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Investigation of supersonic heat-conductivity hyperbolic waves in radiative ablation flows
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We carry out a numerical investigation of three-dimensional linear perturbations in a self-similar ablation wave
in slab symmetry, representative of the shock transit phase of a pellet implosion in inertial confinement fusion
(ICF). The physics of ablation is modeled by the equation of gas dynamics with a nonlinear heat conduction
as an approximation for radiation transport. Linear perturbation responses of the flow, its external surface,
and shock-wave front, when excited by external pressure or heat-flux perturbation pulses, are computed by
fully taking into account the flow compressibility, nonuniformity, and unsteadiness. These responses show the
effective propagation, at supersonic speeds, of perturbations from the flow external surface through the whole
conduction region of the ablation wave, beyond its Chapman-Jouguet point, and up to the ablation front, after
the birth of the ablation wave. This supersonic forward propagation of perturbations is evidenced by means of
a set of appropriate pseudocharacteristic variables and is analyzed to be associated to the “heat-conductivity”
waves previously identified by Clarisse et al. [J. Fluid Mech. 848, 219 (2018)]. Such heat-conductivity linear
waves are found to prevail over heat diffusion as a feedthrough mechanism [Aglitskiy ez al., Philos. Trans.
R. Soc. A 368, 1739 (2010)] for perturbations of longitudinal characteristic lengths of the order of—or larger
than—the conduction region size, and long transverse wavelengths with respect to this region size, and over
time scales shorter to much shorter than the shock transit phase duration. This mechanism, which results from
the dependency of the heat conductivity on temperature and density in conjunction with a flow temperature
stratification, is expected to occur for other types of nonlinear heat conductions—e.g., electron heat conduction—
as well as to be efficient at transmitting large scale perturbations from the surrounding of an ICF pellet to
its inner compressed core at later times of its implosion. Besides, the proposed set of pseudocharacteristic
variables are recommended for analyzing perturbation dynamics in an ablation flow as it furnishes additional
propagation information over the fundamental linear modes of fluid dynamics [Kovdsznay, J. Aeronautic. Sci.
20, 657 (1953)], especially in the flow conduction region.
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I. INTRODUCTION

The hydrodynamic stability of radiation-driven ablation
flows is a key issue in inertial confinement fusion (ICF) where
a sufficiently symmetric implosion of a spherical pellet is
expected to achieve thermonuclear burn. Such flows, which
originate from exposing the outer shell of a pellet to a growing
incident heat flux, present the radial structure of an inward-
propagating deflagration, or ablation, wave where a shock
front precedes a subsonic heat front that coincides with the
leading edge of the heated material expansion wave [1,2].
Inherently unsteady, these flows are compressible, strongly
accelerated, and highly nonuniform with a steep heat front,
owing to the strong nonlinearity of the heat transport and the
intense incident heating.

At the early stage of an ICF implosion, a forerunning
converging shock wave compresses and sets into an inward
motion the outer pellet shell—the ablator—until it breaks out
at the ablator inner surface, during the so-called shock transit
phase. This shock front is followed by an ablation layer which
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sets the compressed medium in expansion, resulting in an
inward thrusting force that implodes the shell. Hydrodynamic
instabilities emerging during the shock transit phase will seed
the subsequent acceleration phase with perturbations. Many
works have shown that perturbations strongly develop during
the acceleration stage, resulting in the loss of symmetry of
the implosion and eventually inhibiting ignition of fusion
reactions (see [3] and references therein). The understanding
of hydrodynamic perturbation dynamics during the shock
transit phase is therefore of primary importance to ICF.
These perturbation dynamics have been classically ana-
lyzed according to two distinct perturbed flows. One corre-
sponds to the ablation by a perturbed incoming heat flux—
or illumination asymmetries—of an otherwise unperturbed
medium at rest. When the external heat source is a laser
light—Ilaser-driven ablation—the flow perturbation mecha-
nisms at stake have been designated by the term laser imprint-
ing [4]. The other configuration consists in the ablation, by a
uniform heat flux, of a uniform medium at rest presenting an
initially rippled external surface. The resulting perturbation
dynamics, due to the configuration resemblance with that
of the Richtmyer-Meshkov instability [5,6], has been termed
ablative Richtmyer-Meshkov instability [7]. In both cases the
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corresponding ablation waves are perturbed over their whole
finite spatial extent—i.e., from the fluid external surface up to
the forerunning shock front—and this right from their onset.

Theoretical investigations of these perturbation configura-
tions have exclusively considered laser-driven ablation and
have relied mostly on the standard assumptions in practice for
the modeling of ICF ablation flows and of their instabilities,
namely stationary quasi-isobaric ablation and, in certain in-
stances, discontinuous ablation fronts (e.g., Ref. [8]). These
investigations along with numerical simulations and dedi-
cated experiments have lead to the conclusion that ablation-
front deformations of transverse wavelengths smaller than
the thickness, say l.ong, of the flow region where heat
conduction dominates over advection—conduction region—
undergo damped oscillations, whereas perturbations of wave-
lengths much larger than [,,,¢ may grow as a result of
the ablative Richtmyer-Meshkov instability and, possibly,
Darrieus-Landau instability mechanisms [4,7,9-17]. A weak
acceleration of the ablation front and consequently the dom-
inant influences of the restoring force due to the ablation
“rocket effect” and of the damping provided by mass ab-
lation, in conjunction with the perturbations left behind the
oscillating perturbed shock front, are responsible for this
damped oscillatory regime. For sufficiently long wavelengths,
deformation growth has been found to be roughly linear in
time rather than exponential, although, according to theory,
exponential growth could occur, under certain conditions, due
to the Darrieus-Landau instability [7,12,15-17]. The confine-
ment of the flow by the forerunning shock front and the
surface of energy deposition is even more influential in this
regime.

Due to the multiplicity of phenomena at stake in ablation
waves, the standard modeling of radiation-driven ablation in
ICF has relied on simplifying assumptions: i.e., an isothermal
expansion, a stationary ablation region, and in certain cases
an isobaric approximation for this region [1,18]. Nowadays,
ICF ablation flows are routinely studied by means of multiple-
physics simulations which are however computationally more
demanding [3].

An intermediate approach between simplified modelings
and simulations uses self-similar solutions to the Euler equa-
tions with nonlinear heat conduction [19-21]. Such solu-
tions, known since Marshak [22], present the advantage over
isobaric, isothermal, or stationary solutions of rendering,
without further approximations, compressibility, nonunifor-
mity, and unsteadiness of ablation waves. They have been
exploited to model ICF-type ablation flows [23-25]. Indeed
these self-similar flows present the essential characteristics
of an ablation wave as illustrated on Fig. 1(a): (i) a leading
shock front, (ii) a quasi-isentropic compression (postshock)
region, (iii) an ablation layer, and (iv) an expansion wave
where heat conduction dominates (the conduction region).
In addition, these self-similar solutions have been used for
the computation of linear perturbation responses of ablation
waves for configurations of illumination asymmetries and of
the ablative Richtmyer-Meshkov instability [19-21,26]. In
addition to the two identified regimes of perturbation growth
and damped oscillations for transverse wavelengths, respec-
tively, larger and smaller than the conduction region thickness,
these results have pointed out the determining influence of the
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FIG. 1. (a) Base flow profiles in the Lagrangian coordinate m
scaled by the function defined by slog;(-) = sgn(-)log(1l + |- |).
Density (p), longitudinal velocity (v), and heat flux (¢). (b) Charac-
teristic wave speeds [Eq. (9)] (A12,34) and fluid momentum relative
to the ablation front (—pu’).

mean flow unsteadiness on perturbation dynamics at long to
moderate wavelengths, including the transition between the
two regimes. In particular, for the case of illumination asym-
metries, perturbation growth at long wavelengths turns out to
be dominated by the mean flow stretching and consequently
to be algebraic in time.

In the present work, we aim at gaining insight into the
setting up of perturbations in an already existing and unper-
turbed ablation wave, as a result of a perturbation excitation
at the flow external surface. In that respect, this configuration
differs from those of illumination asymmetries and ablative
Richtmyer-Meshkov instability with the consequences that
perturbations will here present short-term dynamics that are
absent from such configurations. We analyze the responses
of the state variables along with the deformations of the
external surface, ablation front, and shock front, with the
aim of identifying essential physical mechanisms that rule
perturbation transmission across the flow. This work goes
beyond what was done in Ref. [21], with respect to wave
propagation and the analysis of the flow conduction region.
Indeed, a local analysis of ablation waves in terms of lin-
ear waves propagating in the longitudinal direction reveals

043215-2



INVESTIGATION OF SUPERSONIC HEAT-CONDUCTIVITY ...

PHYSICAL REVIEW E 101, 043215 (2020)

that temperature and density stratification in the conduction
region, in conjunction with the heat-conductivity nonlinearity,
lead to the existence of a family of supersonic forward-
propagating waves in this region [25]. Classical description
of ablation waves, because of the isothermal assumption,
are unable to render such phenomenon, hence the interest
of self-similar solutions. Here we extend the analysis of
Ref. [25] by considering and numerically solving the exact
system of evolution equations for three-dimensional linear
perturbations about self-similar ablation waves [19,20]. The
entire deflagration structure of a nonuniform and unsteady
ablation wave is described, smoothly, from the fluid external
surface where an incoming radiation flux and an external
pressure are applied, up to the forerunning shock front. The
ablation flow is considered in slab symmetry which is a
reasonable approximation insofar as the shock transit phase
corresponds to the beginning of a target implosion: curvature
effects and convergence effects are actually negligible for suf-
ficiently small perturbation transverse wavelengths. Besides,
these solutions assume that the fluid is optically thick, which
is an approximation for actual ICF target ablation. We focus
on a self-similar ablation flow with a fast expansion of its
conduction region (i.e., presenting an isothermal Chapman-
Jouguet point) as it presents the main characteristics of the
shock transit phase of an ICF pellet implosion [25].

We first (Sec. II) present our model and characterize
the chosen ablation flow. Evolution equations are introduced
for three-dimensional linear perturbations. The framework
of our pseudocharacteristic analysis is presented (Sec. III).
Results (Sec. IV) show that the pseudocharacteristic analysis
is suitable for understanding the evolution of perturbations.
Section IV B presents an important result of this work: we as-
sess quantitatively the ability of supersonic heat-conductivity
linear waves to propagate from the external surface beyond
the Chapman-Jouguet point. This effect is shown to be due to
an advection mechanism which may propagate not only tem-
perature fluctuations, as heat diffusion does, but also density
and velocity fluctuations. The efficiency of this propagation
is quantified depending on heat diffusion intensity, as well
as its impact on ablation front and shock front deformations.
Approximate evolution equations are identified in the case of
advection dominated and diffusion dominated flow perturba-
tions; couplings in the ablation front layer are then described.
In Sec. VI we discuss the implications of our results for ana-
lyzing perturbation evolution in actual ICF target implosions.

II. MODEL

In order to investigate the deflagration structure of a
nonuniform and unsteady ablation flow, we will consider
the evolution of three dimensional linear perturbations of a
self-similar ablation flow which exhibits a fast expansion of
its conduction region, a situation typical of the shock transit
phase of an ICF pellet implosion [18,23].

A. Governing equations

We consider the motion of a polytropic gas in a semi-
infinite slab subject to an irradiation flux and material pres-
sure at its external boundary. The external irradiation flux is

sufficiently high so that radiation heat conduction dominates
any other diffusive effect (e.g., viscosity). However, the fluid
temperature is sufficiently low for radiation pressure and
radiation energy to be negligible compared to material pres-
sure and internal energy. The material is considered at local
thermodynamic equilibrium, allowing us to use a fluid model
to describe its motion. Assuming that this motion is along the
x direction of a Cartesian system of coordinates (O, x, y, z),
the equations of motion are written, in dimensionless form
and in the Lagrangian coordinate m, where dm = p dx, as

3(1/p) — 3,v =0,
0V + 0p =0,
3 (e 4+ v%/2) + du(pv + ¢) = 0, (1)

where p, v, p, and e denote, respectively, the fluid density,
velocity, pressure, and specific internal energy, and the heat
flux ¢ is related to the fluid density and temperature 7 through
the expression [24]

o =—p *T"p0,,T =V(p,T,0T), w=0 v>1 (2)

This system is closed by the dimensionless equation of state

T
p=pT, e=—7-
y —1
with y the adiabatic gas exponent. Self-similar reductions
of Eq. (1) arise if the time dependence of the incident heat
flux and pressure at the external surface follow specific power
laws, namely

90,1) = Byt 3, p(0,1) = Bt* %, fort > 0,
. 2v —1
with ¢ = S 3)
]) J—

and for an initial state given by (p, v, T) = (1, 0, 0) for
m 2= 0 [19,22]. For certain values of the boundary param-
eters (B, B,), such solutions present the features of an
ablation wave extending from the flow external surface
(m = 0) through an ablation front up to the forerunning
isothermal shock front [24,25]. This shock front is preceded
by an infinitesimal radiation wavelet penetrating the cold
fluid [22]. When values of the heat-flux parameter B, are
not too high, this wavelet is negligible and may be combined
with the isothermal shock front into a nonisothermal shock
front [22,24,25]. Solutions to Eq. (1) describe smoothly all
features of a radiative ablation wave without any further
approximation and notably account for the temperature and
density stratification of the conduction region. In the present
case, highly accurate solutions to Egs. (1)-(3) are obtained
by means of an adaptive multidomain Chebyshev spectral
method [27].

In the present work we consider the case of a self-
similar ablative wave driven by a sufficiently low external
pressure (B, B,) = (0.8, 0.31) with Kramers’ fully ionized
gas model for radiation conduction (u = 2, v = 13/2) [2,25].
This ablation flow presents the essential features of the shock
transit phase of an ICF implosion, namely, a supersonic ex-
pansion velocity relative to the ablation front, and a relatively
high ratio of convective to inertial effects—Froude number—
at the ablation front (Table I).
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TABLEI. Characteristic hydrodynamic numbers of the base flow
(defined in [25]): Ma is the Mach number and Fr the Froude number
relative to the ablation front, completed by the reduced length L ong
of the conduction region and the ratio of the minimum of the
temperature gradient reduced length Ly to the flow total reduced
length L.

max Ma 1.045
Mal,¢ 0.22
Fr|,¢ 80.3
Leond 1.29
Ly /Ly 3.00 x 107

As a consequence of the self-similarity, lengths evolve as
[(t) =t*L, where L denotes reduced length functions. The
conduction region of length l.,,q(#) is the region between the
external surface (m = 0) and the ablation front (af), which is
defined as the location of the minimum of the temperature
gradient length. This minimum gradient length defines the
characteristic thickness of the ablation front /7(¢). The ratio
Ir(t)/lio(t), where [, (¢) is the flow total length—i.e., the
distance between the external surface and the shock wave
front—characterizes the stiffness of the flow (Table I).

B. Linear perturbations

Three-dimensional linear perturbations of the above self-
similar ablative waves are considered using a Eulerian de-
scription in the coordinate system (m,y, z). The resulting
system of partial differential equations in physical space is
replaced by a one-dimensional system in the yz-Fourier space.
With the notation f for the linear perturbation yz-Fourier
component of the base flow quantity f with transverse wave

number k; = /kyz. + k2, this system reads

8,0 = LU = —A#2.0 - B4, 0 — CU. (4)

S s T -~ .
with U=[pvd, T] , where d, denotes the Fourier com-
ponent of the transverse divergence of the transverse velocity,
and with the matrices A, B, and C defined by

0 0 0 0
0 0 0 0
A= ,
0 0 0 0
0 0 0 Clpup
0 o> 0
T 0 0
B— P,
0 0 0 0
CU_l \Ilp Cv_l P 0 B44
POV PP P 0
c Toup/p  POmv 0 00T
| BT1/p 0 0 s

Cy 00, T Cv_l T Cus
By = C, '[3,(0 W) + ¥r],

C41 = C;l(ﬁmlpp - /071 am‘p)v
Cas = C; ' [pOnv + 0, Wr — k1 p~ "' Wr].

The longitudinal perturbation of the heat flux expands as @, =

oY, +T ¥y + W70, T, where W,, Wr, and W stand

for the partial derivatives of ¥ [Eq. (2)] with respect to
the density, the temperature, and the temperature gradient.
Slmllarly, the transverse perturbation of the heat flux expands
asV, -9, = k W T

The external surface and shock front are also perturbed
and their linear deformations are denoted Xes(t) and be(t)
respectively. Perturbed boundary conditions arise from a first
order expansion of Eq. (3) between the mean position of
the boundary surface and its perturbed position [20]. At the
external surface, perturbations in pressure and heat flux are
imposed:

Pes(t) = PO, 1) + Xeo(£)p(0, )3 Plm=0> (52)
Pes(t) = 90, 1) + Xes (1) p(0, )00 o (5b)

and the following kinematic relation at this material surface
applies:

Des (1) = Xes(t) = 0(0, 1) + Xes()p(0, ) Vlmeo.  (5¢)

At the shock front, Rankine-Hugoniot (RH) relations are
perturbed to first order and take the form of four linear
equations relating flow perturbations downstream to the shock
front, Ugf , to shock front deformation, Xsf, shock front de-

formation ve10c1ty, sf, and to the upstream state perturbation

Ugty, say
Ugry) = 0. (6)

Reu(Ugt_, X, Xsfv

III. LOCAL CHARACTERISTIC ANALYSIS

Flow perturbations U are expressed in a new basis con-
structed by retaining the sole advection term in Eq. (4). The
corresponding first-order system is written as

R'9,U+ A(m,)R'9,U =0, (7
where
A = diag(};) = R"'BR, )

with R the matrix of local right eigenvectors of B(m, t). The
eigenspectrum of B comprises the null eigenvalue, say A3 =
0, with associated normalized eigenvector given by R3; =
[0010]". The remaining eigenvalues, which are determined
numerically, turn out to be all real and distinct—say A; >
Ay > hyq with A4 < O—at any flow location m and time 7, thus
granting the hyperbolic property to system [Eq. (7)]. At any
point (m, t), this system defines local characteristics as

(R™1);dU; =0 along € : dm/dt = A(m,1),  (9)

for i = 1...4. Eigenvalues and eigenvectors of B are com-
puted numerically [Fig. 1(b)] and the identification of the cor-
responding characteristics as families of propagating waves
is given in Table II. In the conduction region, sufficiently far
from the ablation layer, the characteristics G, (C4) amount
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TABLE II. Identification of the characteristic waves [Eq. (7)] in the conduction region and the postshock region (adapted from Table 6

in [25]).

Conduction region

Postshock region

¢ Heat conductivity

G, Forward quasi-isothermal acoustic
Cs Transverse velocity

Cy Backward quasi-isothermal acoustic

Forward quasi-isentropic acoustic
Quasientropy
Transverse velocity
Backward quasi-isentropic acoustic

to quasi-isothermal acoustic waves propagating in the for-
ward (respectively backward) direction of the flow, while
the characteristics C; correspond to supersonic forward-
propagating waves which advect fluctuations of heat-flux per-
turbations [25]. These “heat conductivity” waves are ruled by
the dependence of the heat-flux function ¥ [Eq. (2)] on den-
sity and temperature [25]. While crossing the ablation front
from the conduction region to the postshock region, heat con-
ductivity waves C; are converted into quasi-isentropic forward
acoustic waves, forward quasi-isothermal acoustic waves
are transformed into quasi-entropy waves C;, and backward
quasi-isothermal acoustic waves C, are similarly converted
into quasi-isentropic acoustic waves. The characteristics C3
represent the advection, at the base flow fluid velocity, of
transverse dilatation motions of the fluid, and this regardless
of the flow location. The expansion of the conduction region
in the present flow [Fig. 1(a)] is sufficiently strong for the
fluid velocity relative to the ablation front to exceed the local
sound speed, thus defining a Chapman-Jouguet (CJ) point: cf.
the intersection point, for m < 0.5, between the curves for A,
and —pu’ in Fig. 1(b). Acoustic perturbations existing further
downstream this CJ point cannot trace back the expansion
flow, cross the CJ point, and reach the ablation layer. On the
contrary, heat conductivity waves propagate beyond this CJ
point although the expansion velocity is supersonic, because
this wave speed exceeds the expansion velocity (A; on Fig. 1).
Within the postshock region, and at a sufficient distance away
from the ablation layer, characteristics €; and C4 come down
to quasi-isentropic acoustic waves propagating, respectively,
in the forward and backward directions, while characteristics
G, reduce to quasientropy waves moving approximately at the
base flow velocity.

System Eq. (4) is then expressed in the pseudocharacteris-
tic variables W = R™'U as

AW + A2 W + A3 W +CWV + AW =0,  (10a)

where

A=R'AR, C=R'CR, (10b)

and
AW =R'[3,R+A(32:R) + B(3,,R)V+2R "' A3, Rd, W
— AoV + A3V, (10c)

In this formulation, the diﬁusion coefficients of the
pseudocharacteristic variables W, are given by the diago-
nal elements A; of A while off-diagonal elements deter-
mine the coupling between these different variables through
their second-order derivatives or second derivative cou-
pling. The amplification matrix C contains both actual (self-

Yamplification coefficients—the diagonal elements C;—and
amplitude coupling coefficients—the off-diagonal elements.
Advection terms are decoupled by construction. The matrix A
gathers terms originating from time and space dependencies
of eigenvectors. Setting A = 0 into Eq. (10a) corresponds to
a local decomposition of Eq. (4) in the characteristic basis
of Eq. (7), which holds at any point (m,¢) but which does
not constitute an evolution equation for W as Eq. (10a) is no
longer equivalent to Eq. (4).

IV. RESPONSES TO EXTERNAL PERTURBATIONS

We now investigate how linear perturbations of Eq. (1)
propagate, with the help of the pseudocharacteristic basis
constructed in Sec. III. Numerical solutions to the system
Egs. (4)—(6) are computed, in the Lagrangian variable m,
using the same multidomain pseudospectral method as for
the base flow and, in time, with a three-step implicit-explicit
Runge-Kutta scheme. Boundary conditions are handled using
a penalty method, while matching conditions at subdomain
interfaces are enforced exactly. The numerical code performs
computations over each subdomain in parallel using the MPI
paradigm with a single process per subdomain. Starting from a
zero perturbation initial state (zp = 1), the system is perturbed
at the external surface with a heat flux or pressure pulse
given by

Des(t) = 9(0, 1) sin* (w1 [t — 10]),

with
2T A =0, 1
o = ZZm =0.1) (11a)
np lcond(to)
or
Pes(t) = p(0, 1) sin* (w2t — 10]),
with
2T A =0, t
wy = 2mda(m =0, 10) (11b)

np lcond (tO)

for 1o <t < ty+ 7 /w; or zero otherwise. The durations of
these pulses correspond approximately to the time needed for
the corresponding wave (C; or C;) to travel n times the length
of the conduction region. The power four on the sine functions
ensures a smooth transition at #y and ¢y + 7 /w;.

Solutions to Eq. (4) are projected on pseudocharacteristic
variables W; defined in Eq. (7). The various quantities are
presented in (m, t) diagrams in which fluid particles move
at constant m. On Figs. 2-5, 7, and 10, the mean position
of the external surface is m = 0 by definition. Similarly, the
mean position of the ablation layer (the shock front) is labeled
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1.1

0 0.25 0.5
m

FIG. 2. Projection of the solution to Eq. (4) for a heat-flux pertur-
bation (n, k) = (4, 1) on pseudocharacteristic YV, in the conduction
region in logscale. The dashed line represents a C; characteristic
originating from the pulse half height [Eq. (11)]. Trajectory of the
CJ point (x) is also indicated.

“af” (“sf”). The position of the CJ point is labeled “CJ.”
The cold fluid at rest [m > mgy(t)] is free from any source
of perturbation. For visualization purposes we define the
function slog,(x) = sgn(x)log(1 4 a|x|) for any real number
x and positive parameter a. In addition, colored dashed lines in
(m, t) diagrams represent exact characteristic trajectories de-
fined in Eq. (9) originating from pulse half-heights [Eq. (11)]
at the external surface or from other remarkable points.

Responses to Eq. (4) for an external perturbation tend to
propagate close to linear hyperbolic waves. When perturbed
with a heat-flux pulse (n, k;) = (4, 1), the signal follows,
qualitatively, a C; characteristic originating from the half
height of the heat-flux pulse perturbation at the external
surface (Fig. 2). The projection of the same solution on
the pseudocharacteristic variable ¥V, shows no propagation
beyond the CJ point [Fig. 4(b)]. In terms of primitive vari-
ables (Fig. 3), the only significant signal propagating through
the conduction region is a temperature perturbation. This is
coherent with the components of W, in the basis of primitive
variables (Fig. 11).

An external pressure perturbation [Fig. 5(b)] leads to
a spread W, signal propagating in the conduction region
[Fig. 5(a)]. Such a perturbation follows a C; characteristic
originating from the half height of the pressure perturbation
pulse at the external surface.

An external heat-flux perturbation is primarily converted
into a heat-conductivity wave perturbation W, [Fig. 4(a)],
while an external pressure perturbation is primarily converted
into a forward quasi-isothermal perturbation W, [Fig. 5(b)].
We observe a posteriori that response of Eq. (4) to a heat
flux or a pressure perturbation follows a priori character-
istic trajectories C; [Eq. (7)], either on the projection on
pseudocharacteristic variables (Figs. 4 and 5) or on primitive
variables (Fig. 3). The heat-conductivity wave signal (W)) is
the only one able to trace back the expansion flow beyond the
CJ point. The heat-flux perturbation then interacts with the
ablation layer where high gradients induce couplings with a
reflected backward quasi-isothermal backward acoustic signal

(a)
1.1 -1
‘ 2
= |
-3
1.05 i
4
|
5
-6
1
(b)
1.1 -1
15
2
1.05 -2.5
-3
3.5
1 -4

c)
0.07
0.06
0.05
0.04

7 0.03
0.02
0.01

L
0 0.25 0.5

m

(
1.1
1.05
1

FIG. 3. Perturbation in (a) density in logscale, (b) longitudinal
velocity in logscale, and (c) temperature in slog, scale, for a heat-flux
perturbation with (n, k; ) = (4, 0). The dashed line represents a C;
characteristic originating from the pulse half height [Eq. (11)].

(W4) in the conduction region, and a forward quasi-isentropic
acoustic signal (W) transmitted to the postshock region.
We observe the formation of a system of reflected traveling
waves in the postshock region, composed of quasi-isothermal
acoustic waves and quasi-isentropic waves: see Fig. 6 for a
schematic representation. Such reflected waves are unlikely
to appear in the conduction region because, at the external
surface, backward quasi-isothermal acoustic waves are mostly
reflected into forward quasi-isothermal acoustic waves unable
to propagate beyond the CJ point.

As mentioy\ed above, while crossing the ablation layer, a
perturbation W) is partly reflected into the conduction region
and partly transmitted to the postshock region, but a third
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0.1

0.05

-0.05

-0.1

FIG. 4. Response of Eq 4)toa heat flux perturbatlon [Eq. (11b)] w1th (n, k1) = (4, 1) visualized in (m, t) coordinates. Pseudocharacter-
istic variable: (a) log |W1 |, (b) slog,s (Wz) (© slogm(W4) (d) slog,s (W3) Kovdsznay modes: (e) pressure slog,, (p), (f) entropy slog, s (),
and (g) potential vorticity slog;, (@, /p) [28]. Trajectories of the mean position of the ablation front (x), CJ point (x), and shock front (CJ).
Dash lines represent characteristic trajectories: C;, C,, €4, and C3 characteristics are constant m lines. The first C; and C, characteristics
originate from the pulse half-height [Eq. (11a)], while the subsequent characteristics originate from the interactions of significant perturbation

signals with the shock front, the external surface, and the ablation front.

fraction is trapped into the ablation layer as a perturbation
W;. Such a trapping phenomenon is the consequence of the
sign reversal of ¢ = A2 + pu’. In the conduction region close
to the ablation front ¢ > 0, therefore, no perturbation W,
originating from the ablation layer can propagate in the con-
duction region. On the opposite ¢ < 0 in the postshock region.
So no perturbation WV, originating from the ablation layer
can propagate into the postshock region. As a consequence
perturbations WV, remain stuck in the ablation layer.

A comparison with a decomposition of perturbations into
Kovasznay modes—namely perturbations of pressure, p, of

entropy, s, and of potential transverse vorticity, @, /o, where
o, =L 0,d, —ik,7,
ik 1
highlights the additional information provided by the present
pseudocharacteristic variables (WW;) [28]. The decomposition
into Kovdsznay modes has already been applied to ablation
flows and has been found to be relevant in the postshock
region [21]. Indeed, entropy perturbations [Fig. 4(f)] corre-
spond to W, and pressure perturbations [Fig. 4(e)] appear to
result from the superposition of both forward and backward
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FIG. 5. Response of Eq. (4) to a pressure Erturbatlon [Eq. (11a)]
with (n, k) = (4, 0) projected on (a) log |W| and (b) slogl(Wg)
Conventions similar to Fig. 4. The dash lines represent C; and C,
characteristics originating from the pulse half maximum [Eq. (11b)].

acoustic waves: namely VTA and W4 in the postshock region
[Figs. 4(a) and 4(c)]. However, the propagation direction of
acoustic waves cannot be determined from the pressure signal
while this information is available from the pseudocharac-
teristic variables with the distinction between forward and
backward waves. No conclusion could have been deduced
from Kovdsznay modes into the conduction region. In the con-
duction region, the pseudocharacteristic variables W, W,
W, follow initially the trajectories of the characteristics Cj,
Gy, and €4, respectively, whereas the Kovdsznay mode char-
acteristic quantities p and s do not present equivalent features.
Indeed, pressure perturbations p [Fig. 4(e)] coincide mainly
with contributions from both pseudocharacteristic variables
W, and W, [Figs. 4(b) and 4(c)], which correspond here
to quasi-isothermal acoustic waves (Table II). Furthermore,
entropy perturbations s [Fig. 4(f)], in addition to follow-
ing also the acoustic wave characteristics, propagate along
the characteristics C; of the supersonic heat-conductivity
waves. Consequently the variables W, W,, and W, are more

FIG. 6. Schematic representation of perturbation propagation in
the (m,t) plane originating from a heat-flux perturbation at the
external surface. Perturbation trajectories are sketched as colored
lines: C; (green, densely dotted), C, (cyan, loosely dashed), and C,
(red, solid). Arrows indicate the propagation direction. The thickness
and number of arrows render the intensity of the corresponding
signal. Trajectories of CJ point, ablation front (‘“af”’), and shock front

“sf”’) also indicated.

appropriate for describing perturbation evolution in the con-
duction region than the Kovdsznay mode characteristic quan-
tities p and 5.

Heat conductivity waves W1 in the conduction region
constitute a moving source of transverse divergence for the
transverse expansion perturbation d; [Fig. 4(d)]. Transverse
expansion perturbations are then conveyed with the fluid (con-
stant m coordinate) but are modified by each acoustic wave
crossing the conduction region. By contrast, potential vorticity
@, /p [Fig. 4(g)] presents clear constant m characteristics
in both the conduction and postshock regions. Therefore,
potential vorticity constitutes a better characteristic quantity
for transverse perturbations than transverse expansion pertur-
bation. The evolution equation for potential vorticity is given
by [21]

oL

ki o
az(—) = i =5 (P0up — PInp). (12)
P )

Potential vorticity is mostly created at the first interaction of
the heat conductivity wave with the ablation layer (Fig. 7),
where base flow density and pressure gradients are the largest.
Pseudocharacteristic variables W), W,, W, and potential
vorticity @, /p are the favored quantities for analyzing the
evolution of perturbations in an ablation flow. In particular,
the above analysis brings to light the pseudocharacteristic
variable W, as being the quantity of choice for identifying
the propagation of perturbations from the external surface up
to the ablation layer in an ablation flow with a supersonic ex-
pansion. Implications of this supersonic forward propagation
of perturbations are discussed in Sec. V.
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-6

FIG. 7. Baroclinic term [Eq. (12)] in logscale for an external
heat-flux perturbation (n, k; ) = (4, 1). Dash lines represent charac-
teristic trajectories as in Fig. 4.

A. Transmission of perturbations from the
external surface to the ablation front

According to the standard modeling of radiation-driven
ablation which assumes an isothermal expansion, isothermal
acoustics and heat diffusion are the sole possible mechanisms
for perturbation transmission from the flow external surface
to the ablation front. In the present section we examine
whether or not heat-conductivity waves may contribute to this
transmission, in what proportion relative to heat diffusion, and
under which conditions. We do so by analyzing responses
to external pressure and heat-flux perturbations, for various
transverse wave numbers k; and longitudinal characteristic
lengths Ay = nlcong-

First order deformations of the external surface, the abla-
tion front and the shock front, are shown on Fig. 8 in the case
(n, k1) = (4, 0) after normalization to unity according to an
energy flux measure

T
EU,) = ( / ¢§s+<vﬁes)2dr> : (13)

The case k; =0 is interpreted as the limit of very large
transverse wavelength compared to the conduction region. For
a given external perturbation energy [Eq. (13)], a pressure
perturbation induces a higher shift than a heat-flux perturba-
tion. In both cases the external surface is immediately shifted:
inwardly in the case of a pressure perturbation because of a
compression at the external surface and outwardly in the case
of a heat-flux perturbation because of the material expansion
due to a temperature increment. The first motion of the abla-
tion front (Fig. 8) corresponds to the arrival of the forerunning
heat-conductivity wave identified on Figs. 4 and 5. The same
effect is observed at the shock front with a delay correspond-
ing to the acoustic crossing time of the postshock region.
The following motions of the external surface, ablation, and
shock front correspond to the interactions of the traveling
waves observed on Figs. 4 and 5 with the above mentioned
interfaces. Consistent with the existing results, a purely lon-
gitudinal perturbation (k; = 0) induces a permanent shift of

—0.04

—0.08 ¢

(b)

wt

FIG. 8. Deformations of the shock front )’(\Sf (red, solid), the
ablation front )?ar (green, dashed), and the external surface )?es (blue,
dotted) for (a) a longitudinal heat-flux and (b) pressure perturbation
(n, k1) = (4,0), normalized to unity [Eq. (13)]. These deformations
are first order perturbations of mean positions appearing on Fig. 4.
The insets illustrate long time behaviors.

the ablation layer and shock front [10,20,26]. To measure
the efficiency of perturbation transmission from the external
surface to the ablation layer, we consider the ratio

max{[[Uz]ar) _
where ||U||, =

=,
max (| Oll2]es}

This ratio measures the amplification of a signal between the
external surface and the ablation layer. The amplification is
greater for an external heat-flux perturbation than for a pres-
sure perturbation (Table IIT). This fact corroborates the higher
ablation front deformation, relative to the external surface
deformation, in the case of an external heat-flux perturbation
than in the case of an external pressure perturbation (Fig. 8).
This is again a consequence of the ability of heat-conductivity
wave perturbations to trace back the expansion flow, unlike
acoustic perturbations.

TABLE III. Amplification factor r [Eq. (14)] between the ex-
ternal surface and the ablation front, for a heat-flux and external
pressure perturbation [Eq. (11a)] with (n, k) = (4, 0).

1’7\35 ?ﬁes
2,29 x 10° 8,41 x 10°
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TABLE IV. Amplification factor r [Eq. (14)] between the exter-
nal surface and the ablation front for an external heat-flux perturba-
tion [Eq. (11a)] at various n and k.

ki
0 1 10
n 4 8.41 x 10° 3.68 x 10° 1.10 x 107!
0,5 2.9 x 103 1.10 x 10°

The effects of diffusion on a heat-flux perturbation are in-
vestigated with (i) a shorter longitudinal characteristic length,
n=0.5 [Eq. (11)], and (ii) a transverse wave number in-
creased to 1 and 10. The efficiency of the transmission is re-
duced but still persists for a longitudinal characteristic length
being half of the conduction region size, n = 0.5 (Table IV).
In particular, the ablation front deformation is lowered (Fig. 9,
red), but its behavior is qualitatively similar to the case n = 4
(Fig. 9, blue). Therefore, a longitudinal characteristic length
being a fraction of the conduction region size does not inhibit
the heat conductivity wave that provokes the first shift of the
ablation layer and still allows information to be transmitted to
the ablation layer from the external surface. Damping effects
of transverse diffusion are much stronger than longitudinal
diffusion (Table IV), as a transverse wavelength of five times
the conduction region (k; = 1) implies a damping similar to
a longitudinal characteristic length of half of the conduction
region. Perturbations are efficiently transmitted to the ablation
front only for transverse wavelengths that are over several
times the conduction region size. Transverse diffusion also
implies a transient relaxation after each growth phase (Fig. 9,
pink and green). For transverse wavelengths being a fraction
of the conduction region or smaller (k; > 10), the transmis-
sion to the ablation layer and the ablation front deformation is
negligible. At larger times, and k; > 0, we recover the well
known shock front oscillations [7,13,16,17,20,26].

B. Dominant mechanisms

We have observed earlier (Sec. IV) that perturbations qual-
itatively follow characteristics’ trajectories from Eq. (9) in the
conduction and the postshock region. In the present section

0.08

Xor

FIG. 9. Deformation of the ablation front )’(\;‘f at early times for
different longitudinal characteristic A,/l.ona = {1/2, 4} and trans-
verse wave numbers k; = {0, 1, 10}.

0 0.25 0.5
m

FIG. 10. Contribution from (a) advection, (b) diffu}s_i\on, and (c)
remaining terms from Eq. (10a) to the variation rate of W, (n, k) =
(4, 1). The dash line represents a €, characteristic trajectory origi-
nating from the top of the heat-flux pulse [Eq. (5)].

we carry out a quantitative analysis to discriminate between
the main propagation mechanisms: advection or diffusion. Re-
calling Eq. (10a), the contributions from diffusion, advection,
and amplification terms, to any of the pseudocharacteristic
component variation rate, can be compared at any given flow
location and time. The contributions to W, in the conduc-
tion region for a purely longitudinal heat-flux perturbation
[Eq. (11a)] are shown on Fig. 10. Diffusion intensity rapidly
decays as the signal propagates inside the conduction region.
Contributions from amplification terms and noncharacteristic
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C:T

1072

10—4 L L

FIG. 11. Contributions of primitive variables (p, Uy, T) in a
unit heat-conductivity wave quantity (Wl) conserved along C; in
Eq. (9), with no contribution from transverse velocity. Zoom in the
conduction region.

terms [AW in Eq. (10a)] are negligible even in the abla-
tion layer neighborhood. Therefore, the dominant mechanism
enabling heat-conductivity wave perturbations to cross the
CJ point is advection, and not diffusion. The existence of
supersonic linear heat-conductivity waves is quantitatively
confirmed although diffusion exists in this region. This is a
direct consequence of base flow stratification in the conduc-
tion region. This advection mechanism is able to transmit
any hydrodynamic perturbation taking place at the external
surface to the ablation layer along a €; characteristic, through
the CJ point, to the ablation layer.

The quantity WV, is conserved, in first approximation, along
C;. The composition of a €; wave varies across the conduction
region but temperature is dominating (Fig. 11). Although the
contribution of density in the conserved VW, wave increases
as the wave comes up to the ablation layer, its contribution
becomes significant at some location where advection no
longer dominates (Fig. 3). Therefore, the heat-conductivity
wave reaching the ablation layer is mostly composed of a
temperature perturbation, as observed on Fig. 3(c).

In the three following sections we broaden this analysis
to find out which mechanism dominates depending on the
flow location and characteristic length, keeping only dominant
terms from Eq. (10a). We are interested in orders of magnitude
of the various quantities and not in their actual values.

1. Dominance of advection

Advection mechanism dominates where (i) diffusion
terms, (ii) amplification terms, and (iii) first order coupling
terms are sufficiently low. The latter is verified in the conduc-
tion region and the postshock region, whatever the wavelength
of perturbations. More generally the case of the postshock
region has been extensively studied in [21]. As heat flux
is quasinonexistent and the stratification is moderate in this
region, advection is the leading mechanism for perturbations
over a wide range of wavelengths.

We have seen previously that pseudocharacteristic vari-
ables behave close to linear waves in the conduction re-
gion for (1/2 <n < 4,0 < k. <1). Let k; denote the wave
number of a linear wave approximating the pseudocharac-

teristic wave W,» and o be the pulsation common to such
waves for i = 1, 2, 4. The magnitude of spatial derivatives is
approximated by

|02V, ~ KDV, forp=0,1,2, i=1,2,4. (I5)

The pulsation w is driven by the number of wavelengths n in
the conduction region [Eq. (11)]. In the case of a heat-flux
perturbation
w=rkr = ﬂ’
np lcond

For a given n, kp 4 >> ki as A| > A4, meaning that for a
given pulsation quasi-isothermal acoustic waves are sharper
than heat-conductivity waves. As a consequence second order
derivatives of quasi-isothermal acoustic waves are greatly en-
hanced compared to those of heat-conductivity waves. Domi-
nating contributions of each pseudocharacteristic variable W,
to each variation rate 8,1//\7; through second order derivatives
(diff), first order derivatives (adv), and amplification terms
(amp) are shown in Fig. 12. These contributions depend on
powers of the wave number, k” [Eq. (15)], and approximate
values of A;;, A;;, and C;; in the conduction region.

For 1 < n < 10 advection dominates diffusion for heat-
conductivity and acoustic waves [Fig. 12(a)]. Simplified ex-
pressions for the respective variation rates are written as

ki =w/k, fori = 2, 4.

Wi+ Md M+ D AW, =0,
i=2,4

W + 229, Ws = 0,
Wi + 2ad, Wy = 0.

One first notes that terms Ay [Eq. (10a)], accounting for
characteristic basis dependence on base-flow spatial deriva-
tives, are negligible regarding advection and diffusion terms,
meaning that the local approximation of Ref. [25] is valid in
this region and for this wavelength range. In the scenario of an
external heat-flux perturbation from an initially unperturbed
state, a wave W, will be advected along a ,@1 characteristic
autonomously since the term Zi=2, 4 A1i8312 W; vanishes. This
scenario corresponds to the perturbation history displayed
in Figs. 2, 4, and 10. However, as an external heat-flux
perturbation perturbs the external surface, a small acoustic
perturbation is also emitted [Fig. 9(b)], which produces a
feedback through first and second derivative coupling terms.
This coupling explains the very intense tracks following a C,
characteristic on Figs. 10(a) and 10(b). An external pressure
perturbation will be advected along a €, characteristic as
observed on Fig. 5(b). This advected acoustic signal will act as
a source moving at velocity A, on the heat-conductivity wave
(W)) through second order coupling terms [Fig. 5(a)]. This
seeded heat-conductivity wave perturbation will be advected
to the ablation front along a C; characteristic. Therefore, any
acoustic perturbation at the external surface may in principle
reach the ablation front by a second derivative coupling from
acoustic to heat-conductivity waves.

2. Dominance of diffusion

As stated in the preceding section, heat flux is quasinonex-
istent in the postshock region, so diffusion acts only for very
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FIG 12. Dommatmg terms_i in Eq. (10a) for (a) W — Wl,
(b) W — Wz, and (c) W — W4, for 1/n [Eq. (11)] ranging from
1073 to 10 ﬂld m = 0.25. Contribution from SCCOL]SI order deriva-
tives A;; 8in (solid), first order derivatives A;;d,,)V; (dashed), and
amplification terms (C;; + A; /-)V/\Z- (dotted).

short wavelengths. In the ablation layer amplification terms
dominate diffusion. For short wavelengths n < 0.1 second
order derivative terms, including diffusion, dominate in the

conduction region (Fig. 12) and variation rates may be ap-
proximated by

3,1/’\\/1 + ./4113312)7\71 + Z Al,-a,iz)/’\\/,» =0,

i=2,4
atWZ + A228,%,2W2 + A243312W4 =0,
3,W4 + A443312W4 + A423”212W2 =0. (16)

Heat conductivity waves evolve through diffusion and sec-
ond derivative couplings with forward and backward quasi-
isothermal acoustic waves. The latter evolve as a coupled
W,-Wy system due to diffusion; therefore, the distinction
between “forward” and “backward” is no longer appropriate
as propagation direction cannot be found where only diffusion
acts. The coupling phenomena between heat-conductivity and
acoustic waves in the case of the external heat-flux and pres-
sure perturbations explained in the preceding section hold, as
well as the validity of the local analysis.

3. Dominance of amplification terms

In the regions of low base-flow gradients, amplification
terms dominate at very long wavelengths—n >> 10 in the
conduction region (Fig. 12). The ablation layer is a region
of strong base-flow gradients. All amplification terms turn
out to dominate other terms due to the stiffness of the base
flow (see the ratio of characteristic lengths in Table I). In
particular, it is necessary to take into account terms A
[Eq. (10a)] accounting for the dependence of the characteristic
basis [Eq. (7)] on space derivatives, meaning that the local
approximation is not valid in this region. As a consequence
only amplification terms are retained from Eq. (10a) and
the evolution of pseudocharacteristic variables in the ablation
front is driven by

W1 + bW, +biuW, =0, withby; <0 and by > 0,
3rVT/2 + by W + bW, + by Wy = 0,

with by > 0 and by, by <0,
Wi + by Wy + bWy + by, = 0, (17)

where b;; = C;j + Ao, [Fig. 13(c)]. As a consequence a heat-
conductivity wave is strongly self-amplified in the ablation
front and does not experience any sign change while crossing
the ablation front, as observed on Fig. 4. The quantity W,
is also self-amplified, additionally to the trapping mechanism
described in Sec. IV, due to the coefficient b,,. Because of
the sign of b,1, a heat-conductivity wave eventually gives
rise to a wave W, of opposite sign when it reaches the
ablation layer. A backward acoustic wave originating from the
postshock region will also seed a positive reflected forward
acoustic wave, consequently maintaining a system of reflected
traveling waves between the ablation and shock front. This ap-
proximate analysis confirms the observations made on Figs. 4
and 5. No particular driving source term can be identified for
the evolution of the quantity W; in the ablation layer because
none of them dominates and two of them experience a sign
change across the ablation layer [Fig. 13(c)]. For a forward
propagating perturbation coming from the conduction region

bay ~ bas > bay,
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FIG. 13. Magnitude of dominating amplification terms in the
ablation layer, (a) W; — W, (b) W; — W, and (¢) W; — Wi

so a heat-conductivity wave interacting with the ablation front
free from perturbation will seed a backward acoustic wave in
the conduction region, as observed on Figs. 4 and 5.

V. DISCUSSION

The present analysis of linear perturbation propaga-
tion in an ablation wave has confirmed the existence of

heat-conductivity linear waves in the flow conduction region.
This existence is the direct consequence of temperature and
density stratification in the conduction region and therefore
cannot be obtained from the standard modeling of radiation-
driven ablation flows which assumes an isothermal expansion
region (e.g., Refs. [1,18]). Such waves correspond to the prop-
agation of fluctuations of heat-flux perturbations (Ref. [25],
Sec. 4.2). They are presently found to be an efficient trans-
mission mechanism for perturbations of longitudinal charac-
teristic lengths of the order of—or larger than—the conduc-
tion region size and of transverse wavelengths being several
times this size. Under these conditions, this transmission by
advection prevails over heat diffusion and is, by essence, free
of any damping.

Due to their high propagation velocity, heat-conductivity
waves propagate from the external surface to the ablation layer
in a fraction of the acoustic crossing time of the postshock
region, which is itself a fraction of the shock transit phase
duration. Therefore, heat-conductivity waves may occur for
perturbations of the external heat flux and/or pressure over
time scales shorter to much shorter than that of the shock
transit phase.

Because of second order spatial derivative couplings near
the external surface between forward-propagating acoustic
and heat-conductivity waves, any hydrodynamic perturbation
at the external surface may be partly advected through the con-
duction region, beyond a potential Chapman-Jouguet point,
up to the ablation front. Hence even fluctuations of the fluid
velocity or pressure at the flow external surface may have an
impact on the rest of the ablation flow, including the ablation
and shock fronts, in the case of a supersonic expansion flow.
This transmission process may be effective at any time of an
ablation flow provided that the temperature stratification in the
conduction region is sufficiently high. This refined analysis of
perturbation propagation furnishes a deeper understanding of
perturbation feedthrough in ablation flows due to nonlinear
heat conduction.

The present results of linear perturbation propagation have
been obtained for a particular self-similar ablation wave
representative, through its gross hydrodynamic features, of
the shock transit phase of an ICF implosion. The present
base-flow self-similarity implies that the radiation heat flux
as well as the exerted pressure at the flow external surface
follow increasing time-power laws [Eq. (3)]. These specific
behaviors are far from being observed in radiation hydro-
dynamic simulations of the shock transit phase of an ICF
pellet during the foot of the radiation drive. However, sim-
ulated flow profiles obtained for an actual ICF target design
and radiation drive (Figs. 1 and 5 in [29]), in the radiation
heat-conduction approximation, do not qualitatively differ,
for the conduction region, from those of a suitably chosen
self-similar ablation wave (Fig. 2 in [25]). Since the properties
of heat-conductivity waves are determined by the base-flow
temperature and density stratifications in this region, we may
expect to also observe forward-propagation of perturbations
by supersonic heat-conductivity waves in this particular non-
self-similar ICF flow. This claim is based on the fact that heat-
conductivity waves with supersonic characteristic speeds have
been found to occur in self-similar ablation flows presenting
very different stratifications of their conduction regions [25].
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The presence of such waves thus appears to be related to the
high values of the heat-conduction flux in the flow conduction
region rather than to the details of the temperature and density
stratifications in this region. In that respect, heat-conductivity
waves are expected to be present in ablation flows driven by
incident heat-flux laws less specific than the time-power laws
of Eq. (3). Of course, the velocities and prevailing of these
waves depending on the local features of the base flow, a
quantitative evaluation of the role played by such waves would
require applying the present analysis in pseudocharacteristic
variables to the ablation flow under study. Since this analysis
is independent of any self-similarity assumption, there is no
theoretical obstacle to do so, only the practical complication
of dealing with an arbitrary time evolution of the base-flow
variables.

Heat-conductivity waves are not restricted to radiation
conduction and may occur for other types of nonlinear heat
conduction, e.g., electron heat conduction. In this latter case,
the linear wave analysis proposed in the present work could be
applicable to the entire extent of a laser-driven ablative wave,
i.e., including the plasma corona expansion, and should be
especially relevant in the region between the surface of laser
energy deposition and the leading shock front. Such an anal-
ysis could even be elaborated and carried out for self-similar
solutions of a two-temperature modeling of laser-driven abla-
tion plasmas [30]. In the case of radiation-driven ablation of
an ICF pellet, the approximation of radiation heat conduction
is justified only for the optically thick part of the ablated ma-
terial. Therefore, the present analysis is relevant to a portion
of the ablation wave that starts at some distance donwstream
to the ablation layer and extends up to the forerunning shock
front. Perturbations, with large transverse wavelengths, of the
incoming radiation intensity at the ablator external surface are
efficiently transmitted across the optically thin region of the
expanding flow, resulting in perturbations of the radiation heat
flux at the edge of the conduction region. Since such heat-
flux perturbations correspond for a part to the characteristic
quantity advected by supersonic heat-conductivity waves, we
can still expect to observe the propagation, in addition to the
diffusion, of such waves deeper into the conduction region.
Obtaining a quantitative assessment of such a process in
order to go beyond this conjecture, would require at first to
extend the present analysis to the modeling of nonequilibrium
radiation diffusion, a task that we leave for future works.

VI. CONCLUSION

The present work provides a numerical investigation of
linear perturbations of a realistic self-similar ablation wave
in slab symmetry representative of the shock transit phase of
an ICF pellet implosion. The perturbation configuration that
is treated differs from those of illumination asymmetries and
ablative Richtmyer-Meshkov instability since we focus on the
setup of perturbations in an already existing and unperturbed
ablation flow, under the excitation of heat-flux or pressure per-
turbations at the flow external surface. The physics of ablation
is modeled by the equations of gas dynamics with a nonlinear
heat conduction as an approximation for radiation transport.
Perturbations of flow variables are three-dimensional without
any self-similarity assumption and are computed together with

external surface and shock front linear deformations. Linear
perturbations of the ablation layer position are provided.

Perturbations are found to behave close to linear waves in
the conduction region and the postshock region. The main re-
sult is the observation of supersonic heat-conductivity waves
propagating forward through the supersonic expansion flow,
as predicted by Clarisse et al. [25], as a consequence of
base flow stratification in the conduction region. This result
is allowed by the choice of a modeling derived from first
principles and without supplemental simplifying assumptions
and could not, for example, have been obtained with the
assumptions of an isothermal expansion of the flow con-
duction region [1,18]. As a consequence, any hydrodynamic
perturbation at the external surface may be advected through
the conduction region, beyond a potential Chapman-Jouguet
point, up to the ablation front. Although heat diffusion is
effective, linear perturbation propagation by supersonic heat-
conductivity waves is found, for transverse wavelengths ex-
ceeding the size of the conduction region, to be dominant
(to remain significant) for longitudinal characteristic lengths
above (down to a fraction of) this size. Hence within the
framework of inviscid compressible fluid dynamics with non-
linear heat conduction, diffusion of linear perturbations in
the conduction region of an ablation wave should not be
considered without its interplay with this supersonic advection
mechanism. Accounted for in the hydrodynamic equations
of ICF simulation codes treating radiation or electron heat
diffusion, this mechanism, if scrutinized in simulation re-
sults, will help in getting a better qualitative and quantitative
understanding of perturbation dynamics and feedthrough in
ablation flows. Thus more accurate pictures of ablation flow
sensitivities to external perturbations could be obtained, open-
ing the way for investigating this mechanism as a possible
means of partial control of hydrodynamic perturbations in
ICF implosions. Another aspect of heat-conductivity waves is
their ability to propagate density perturbations at supersonic
speeds, a feature which is critical in the radiative heat trans-
port instability [31]. However, no indication of instability has
been observed in the present ablation flow for which, along
heat-conductivity waves, density fluctuations are too low com-
pared to temperature fluctuations to be of some influence.
Nevertheless, heat-conductivity waves carrying higher density
fluctuations may arise in other self-similar radiative ablation
flows, leaving open the possibility of observing radiative heat
transport instability in such flows.

More generally, the description of the flow perturbations
conducted in this paper in terms of longitudinal pseudochar-
acteristic waves supplemented by the transverse potential
vorticity of the velocity field perturbation has been found
to be most appropriate for analyzing perturbation dynam-
ics in both the conduction region and postshock region
of a one-dimensional ablation flow. This description fur-
nishes additional propagation information over the classical
fundamental—Kovasznay—modes of fluid dynamics and are
more relevant for the density and temperature stratified re-
gions of such flows. The analysis performed by such a descrip-
tion and the companion identification of simplified evolution
equations form a methodology that is fully applicable to other
ablation flows whether in the context of radiation-driven or
laser-driven ablation.
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