learn, imposing constraints
on the NN by, for example, limiting its number of hidden
units, enables one to gain useful insights into the image and
discover features in the input data. We shall return to this point
shortly.

Before describing further the idea behind the autoencoder
DL, we point out that the convolutional NNs (CNNs) consist
of a few layers, with the first one representing the input image.
Next is the convolutional layer that consists of a set of internal
layers that extract important features of the image and reduce
the dimensionality of the data through a convolution function.
To do so, the CNN needs a kernel function A(x), for which
various forms have been used in the past for generating new
features by considering a small shift (stride). One of them
is the rectified linear unit (ReLU) that adds a small degree
of nonlinearity to the convolved feature map, or the model,
which we use in the present study. As the ReLU we used,
A(x) = max(0, x), which eliminates all the negative values
since A(x) = 0 if x < 0. ReLU is only mildly nonlinear due

to the differences between the shapes of A(x) for x < 0 and
x > 0.

An important problem with the output feature maps is that
they are sensitive to the features’ location in the input image.
To address the problem one may down-sample (coarsen) the
feature maps to reduce their dimensionality, hence making
them more robust to changes in the features’ positions. The
pooling layer (PL), the next layer in the hierarchy of the layers
in a CNN, reduces the dimensions of the image further, as it
passes through it. It condenses the feature maps by simpli-
fying the information and, hence, reducing the computation,
especially when one has a large number of features in the
data. In particular, the computation time in the regression
stage of the NN is reduced, where overfitting is a major
concern. The PL acts on each feature map separately in order
to generate a new set of the same number of pooled feature
maps, for which a pooling operation, much like a filter, must
be selected and applied to the maps. The size of the pooling
operation is smaller than that of the feature map. Note that the
pooling operation is specified by the user, rather than being
learned. Two common functions used in the pooling operation
are average pooling, which calculates the average value for
each patch on the feature map, and maximum pooling, or
max-pooling, which computes the maximum value for each
patch of the feature map. In the present paper we use the latter
for down-sampling. Afterward, the extracted and summarized
features will be connected to a multilayer perceptron network
to produce an output image.

If the activation of hidden unit j in the autoencoder, using
an input x, is represented by A(�h )

j , then

ρ̂ j = max
{
A(�h )

j [x(i)]
}
, i = 1, 2, . . . , m, (8)

represents the maximum activation of neuron j, where m is the
number of training examples and �h denotes the hidden layer
in which the neuron is located. Then the goal is to satisfy the
following constraint:

ρ̂ j = ρ, (9)

where ρ is a parameter to be reproduced as the result of the
activation of neuron j. To do so, one adds an extra penalty
term to the cost function, the function to be minimized for
the difference between the ρ̂ j and ρ, in order to control the
difference between the two. One possible penalty term is the
Kullback-Leibler (KL) divergence [45], sometimes called
the relative entropy, which is a measure of how one probability
distribution is different from a second reference probability
distribution and is given by

DKL(ρ||ρ̂ j )
s2∑

j=1

ρ log
ρ

ρ̂ j
+ (1 − ρ) log

1 − ρ

1 − ρ̂ j
, (10)

where s2 represents the number of neurons in the hidden layer.
Note that DKL(ρ||ρ̂ j ) increases monotonically as ρ̂ j deviates
from ρ and, therefore, DKL(ρ) = 0. With DKL as the penalty
term, the overall cost function to be minimized is then given
by

CO(W, b) = C(W, b) + βp

s2∑
j=1

DKL(ρ‖ρ̂ j ), (11)

043301-3



KAMRAVA, SAHIMI, AND TAHMASEBI PHYSICAL REVIEW E 101, 043301 (2020)

where C(W, b) is an average sum of the square errors for
activation of the hidden layer with respect to the input data,
with the error being the difference between the output of the
NNs and the actual values, which is calculated by

C(W, b) = 1

2m

m∑
i=1

||Ow,b[x(i)] − y(i)||2. (12)

Here Ow,b is the output of the NN for the given input data
x(i), y(i) are the actual values (or labels), and βp and b are the
weights and biases that are adjusted by the CNN in order to
reduce the error produced by it. The weight of the penalty
term, which was taken to be βp = 0.5, controls how strongly
the term influences CO(W, b).

Using the autoencoder DL, one reduces the dimensionality
of the images to some manageable scale. In fact, this is
the main role of the DL in this study, i.e., transforming,
for example, a 500 × 500 matrix, to a 1 × 3 one, which,
computationally, is very significant. Although, as described
below, we have implemented the algorithm with 2D images,
the DL can accomplish the same for 3D realizations just as
efficiently. None of the current methods for dimensionality
reduction can do the same for large matrices or images I,
as their output for such severe dimensionality reduction is
completely distorted. But, due to its use of an iterative scheme
and its ability for discovering latent patterns, the DL is capable
of doing so by an advanced approach and producing very
accurate results.

As a simple example, consider [44] a 10 × 10 image with
the input data being the pixel values. Thus, n = 100, and we
assume that there are s2 = 50 neurons in the hidden layer
of the NN. With only 50 neuron in the hidden layer, the
NN must learn a “compressed” representation of the input
image with n = 100. That is, given only the vector of the
hidden unit activation in �50, it is forced to reconstruct the
input image with 100 pixel values. If the pixel values are
completely random with no correlations between them, then
the compression and reconstruction would be very difficult,
if not impossible. In practice, however, any real material, and
thus its image, contains correlations in its morphology and,
therefore, the algorithm can discover at least some of them.
Thus, the encoder compresses the input image into a latent-
space representation, while the decoder reconstructs the initial
image from the representation, which is why the two NNs
with suitable constraints are excellent tools for dimensionality
reduction (compression), as well as learning data projection.
Schematic representation of the networks is shown in Fig. 1.

The outcome is a set of points that represents an image
with a lower dimension. Thus, after acquiring the point data,
similarly to analysis of variance in statistics, we propose
to quantify two types of variabilities or uncertainty spaces:
(i) internal, which represents the variability or the uncertainty
space between the realizations, Re, and (ii) external, which is
the uncertainty space for the differences between Re and the
input—the I. The most accurate reconstruction algorithm is
then one that produces very different realizations that share
the basic features with I. In other words, producing a set of
diverse realizations that do not have any common features
with the I is not a useful exercise; rather the aim is to
maximize the internal variability between the realizations, so

Normaliza�on

Convolu�on + ReLU

Max-Pooling

Up-Sampling

So�-max 

FIG. 1. Schematic representation of an autoencoder deep-
learning algorithm.

as to generate as many plausible realizations of a complex
material and, at the same time, minimize their differences with
the I. The reconstruction algorithms are then ranked based on
such concepts.

We define the internal variability as the average distance
between all pairs of the realizations,

ζI =
∑Nr

i=1

∑Nr
j=1 D(Rei, Rej )

Nr (Nr − 1)
, (13)

where D is the Euclidean distance between two points in a pair
of realizations and Nr is the number of realizations. Similarly,
the external variability is quantified by

ζE =
∑Nr

i=1 D(Rei, I)

Nr
. (14)

The final score s for each reconstruction algorithm is then
defined by

s = ζI

ζE
. (15)

An accurate reconstruction method generates realizations that
have high internal variability ζI and small external variability
ζE . Thus, in principle, the higher s, the more accurate are the
reconstruction method and the realizations that it produces.
Note that computation of ζI and ζE are done after the DL
algorithm compresses the realizations and extracts their most
important features.

IV. THE RECONSTRUCTION METHODS

Using the algorithm described in the previous section, we
carried out computations with four distinct reconstruction
methods. They are the cross correlation-based simulation
(CCSIM) method, the single-normal equation simulation
(SNESIM) algorithm, the sequential indicator simula-
tion (SISIM) approach, and what is referred to as the filter
simulation (FILTERSIM). The four methods were originally
developed for reconstructing geomaterials but, similarly to all
the reconstruction methods, they can be used for generating
plausible realizations of any type of complex material and
media, given a limited amount of data or one or a few of
their images. The same type of computations can, obviously,
be carried out with the reconstruction methods that use, for
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example, simulated annealing (see, e.g., Yeong and Torquato
[17,18]; Hamzehpour et al. [21]; Jiao et al. [22,23,26]). One
motivation for carrying out the computations for the afore-
mentioned algorithms is that they were originally developed
for reconstructing realizations of large-scale porous media
that are typically highly heterogeneous and, thus, complex,
and for which the authors have considerable experience. In
addition, the aim of this paper is not to evaluate and rank any
specific reconstruction algorithm but only to compare various
stochastic algorithms based on the method proposed in order
to demonstrate how the proposed concepts numerically rank
reconstruction methods when they produce very different or
similar realizations. In what follows, we describe briefly each
of the four methods.

A. The CCSIM algorithm

We describe the CCSIM algorithm, developed recently
[25,27,40,41], for 2D images of materials; its extension to 3D
will then be clear. In the CCSIM approach the realizations
are represented by computational grids G that are divided into
overlapping blocks of sizes Tx × Ty. The I is also partitioned
into blocks whose number and sizes are the same as those
of G. The neighboring blocks share overlap regions OL with
sizes �x × �y. Beginning from any block of G, the algorithm
visits each grid block along a one-dimensional raster path,
selects at random a pattern of heterogeneity from the I for
each grid block, and inserts it in the visited block. The inserted
pattern is referred to as the data event DT , with the word
“event” implying that the inserted pattern in the block may
change again during reconstruction. Then, the next pattern is
selected based on the similarity between the neighborhood
blocks and the I, meaning that, instead of considering all the
previously reconstructed blocks, only those in the neighbor-
hood of the current blocks are used for the calculations. Next,
the similarity between the neighboring blocks and the I is
quantified based on a cross-correlation function ψ (i, j; x, y)
that represents a convolution between the I and DT (x, y):

ψ (i, j; x, y) =
�x−1∑
x=0

�y−1∑
y=0

I(x + i, y + j)DT (x, y), (16)

with i ∈ [0, Tx + �x − 1) and j ∈ [0, Ty + �y − 1),
Thus, one uses an overlap region of size �x × �y between

two neighboring blocks and a data event DT to match the
patterns in the I. The overlap region contains a set of pixels or
voxels that one picks from the previously constructed blocks
and utilizes them in Eq. (15) for identifying the next pattern
of heterogeneity. As was shown in the original papers that
developed the method, in order to minimize the Euclidean
distance (difference) between the constructed blocks and the
data, ψ (i, j; x, y) must be maximum or, in practice, larger than
a preset threshold. After calculating ψ (i, j; x, y) for various
patterns and selecting those for which it exceeds the threshold,
one of the acceptable ones is selected randomly and inserted in
the block currently being visited in G. The process is repeated
until all blocks of G are reconstructed. Typically, the size of
the OL regions is about 1/5–1/6 of the blocks’ size.

Digital Image

CCSIM 

SNESIM 

SISIM 

FIG. 2. Comparison between the original digital image I of a
material with a binary microstructure and the realizations generated
by three stochastic reconstuction algorithms.

B. The SNESIM algorithm

The algorithm was proposed by Strebelle [46]. Briefly, one
scans the I once, computes all the conditional probabilities
for a given pixels’ (voxels’) configuration (the template), and
stores them in a dynamic search tree. In this way, there is no
need to rescan the entire I in order to reconstruct a block,
as was done in the methods that had been developed prior
to Strebelle’s, because one can directly use the tree struc-
ture to retrieve the conditional probabilities. At each step of
the reconstruction the method utilizes the original data and the
previously reconstructed grid blocks in order to advance. The
algorithms can be used only with discrete multiphase I [47]
(see below) and was improved significantly by Straubhaar
et al. [48], who used a structure list for storing the data, instead
of a search tree. Since, compared with a tree, a list is much
less computationally demanding, the method improved on the
SNESIM.

C. The SISIM algorithm

This method classifies each grid block into a category of
phases of a disordered multiphase material with specific char-
acteristics. The category is built up based on a variety of the
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FIG. 3. Comparison between (top) the computed chord-length density function and (bottom) multiple-point connectivity function p(h) for
the digital image shown in Fig. 2 and its realizations generated by two reconstruction methods: [(a) and (c)] the CCSIM and [(b) and (d)] the
SISIM. The black curves are the computed results for the I, while the colored areas indicate the uncertainty space for the realizations generated
by the CCSIM and SISIM.

available data. It is assumed that no two identical phases coex-
ist in the same grid block. After each grid block is assigned to
its phase category, its property value is attributed to it from the
probability distribution function (PDF) of the corresponding
phase. Thus, the method is also called sequential indicator
simulation-probability distribution function. The overall PDF
of the phases represents the pattern of their occurrence over
the length scale of the material to be reconstructed. The
overall procedure for the algorithm is as follows.

(i) A random walk is taken through the computational
grid that represents the material, such that the unconditioned
blocks, i.e., those that do not contain any hard data that must
be honored, are visited once and only once.

(ii) For each visited unconditioned grid block the prespec-
ified number of conditioning phase data from the already
reconstructed blocks, as well as any other available data, are
identified.

(iii) A process called indicator kriging is carried out in
order to estimate the conditional probability for each phase
category. Originally developed for geostatistical applications,
kriging [49] is a method for interpolating properties for which
the interpolated values are modeled by a Gaussian process and
governed by the prior covariances. With suitable assumptions
on the prior covariances, kriging provides the best linear un-
biased prediction of the interpolated values. Indicator kriging
uses indicator functions in order to estimate the transition
probabilities from one block to the next. It proceeds by
first constructing an indicator semivariogramγI . Suppose that

one has Nh pairs of data points x(yi ) and x(yi + h) with
i = 1, 2, . . . , Nh that are separated by a distance h. Then,
the semivariogram γ (h), which is a measure of the spatial
correlations between the data, is defined by

γ (h) = 1

Nh

Nh∑
i=1

[x(yi ) − x(yi + h)]2 . (17)

The indicator semivariogram is contructed the same way by
first introducing a critical threshold xc that varies between a
minimum and maximum value. Then, an indicator function
I (xi ), a generalization of the indicator function defined earlier,
is defined by

I (xi ) =
{

1 x(yi ) � xc,

0 x(yi ) > xc,
(18)

where xi = x(yi ). The cumulative probability distribution
function (CPDF) F̂ (xc) is then constructed by

F̂ (xc) = 1

M

M∑
i=1

I (xi ), (19)

where M < Nh. The indicator semivariogram γI is then con-
structed based on I (xi ), and the CPDF is used for estimating
the conditional probabilities.

(iv) Each phase’s probability is then normalized by the
sum of the probabilities of all the phases. The result is then
used to construct a local CPDF.
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FIG. 4. Uncertainty space representation of the realizations of the digital image I of Fig. 2, after they were processed by the deep-learning
algorithm. The I is shown as a black circle at the center. The others are for the realizations generated by the CCSIM (blue, those located
around I), SNESIM (red, those located at the bottom of the right image), and SISIM (green, those located on the left side of the right image)
algorithms.

(v) A random number r, distributed uniformly in [0,1], is
generated and used together with the local CPDF in order
to determine the reconstructed phase in the visited uncondi-
tioned grid block.

(vi) For each unconditioned block, in the sense defined
earlier, the random path steps (ii)–(v) are repeated. The final
result is a computational grid as the model of the material with
the distribution of the phases.

D. The FILTERSIM algorithm

To address the difficulties of the SNESIM approach for
3D media, as well as to make it applicable to continuous
images, several refinements were proposed [50,51]. Though
such methods are accurate in 2D, their high computational
cost makes them impractical for 3D applications. One of the
main reasons for their high computational cost is that for
each grid block one must compare a data event with all the
patterns of heterogeneity in the database or image. To address
this problem Zhang et al. [51] introduced the FLITERSIM
algorithm. They used a set of six and nine filters for 2D and
3D reconstruction, respectively, in order to coarsen (“summa-
rize”) the basic spatial properties of the heterogeneity patterns
contained in the I, which reduce significantly the dimension-
ality of the patterns’ space and, hence, the computation time.
The patterns are first filtered using linear filters and, according
to some similarity criteria, are grouped in distinct clusters.
Then, for each cluster, a prototype pattern is computed that
represents some sort of the average of all the patterns in that
cluster. The rest of the algorithm proceeds, in each grid block,
by selecting the most similar prototype and randomly drawing
a pattern from that cluster and is repeated for all the blocks.
Clearly, the use of a limited number of filters reduces the
computation cost of the algorithm. The method does, however,
have its shortcomings, the most important of which is that,
it uses a limited set of linear filters that may not always
convey all the important information and variability of the
heterogeneity of the I.

V. RESULTS AND DISCUSSION

The proposed DL method was implemented with three
types of materials with different number of phases. They in-
clude a wide range of microstructures, from a relatively simple
binary material to a continuous image of the microstructure of
a highly heterogeneous one. All the computations were carried
out on a GPU, an NVIDIA GeForce GTX 1660 Ti with a total
memory of 38 661 MB and shared memory of 32 670 MB,
with 1536 CUDA cores. The total computation time was about
2 h. Since the main idea of the proposed method is to capture
the features at small and large scales, one can speed up the
computations further by upscaling the realizations.

A. A two-phase microstructure

As the first example we consider a two-phase functionally
graded material, with one phase being macrocopically con-
nected. Each phase is uniform, but its clusters are spatially
distributed. The I, taken from Srividhya et al. [52] and shown
in Fig. 2, contains a combination of long- and short-range
features. To demonstrate the performance of the proposed
DL algorithm, three realizations of the I were generated by
the CCSIM, SNESIM, and SISIM algorithms and are shown
in Fig. 2. Visual inspection indicates that the realizations
generated by the CCSIM and SNESIM are far more similar to
the I than those produced by the SISIM. Looks can, however,
be deceiving and, thus, we need to quantify the differences.

Let 1 and 2 denote, respectively, the white and black phases
of the material whose image is shown in Fig. 2. To make a

TABLE I. Comparison of the internal similarities ζI of the three
algorithms.

Algorithm SNESIM CCSIM SISIM

SNESIM 1 1.24 0.41
CCSIM – 1 0.85
SISIM – – 1
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Digital Image

CCSIM 

SISIM 

FIG. 5. Comparison between the original digital image I of a multiphase material and the realizations generated by the two stochastic
reconstruction algorithms.

quantitative comparison between the realizations and the I, we
computed the two microsructural descriptors described ear-
lier, namely the chord-length density function p(1)(z) and the
multiple-point connectivity function p(1)(h) (for m = 150),
both for phase 1. The results, shown in Fig. 3, indicate that
the chord-length density function does not differentiate the
differences between the realizations generated by the CCSIM,
SISIM, and the I. Although the multiple-point connectivity
function produces more realistic variations, it is still inad-
equate for distinguishing the various patterns generated by
the three reconstruction algorithms. Furthermore, the range of
uncertainty indicated by the chord-length density function is
very narrow, which is not the case in reality.

Using the proposed DL method, the “distances” between
the various realizations were compared. Recall that each
realization is compressed by the DL to just three numbers,
which we take them to be its “coordinates” (x, y, z). Figure 4
presents the results, in which the original I has been given the
coordinates (0,0,0) at the center of the plot. The results indi-
cate a large uncertainty space for the SISIM method (shown

TABLE II. Comparison between the external similarities ζE of
the three algorithms and the I.

Algorithm SNESM CCSIM SISIM

SNESIM 1 1.52 0.34
CCSIM – 1 0.21
SISIM – – 1

by green) far from the I, hence showing that the apparent
similarity between the realizations generated by the SISIM
algorithm and the I is not significant. Likewise, the results
for the SNESIM algorithm indicate reasonable similarity with
the I, though they are not well distributed around the I. On the
other hand, the results for the CCSIM algorithm indicate an
acceptable uncertainty space consistent with Figs. 2 and 3, as
they are well scattered all around the I.

The computed results for the internal similarity between
the realizations, without considering the I, are shown in
Table I. They are normalized based on the results for the
SNESIM approach. The computed results for the external
similarity—between the I and the realizations—are shown
in Table II. They indicate, for example, that the realizations
generated by the SISIM algorithm are very dissimilar to the
I, which is consistent with Figs. 2 and 4. The algorithms are
then ranked based on the final score s, defined by Eq. (15), for
which the results are presented in Table III. Thus, accuracy
of the algorithms is ranked as follows: CCSIM > SNESIM >

SISIM.

TABLE III. Comparison between the final scores s of the three
algorithms.

Algorithm SNESIM CCSIM SISIM

SNESIM 1 0.47 1.24
CCSIM – 1 4.05
SISIM – – 1
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FIG. 6. Comparison between (top) the computed chord-length density function, and (bottom) multiple-point connectivity function p(h) for
the image shown in Fig. 5 and its realizations generated by two reconstruction methods: [(a) and (c)] the CCSIM and [(b) and (d)] the SNESIM.
The black curves are the computed results for the I, while the colored areas indicate the uncertainty space for the realizations generated by the
CCSIM and SISIM.

B. A multiphase material

As the second example we used the image of a yttria-
dispersed ferritic stainless steel sample [53]. The material

represents a multiphase medium with stationary properties.
We used the CCSIM and SISIM algorithms to generate mul-
tiple realizations for the I, examples of which are shown
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FIG. 7. Uncertainty space representation of the realizations of the digital image of Fig. 5 after they were processed by the deep-learning
algorithm. The I is shown as a black circle at the center. The others are for the realizations generated by the CCSIM (blue, those located in the
right of the middle image) and SNESIM (red, those located in the left of the middle image) algorithms.
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TABLE IV. Comparison between the final scores s for two
algorithms.

Algorithm CCSIM SISIM

CCSIM 1 2.68
SISIM – 1

in Fig. 5. Visual inspection of the results indicates that the
CCSIM method produces higher-quality realizations. To make
the comparison quantitative, we computed the two microstruc-
tural descriptors, the chord-length density, and the multiple-
point connectivity functions for the I and its realizations.
The results are presented in Fig. 6 and indicate, for example,
that the chord-length density function generates a very small
uncertainty space, whereas the realizations produced by the
SISIM algorithm indicate wide variations and appear to be
very different from the I. Similarly, the computed multiple-
point connectivity function does not manifest the actual prop-
erties of the realizations. For example, the long-range connec-
tivity that we computed for the realizations generated by the
SISIM method is not exhibited by Fig. 6(d). Furthermore, the
short-range connectivity of the realizations produced by the
CCSIM algorithm is underestimated. As such, both functions
are unable to differentiate the variability among the realiza-
tions, as well as between them and the I.

Using the proposed DL method, the conclusion is quan-
tified and confirmed. Figure 7 presents the relative distances
between the realizations and the I. Although the realizations
generated by the SISIM algorithm manifest significant vari-
ability, they all are very far from the I. On the other hand, the

TABLE V. The final scores for the two algorithms.

Algorithm CCSIM FILTERSIM

CCSIM 1 2.54
FILTERSIM – 1

CCSIM algorithm produces realizations that not only exhibit
reasonable variability but are also close to the I, as the spatial
distribution of the patterns indicates. This is also confirmed by
the computed final scores s, compiled in Table IV, where the
results were normalized by that of the CCSIM.

C. A continuous microstructure

The third image, shown in Fig. 8, represents the image of
a low-carbon steel whose microstructure consists mostly of
ferrite with the darker pearlite regions around the ferrite grains
[54]. Because the image is on a gray scale, its reconstruction
in its current form is difficult. Despite this, we used the
CCSIM and FILTERSIM algorithms to generate realizations
of the image. The SNESIM and SISIM approaches are not
applicable to such images. The results are also shown in Fig. 8.
The realizations generated by the FILTERSIM algorithm are
not similar to the I, as they contain a significant number of
artifacts. For example, the spatial connectivity of the black
phase is not reproduced, and the spatial distribution of the gray
phase does not match the given features in the I.

In addition to the distinct visual differences between the
generated realizations, we also quantified the similarity and
the uncertainty space using the proposed DL method. The

Digital Image

CCSIM 

FILTERSIM 

FIG. 8. Comparison between the original digital image I of a material with a continuous microstructure and the realizations generated by
two stochastic reconstruction algorithms.
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FIG. 9. Uncertainty space representation of the realizations of the digital image I of Fig. 8 after they were processed by the deep-learning
algorithm. The I is shown as a black circle at the center. The others are for the realizations generated by the CCSIM (blue, those located in
lower-left side of the right image) and FILTERSIM (red, those located in upper-right side of the right image) algorithms.

final scores s for the two algorithms were computed and
are listed in Table V in which the results were normalized
by that of the CCSIM, while the results for the uncertainty
space are shown in Fig. 9. Consistent with Fig. 8, both sets
of results indicate that drastic differences exist between the
realizations generated by the FILTERSIM algorithm and the
I. Both CCSIM and FILTERSIM algorithms reproduce similar
uncertainty space between the realizations, but their external
uncertainty spaces are not comparable.

VI. SUMMARY

Despite the development of several reconstruction methods
for modeling of heterogeneous materials over the past two
decades, the question of their validity for accurate represen-
tation of materials has remained open. At the same time,
with advances in instrumentation, accurate 2D and even 3D
images of heterogeneous materials are becoming increasingly
available. This paper presented a method based on machine
learning for evaluating stochastic approaches for reconstruc-
tion of materials and making a comprehensive quantitative
comparison between the realizations generated by them. The
method reduces the dimensionality of the realizations using
a deep-learning algorithm by coarsening the given image(s).

Two criteria for evaluating the similarities between the real-
izations, as well as between them and the original digitized
image, were introduced. First, for a reconstruction method
to be effective, the differences between the realizations that
it produces must be reasonably broad, so that they faithfully
represent the possible spatial variations in the microstructure
of the materials and their plausible representation. We refer to
this as the internal uncertainty space. At the same time, the
realizations and the I of materials must be completely similar.
Thus, in a similar fashion, a second criterion, the external
uncertainty space, is defined by which the similarity between
each realization and the I is quantified. Finally, the ratio of two
uncertainty indices associated with them is considered as the
final score of a stochastic algorithm, which provides a quanti-
tative basis for comparing various approaches. The proposed
method was tested with images of various heterogeneous
materials in order to evaluate four stochastic reconstruction
algorithms.
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