
PHYSICAL REVIEW E 101, 043205 (2020)

Parallel firehose instability in electron-positron plasmas

C.-S. Jao 1 and L.-N. Hau 1,2,*

1Institute of Space Science, National Central University, Taoyuan City, Taiwan, Republic of China
2Department of Physics, National Central University, Taoyuan City, Taiwan, Republic of China

(Received 19 December 2019; revised manuscript received 25 February 2020; accepted 13 March 2020;
published 16 April 2020)

In a magnetized uniform plasma, firehose instability may arise as a result of pressure anisotropy of P|| > P⊥,
where P|| and P⊥ are the thermal pressure parallel and perpendicular to the magnetic field, respectively. In this
paper, we examine the parallel firehose instability in electron-positron plasmas based on the particle simulations
along with the linear fluid theory, which may give rise to the dispersion relation, instability criteria, and growth
rate, etc., for comparisons with those calculated from the kinetic simulations. As for the firehose instability in
electron-proton plasmas, the magnetic field grows rapidly and then decreases with oscillations. The nonlinear
saturated state complies with the linear stability criterion, α = μ0(P|| − P⊥)/B2 = 1, derived from the fluid
theory only for relatively smaller values of initial α or ωp/ωc, where ωp and ωc are the plasma and cyclotron
frequencies, respectively. For relatively larger values of initial α and ωp/ωc, the saturated α values are smaller
than 1 as a result of kinetic resonant effects. The dominant wave numbers are kc/ωp < 0.5 and the growth
rates are in the range of 0.1–0.3ωc, which are approximately consistent with the linear fluid theory for the same
wavelengths. Both electrostatic and electromagnetic modes predicted by the linear fluid theory are identified in
the kinetic simulations.
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I. INTRODUCTION

In space and astrophysical plasma environments, temper-
ature or pressure may tend to exhibit anisotropy due to the
lack of sufficient collisions (see, e.g., Refs. [1,2]). In par-
ticular, in strongly magnetized plasmas, the pressure tensor
can be described as the gyrotropic form with distinct P||
and P⊥, where P|| and P⊥ are, respectively, the pressure
components parallel and perpendicular to the magnetic field.
The temperature anisotropy is a source of free energy for
the development of firehose and mirror instabilities, etc. The
firehose-type pressure anisotropy may easily develop as the
solar or stellar wind expands outward with decreasing mag-
netic field as a result of the first adiabatic invariant [3]. For
electron-proton plasmas, the studies of firehose instabilities
have two categories, namely the proton and electron firehose
instabilities, with the former being associated with the large-
scale magnetic perturbations and the latter being associated
with the electron acceleration observed in the solar wind and
on the Sun (see, e.g., Refs. [3–5]). While the electron firehose
with relatively short wavelengths is principally studied by
kinetic models (see, e.g., Refs. [6,7]), the proton firehose may
be studied based on the anisotropic magnetohydrodynamics
(MHD)/Hall MHD or kinetic theory and simulations (see,
e.g., Refs. [8–11]). Indeed, the well-known firehose instability
criterion derived based on the linear gyrotropic MHD model
[12] and linear Vlasov theory [13] has the same form of
β|| − β⊥ > 2.

The electron-positron plasma may be created in the pres-
ence of strong electromagnetic fields or under high temper-
atures via pair production. They have been found to exist

*lnhau@jupiter.ss.ncu.edu.tw

in the Earth’s radiation belts and some astrophysical plasma
environments such as the pulsar magnetosphere [14–19] as
well as in laser plasma experiments [20–22]. An overall study
of the electromagnetic waves in electron-positron plasmas
with temperature anisotropy based on linear kinetic theory
has confirmed the existence of firehose instability, which has
the same instability criterion as the proton firehose instabil-
ity [23]. Recently, there has been increasing interest in the
study of nonlinear plasma instabilities driven by temperature
anisotropy in electron-positron plasmas; for example, Dieck-
mann et al. [24] have examined the Weibel instability of pair
plasmas and compared it with the results for electron plasmas
for applications of laboratory and astrophysical systems such
as the pulsar magnetosphere (see, e.g., Refs. [14,16]). In
this study, we examine the firehose instability in electron-
positron plasmas based on full particle simulations along
with linear fluid theory. The present study will focus on the
parallel propagation case for which the background magnetic
field is aligned with the wave vector. In MHD theory with
temperature anisotropy, the parallel proton firehose instability
is associated with the incompressible Alfvén wave and may
give rise to significant magnetic fluctuations [9–11]. Oblique
proton firehose instabilities have also been shown to exist
in electron-proton plasmas from both kinetic and anisotropic
MHD theories, but the growth rates are generally not as
significant as the parallel case (see, e.g., Ref. [25]). It is an
interesting issue of whether significant magnetic field per-
turbations can also occur for the parallel firehose instability
in electron-positron plasmas, which are in contrast to the
electron-proton plasmas with distinct inertial asymmetry.

In this study, the evolution of collisionless firehose instabil-
ities in electron-positron plasmas is examined based on par-
ticle simulations along with linear fluid theory that provides
instability criteria and growth rate, etc. The intercomparisons
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between the linear theory and kinetic simulations are made to
infer the role of linear fluid theory in the nonlinear evolution
of firehose instability. Note that we have recently shown that
in electron-positron plasmas, the beam or streaming instability
may also result in electromagnetic waves with magnetic field
fluctuations resembling the firehose-type instability [26–28].
In particular, the particle simulations show that streaming
electrons or positrons along the background magnetic field
may first lead to electrostatic solitary waves and subsequently
trigger the firehose-type instability as a result of parallel
heating associated with the electrostatic structures [28]. In
this study, the firehose instability is driven purely by pressure
anisotropy in the background equilibrium.

II. LINEAR FLUID THEORY

In this section, the two-fluid models with anisotropic
pressures together with the Maxwell equations shown in the
following are adopted to obtain the dispersion relation and
instability criteria for parallel firehose instability in electron-
position plasmas:
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In the above equations, mj and q j are the mass and electric

charge of particles, respectively. The quantities nj ,
↔
P j , and ⇀u j

are the number density, thermal pressure, and drift velocity
of fluids, respectively. The subscript j denotes two different
components, i.e., electrons and positrons, in the plasma sys-
tem. The thermal pressures in Eq. (2) have the gyrotropic

form
↔
P = P⊥

↔
1 + (P|| − P⊥)

⇀

B
⇀

B/B2, with two components, P||
and P⊥, which need be described by a set of energy laws,
say, the double-adiabatic laws or the more generalized energy
closures such as the double-polytropic laws [29,30]. Note that
the relativistic effects may enter the problem as the thermal
speeds of charged particles are comparable to the speed of
light which might occur in certain high-energy astrophysical
environments. In the following analyses, the ratios of thermal
speed to the speed of light are about 1/32–3/8 so that the
Lorentz factors are close to 1 when considering the rela-
tivistic effects. For ultrarelativistic anisotropic plasmas, the
dispersion relations for linear MHD waves and instabilities
may be found in the paper by Chou and Hau [31] while the
corresponding relations for two-component plasmas are still
lacking.

In this study, we consider the parallel propagation case in
which the electrostatic (ES) and electromagnetic (EM) modes
become decoupled. The ES mode is compressible with no
perturbations in the magnetic field and perpendicular pressure,

and the density and parallel pressure may follow the adiabatic
law, P|| = Cnγ|| . The EM modes are incompressible with no
density and pressure perturbations, and thus they are not
affected by the forms of energy closures. Linearization of the
above equations yields
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for which α0, j = μ0(P||,0, j − P⊥,0, j )/B2
0 and δα j =

μ0(δP||, j − δP⊥, j )/B2
0. For the ES mode, δ

⇀

B = 0 while
for the EM mode, δP⊥, j = δP||, j = 0. The dispersion relations
are obtained by eliminating δ

⇀u j from Eqs. (5)–(7) in Eq. (8),

which for
⇀

k||⇀

B0 may be separated into the ES (longitudinal)
and EM (transverse) modes.

In the following studies, both electrons and positrons in
the system are assumed to have the same equilibrium number
density, n0/2, perpendicular thermal pressure, P⊥,0/2, and
parallel thermal pressure, P||,0/2. The dispersion relations of
the longitudinal mode and the transverse mode are, respec-
tively,

1 = ω2
p

ω2 − k2c2
S,||

, (9)

ω2
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= ω2 − (1 − α0)ω2

c

ω2 − ω2
c − ω2

p

, (10)

for which c2
S,|| ≡ γ||P||,0/mn0, ω2

p ≡ n0e2/mε0, and ωc ≡
eB0/m. Also note that the thermal pressures P||,0 and P⊥,0 in
the system are the total pressures, P||,0 = P||,0,e + P||,0,p and
P⊥,0 = P⊥,0,e + P⊥,0,p, where the subscripts e and p denote
the electron and positron components, respectively. The lon-
gitudinal mode shown in Eq. (9) is the electrostatic Langmuir
mode of pair plasmas, which will also be identified in the
kinetic simulations. As expected for the parallel propagation
case, the dispersion relation of the transverse mode (10) is
independent of the energy closure, and the L and R modes are
indistinguishable for the pair plasma system [32,33]. The four
roots for the transverse mode are as follows:

ω2
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FIG. 1. The phase velocity ω2/c2k2 of the transverse mode vs wave frequency with ωp/ωc = 8 and (a) α0 = 0, (b) α0 = 0.25, and
(c) α0 = 2.0. The dashed and dot-dashed lines in each panel denote the cutoff frequency ωcut = √

ω2
c + ω2

p and the resonance frequency
ωres = √

1 − α0ωc, respectively. The bottom panels are the low-frequency parts of the top panels.

where ω1,2 and ω3,4 correspond to the upper and lower fre-
quency branches, respectively. The instability criteria derived
from Eqs. (11) and (12) are, respectively,

β⊥,0 − β||,0 >

(
ω2

p + ω2
c + c2k2

)2

2c2k2ω2
c

− 2, (13)

β||,0 − β⊥,0 > 2, (14)

where β||,0 = P||,0/(B2
0/μ0) and β⊥,0 = P⊥,0/(B2

0/μ0).
Equations (13) and (14) are the criteria for cyclotron
instability (P⊥,0 > P||,0) and firehose instability (P||,0 > P⊥,0),
respectively. For cyclotron instability, all four roots are
complex numbers with real and imaginary parts implying that
the cyclotron mode is a propagating instability. For firehose
instability, ω1,2 are real and ω3,4 are purely imaginary so it
is a purely growing mode. Note that the firehose instability
criterion (14), commonly written as α0 > 1, is consistent with
the result based on the kinetic theory [23]. In the following,
we show the growth rate calculations for various parameter
values that are not addressed in the prior study of kinetic
firehose instability in pair plasmas [23].

Figure 1 shows the phase velocity v2
ϕ/c2 of the transverse

mode versus wave frequency in Eq. (10). The dashed and
dot-dashed lines in the figure denote the cutoff frequency
ωcut =

√
ω2

c + ω2
p and the resonance frequency ωres =√

1 − α0ωc, respectively, derived from Eq. (10). For the
isotropic case (α0 = 0) shown in panel (a), the transverse

mode may propagate in the frequency regime less than the
resonance frequency ωc or larger than the cutoff frequency√

ω2
c + ω2

p . We may separate the transverse mode into lower
and upper frequency branches based on this property [32,33].
For P||,0 > P⊥,0 but α0 < 1 shown in panel (b), ωres decreases
with increasing α0 value, implying the narrower propagation
regime for the lower frequency branch. On the other hand, the
upper frequency branch maintains stable propagation above
the cutoff frequency

√
ω2

c + ω2
p , while for α0 > 1 [panel (c)]

ωres no longer exists and only the upper frequency branch may
propagate in the system.

Figure 2 shows the wave frequency versus wave number
of the transverse mode for the cases with α0 = 0 [panel (a)],
α0 = 0.25 [panel (b)], and α0 = 2.0 [panel (c)]. The solid and
dashed curves in all panels denote the real and imaginary parts
of the wave frequency, respectively, derived from Eqs. (11)
and (12). For the isotropic case [α0 = 0, panel (a)] and the
modest anisotropic case [α0 = 0.25, panel (b)], as in Fig. 1,
the upper frequency branch can only propagate with frequency
higher than ωcut = 2.23ωc and the lower frequency branch
may propagate with frequency lower than ωres. For α0 > 1
[panel (c)], the lower frequency branch becomes a purely
growing unstable mode.

Figure 3 shows the linear growth rate of the firehose mode
as functions of wave number and α0 values. As expected,
the linear growth rate generally increases with increasing α0

values. The growth rate also mostly increases with increasing
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FIG. 2. The wave frequency vs wave number of the transverse
mode with ωp/ωc = 8 and (a) α0 = 0, (b) α0 = 0.25, and (c) α0 =
2.0. The solid and dashed curves in each panel denote the real part
ωr and the imaginary part ωi of the wave frequency, respectively.

k and approaches a nearly constant value for kc/ωp > 1 or
λ < λsd = c/ωp. Note that λsd is the characteristic length of
the electron and positron fluid model, thus the physics may not
be definable for λ < λsd . Figure 4 shows the saturated growth
rate of the firehose instability as functions of ωp/ωc and α0

values, indicating that the saturated growth rate may reach
∼1.75ωc and is independent of the varying ωp/ωc values.

As shown in Eq. (14), the instability criterion of the
firehose instability seems to be the same for both electron-
positron and electron-proton plasmas. The fluid models
adopted for both plasma systems, however, are not the same;
in particular, the two-fluid model with pressure anisotropy
is adopted for electron-positron plasmas, while the ideal
anisotropic MHD model is used to derive the criterion of

FIG. 3. The imaginary part of the wave frequency ωi/ωc of the
transverse mode as functions of the wave number and α0 value with
ωp/ωc = 8. The dot-dashed curve in the figure denotes the firehose
instability threshold.

α0 > 1 for proton firehose instability. In the ideal MHD
model with pressure anisotropy, the frozen-in-flux condition
⇀

E + ⇀u × ⇀

B = 0 is assumed, which is the mechanism for the
growth of the magnetic field perturbations. The two-fluid
equations shown above may in principle be combined into
one-fluid equations along with the generalized Ohm’s law,
and the ideal MHD model is the result of neglecting the
inertial effects in the generalized Ohm’s law in the one-
fluid formulation. It is interesting to derive the corresponding
generalized Ohm’s law for the parallel firehose instability in
electron-positron plasmas. In particular, the following modi-
fied frozen-in-flux condition is obtained from the linearized
electron-positron fluid equations:

δ
⇀

E + δ
⇀u × ⇀

B0

(
ω2

c − ω2

ω2
c

)(
1

1 + α0k2λ2
sd

)
= �0, (15)

where δ
⇀u = (n0,eδ

⇀ue + n0,pδ
⇀up)/(n0,e + n0,p). For low-

frequency and long-wavelength limits, ω � ωc and
α0k2λ2

sd � 1, Eq. (15) becomes δ
⇀

E + δ
⇀u × ⇀

B0 = 0,
complying with the frozen-in-flux condition. The modified
frozen-flux condition will be examined in the particle
simulations.

FIG. 4. The saturated growth rate of the firehose instability as
functions of ωp/ωc and α0 values.
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FIG. 5. Time evolution of the average perturbed magnetic field 〈δB2/B2
0〉 (top panels) and maximum perturbed magnetic field δBmax/B0

(bottom panels) for the cases with β||,0 = 10, β⊥,0 = 2 (α0 = 4, dot-dashed curve), β||,0 = 8, β⊥,0 = 2 (α0 = 3, dashed curve), β||,0 = 6,
β⊥,0 = 2 (α0 = 2, solid curve), and β||,0 = 4, β⊥,0 = 2 (α0 = 1, dotted curve) and with (a) ωp/ωc = 32, (b) ωp/ωc = 16, and (c) ωp/ωc = 8
based on the kinetic simulations.

Nonlinear simulations

The fluid model used for the linear analyses contains no
transport effects and thus is not suitable for examining the
nonlinear evolution of collisionless firehose instabilities. In
this section, we show the calculation results from a one-
dimensional electromagnetic particle simulation model that
is developed largely based on the published particle-in-cell
model, KEMPO1 [34,35]. In particular, the Buneman-Boris
method is used to solve the relativistic equations of motion,
while the leap-frog scheme along with the standard second-
order central difference method is applied to solving the
Faraday and Ampère laws for the magnetic and electric fields,
respectively. The current density on the grids is calculated
by taking all the particles in the neighboring cells based on
the linear interpolation weight. The numerical model was
benchmarked and applied recently to the study of streaming
instability in electron-positron plasmas [28]. In the calcu-
lations, dimensionless units with vth,⊥ = 1.0 (the thermal
velocity perpendicular to the background magnetic field) and
ωp = 1.0 are used. The time interval �t = 0.01ω−1

p and the
grid size �x = 1λD (λD = vth,⊥ω−1

p ) are set for all cases. The
number density of both electrons and positrons is 128 pairs

per cell. Note that we have carried out the experiments with
various particle numbers (64, 128, and 256 pairs per cell)
and confirmed that the results are essentially the same. The
boundary of the simulation system is periodic, and the length

FIG. 6. The maximum perturbed magnetic field δBmax/B0 vs fre-
quency ratio ωp/ωc for the cases with β||,0 = 10, β⊥,0 = 2 (α0 = 4,
circle symbols), β||,0 = 8, β⊥,0 = 2 (α0 = 3, plus symbols), β||,0 = 6,
β⊥,0 = 2 (α0 = 2, star symbols), and β||,0 = 4, β⊥,0 = 2 (α0 = 1,
cross symbols).
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FIG. 7. Time evolution of the average 〈β|| − β⊥〉 value for the
cases with β||,0 = 10, β⊥,0 = 2 (α0 = 4, dot-dashed curve); β||,0 = 8,
β⊥,0 = 2 (α0 = 3, dashed curve); β||,0 = 6, β⊥,0 = 2 (α0 = 2, solid
curve); and β||,0 = 4, β⊥,0 = 2 (α0 = 1, dotted curve) and with (a)
ωp/ωc = 32, (b) ωp/ωc = 16, and (c) ωp/ωc = 8.

of the simulation domain is kept as L = 64c/ωp. The back-
ground magnetic field is along the x direction, and the ini-
tial particle velocity of both species is described by the bi-
Maxwellian distribution. In all cases, β⊥,0 = 2 and β||,0 =
4–10 and the frequency ratios ωp/ωc = 8–32 are chosen for
comparison with the linear fluid theory. Note that recently
there have been several studies on electron firehose instability
with bi-kappa functions as the initial velocity distribution (see,
e.g., Refs. [36,37]). The present study can in principle be
extended to more general cases with the initial kappa velocity
distribution, which introduces another free parameter in the
simulation model.

Figure 5 shows the time evolution of the average per-
turbed magnetic field 〈δB2/B2

0〉 (top panels) and the max-
imum perturbed magnetic field δBmax/B0 (bottom panels)
for the cases with various values of β||,0 and the frequency

FIG. 8. Spatial and temporal evolution of (a) Ex (x, t ) and (b) Ey(x, t ) and the Fourier spectrum of (c) Ex (k, ω) and (d) Ey(k, ω) for the case
with β||,0 = 8, β⊥,0 = 2, and ωp/ωc = 8. The dashed curves in the bottom panels are the dispersion relations of the longitudinal mode [in panel
(c)] and the transverse mode [in panel (d)] from the linear theory.

043205-6



PARALLEL FIREHOSE INSTABILITY IN … PHYSICAL REVIEW E 101, 043205 (2020)

ratios ωp/ωc. According to the firehose instability criterion
β||,0 − β⊥,0 > 2 predicted from the fluid theory, the cases
with β||,0 = 10, β⊥,0 = 2 (α0 = 4, dot-dashed curve), β||,0 =
8, β⊥,0 = 2 (α0 = 3, dashed curve), and β||,0 = 6, β⊥,0 = 2
(α0 = 2, solid curve) are unstable, while the case with β||,0 =
4, β⊥,0 = 2 (α0 = 1, dotted curve) is marginally stable. As
shown in the figures, there is no obvious magnetic fluctuation
for the case with β||,0 = 4, β⊥,0 = 2 (dotted curve). As for
the unstable cases, in the early stage, the maximum magnetic
field fluctuations can grow up to δBmax/B0 ∼ 0.75 in the
case with β||,0 = 10, β⊥,0 = 2, and ωp/ωc > 8. As expected,
the initial growth rate increases with increasing α0 and the
linear growth rates in particle simulations are in the range
of 0.1–0.3 ωc in contrast to the maximum growth rates of
0.5–1.75 ωc for kc/ωp > 1 (or λ < 6.3 c/ωp) as predicted by
linear fluid theory. We will discuss this discrepancy further
in the following. After the peaks that occur at tωc ∼ 50
for all unstable cases, the magnetic field exhibits oscillatory
features that are similar to the nonlinear evolution process
of the firehose instabilities in electron-proton plasmas (see,
e.g., Refs. [7–10]). The oscillation periods are independent of
ωp/ωc but slightly shorter with increasing β||,0 value (i.e., α0).
The quantity δBmax/B0 with various values of β||,0 and ωp/ωc

is shown in Fig. 6, which shows that the maximum amplitude
of magnetic perturbations increases with increasing α0 but is
nearly independent of ωp/ωc.

Figure 7 shows the time evolution of the average 〈β|| − β⊥〉
value in the nonlinear calculations. Note that the particle
velocity distributions in all cases are the bi-Maxwellian distri-
bution initially, and the root-mean-square velocity of particles
is used to infer the thermal pressure as well as the corre-
sponding β values in nonlinear calculations. For all unstable
cases, the average 〈β|| − β⊥〉 values decrease sharply after
tωc ∼ 50 and reach 〈β|| − β⊥〉 � 2 in the final stage. The
oscillatory features are associated with the magnetic field
perturbations, which are decreased after tωc ∼ 50. As shown,
only for relatively smaller α0 and ωp/ωc values does the
nonlinear evolution comply with the quasilinear fluid theory
with α0 = 1 at the saturated state. For the cases with relatively
larger α0 or ωp/ωc values, the saturated states have smaller
α values, a result also seen in proton firehose instability
[10].

Figure 8 shows the temporal and spatial evolution of elec-
tric field for the case with β||,0 = 8, β⊥,0 = 2, and ωp/ωc = 8.
For the longitudinal mode [panel (a)], the amplitude of longi-
tudinal fluctuations Ex(x, t ) remains the same as that of the
initial phase. The corresponding Fourier spectrum Ex(k, ω)
for the time interval of tωc = 0–128 is shown in Fig. 8(c). As
indicated, the Langmuir mode can be observed and described
by the linear dispersion relation shown in Eq. (9) [dashed
curves in Fig. 8(c)]. As for the electric field [Fig. 8(b)],
Ey(x, t ) starts to grow after tωc = 35 and reaches the same or-
der as the longitudinal mode Ex(x, t ), which is associated with
the growing magnetic field fluctuations shown in Fig. 5(a)
(dot-dashed curve). In the Fourier spectrum Ey(k, ω) shown in
Fig. 8(d), the perturbation in the higher-frequency branch, cor-
responding to the transverse mode dispersion relation shown
in Eq. (10), is observed, which is a stably propagating mode
in the frequency range higher than ωcut =

√
ω2

c + ω2
p . On the

other hand, apparent perturbations are also present in the low-

FIG. 9. Spatial and temporal evolution of the positron density
np(x, t ) [panel (a)] and the corresponding Fourier spectrum np(k, ω)
[panel (b)] for the case with β||,0 = 8, β⊥,0 = 2, and ωp/ωc = 8. The
dashed curve in the bottom panel is the dispersion relation of the
longitudinal mode from the linear theory.

frequency and small-wave-number regime, which are related
to the predicted nonpropagation unstable mode.

Figure 9 shows the temporal and spatial evolutions (top
panels) and the corresponding Fourier spectrum (bottom pan-
els) of positron number density for the same case (β||,0 = 8,
β⊥,0 = 2, and ωp/ωc = 8). As indicated, there exist density
fluctuations of short and/or long wavelengths throughout the
course of nonlinear evolution. The Fourier spectrum (bottom
panel) further indicates that the density perturbations are
present in both the high- and low-frequency regimes. The
short-wavelength or high-frequency parts are associated with
the linear Langmuir mode, while the long-wavelength or low-
frequency perturbations developing in the later phase appear
to be due to the nonlinear effects.
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FIG. 10. The magnetic field hodograms for the spatial domain of
x = 0–512c/ωp for the case with β||,0 = 8, β⊥,0 = 2, and ωp/ωc = 8.
The circle symbol in each panel denotes the value of (By, Bz ) at x =
0. From x = 0 to 512c/ωp, the color is changing from blue, green,
yellow, orange, red, magenta, and back to blue.

The magnetic field hodograms for the same case at various
times (tωc = 24, 32, 40, and 48) are shown in Fig. 10. As
indicated, both By and Bz are comparable and the magnetic
field can possess left-handed polarization (tωc = 24, 32, 40)
or mixed left-handed and right-handed polarizations toward
the saturated state (tωc = 48). According to the linear fluid
theory, the electromagnetic or transverse modes have no
distinguishable right-handed and left-handed polarization in
electron-positron plasmas with the same parameter values. It
is thus possible to observe both magnetic field polarizations in
the same nonlinear simulations.

As shown in Fig. 8(d) for β||,0 = 8, β⊥,0 = 2, and ωp/ωc =
8, the perturbations in the lower frequency branch are
pronounced only in the regime of kc/ωp < 0.5 (or λ >

12.5 c/ωp). The average growth rate for tωc = 20–40 is
0.25 ωc for the dominant wavelength (kc/ωp = 0.29 or λ =
21.3 c/ωp), which is slightly smaller than the value of 0.37ωc

predicted by linear fluid theory for the same wavelength. Note
that in accordance with the linear fluid theory, the maximum
growth rate is 1.5ωc for kc/ωp > 1 (or λ < 6.3c/ωp), while in
the kinetic simulations the perturbations for kc/ωp > 1 exist
only for the longitudinal mode but are nearly absent for the
transverse mode even in the early phase of time evolution.
This is likely attributed to the limitations of the fluid theory
in describing the physics of the electromagnetic modes for
λ < c/ωp. The dominance of longer wavelength modes in
the kinetic simulations may further be illustrated by checking
the modified frozen-in-flux condition in the calculations. In
particular, as shown in Eq. (15), for long-wavelength modes
α0k2λ2

sd � 1, the frozen-in-flux condition is more valid.

Figure 11 shows the spatial distributions of δ
⇀

E/B0 (dot sym-

FIG. 11. The spatial distributions of δ
⇀

E/B0 (red dot symbols)
and δ

⇀u (blue solid curve) for the case with β||,0 = 8, β⊥,0 = 2, and
ωp/ωc = 8 at (a) tωc = 48 and (b) tωc = 60.

bols) and δ
⇀u (solid curve) before and after the occurrence

of maximum magnetic field perturbation for the case with
β||,0 = 8, β⊥,0 = 2, and ωp/ωc = 8. As indicated, the com-
ponent δEy/B0 (δEz/B0) can be fitted well with the quantity
−δuz (δuy) in the large-scale limit, implying the validity of

δ
⇀

E + δ
⇀u × ⇀

B0 ∼ 0 for small wave number approximation
as predicted by linear fluid theory. The growth of signifi-
cant magnetic field perturbations is apparently attributed to
the long-wavelength modes in nonlinear kinetic simulations
which, however, does not imply that the one-fluid MHD
model with temperature anisotropy is suitable for describ-
ing the electron-positron firehose instability. In particular,
as shown in Fig. 11, the

⇀

E × ⇀

B drift has a wide range as
compared to the simple velocity profile.

III. CONCLUSIONS

In this paper, we have examined the firehose instability
in electron-positron plasmas based on linear fluid theory and

043205-8



PARALLEL FIREHOSE INSTABILITY IN … PHYSICAL REVIEW E 101, 043205 (2020)

full particle simulations. As for the parallel firehose insta-
bility in electron-proton plasmas, the instability occurs for
β|| − β⊥ > 2 and is a purely growing mode. In the kinetic
simulations, the saturated state agrees with the fluid threshold
only for relatively smaller pressure anisotropy and stronger
magnetic field. For large temperature anisotropy and weak
magnetic field, the saturated state has β|| − β⊥ < 2, which
is due to the kinetic resonant effects and is also seen in the
hybrid simulation of firehose instability in electron-proton
plasmas. In the nonlinear simulation, the magnetic field in-
creases rapidly in the initial stage, reaching a peak value, and
then decreases with oscillations. These features resemble the
proton firehose instabilities developing in the fluid and kinetic
simulations. The growth rate and the dominant wave number
of firehose instability in the particle simulations, however, are
smaller than the predicted values based on linear fluid theory
as a result of kinetic effects. Nevertheless, all the wave modes

including the longitudinal electrostatic mode and the trans-
verse electromagnetic modes predicted by the fluid theory are
identified in the kinetic simulations. We have also derived
the modified frozen-in-flux condition for the electron-positron
firehose instability, and we examined the relation in kinetic
simulations. It is shown that the frozen-in-flux condition
approximately holds for the dominant long-wavelength scales,
which may contribute to the growth of large-scale magnetic
field perturbations in electron-positron plasmas.
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