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Stability of the negative ion of hydrogen in nonideal classical plasmas
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The stability of the negative ion of hydrogen (H−) embedded in nonideal classical plasma has been studied by
computing the ground state energy of the ion quite accurately. The interactions among the charged particles in
plasma have been modelled by a pseudopotential, derived from a solution of Bogolyubov’s hierarchy equations.
An extensive basis set is employed in Rayleigh-Ritz variational method to compute the ground state energy of
H− for various values of plasma parameters. Effects of nonideality of plasma on the stability of the ion have
been investigated in detail for a wide range of nonideality. Particular emphasis is made to compute accurately
the critical values of the plasma screening parameters.
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I. INTRODUCTION

The negative ion of hydrogen has long been the object
of astronomical investigations [1–10]. The ion has huge im-
pact on astrophysics. It is plentiful in several astrophysical
environments, such as in late-type stars, stellar atmospheres,
planetary nebulae, translucent clouds, etc. H− is a major
source of opacity of late-type stars, stellar atmosphere and
other astrophysical environments [9]. It played an important
role in the formation of early universe [10]. Structurally, the
ion is composed of a proton and two electrons. The electron-
electron interaction is as important as the electron-proton
interaction in the formation of bound states. Large dipole
polarizability of hydrogen atom is mostly responsible for the
formation of H−. An electron, slowly approaching a neutral
hydrogen atom, induces dipole polarization to the hydrogen
atom. The resulting attractive polarization potential leads to
the formation of H−. Moreover, the polarization interaction
also leads to the continuous absorption which is a major
source of opacity of various astrophysical environments [9].
This ion can break up through associative detachment to form
H2 which was essential for the formation of first stars [10].

In vacuum, the interaction between a pair of charged
particles is governed by long-range Coulomb interaction.
However, the interaction between a pair of charged parti-
cles embedded in a plasma environment gets screened. This
screening depends on the temperature and density of the
underlying plasma. In particular, two quantities that depend
on temperature and density, namely the mean interparticle
interaction and the mean kinetic energy of the thermal motion,
play an important role in the characterization of classical
plasmas and screening of interaction potentials. The ratio
of these two quantities is known as the nonideal plasma
parameter γ . If γ = 0, that is interparticle interactions vanish,
plasma particles move with thermal velocity along straight
lines, virtually without colliding with each other [11]. Such
plasmas are called collisionless or ideal plasmas. In a strict
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sense, ideal plasma does not exist [12]. However, a low-
density and high-temperature plasma (for which γ � 1) can
be approximately considered as an ideal one [12]. For ideal
plasmas, the screened interaction is generally modelled by the
Debye-Huckel potential of the form

VDH(r) = e−r/λ

r
, (1)

where λ is the Debye length. In atomic units (a.u.) it is given
by λ = (KBTe/4πne)1/2, where KB, Te, and ne respectively
denote the Boltzmann constant, temperature, and density. For
an obvious reason, such plasmas are also known as Debye-
type plasmas. Debye-Huckel potential adequately describes
the effective potential in a plasma, when γ � 1.

With the increase in density (leading to the increase in
nonideal parameter γ ), inter-particle interactions comes into
play. Under these circumstances, the Debye-Huckel model
of screening cannot be used for the description of screened
interactions in plasma [12]. For nonideal classical plasmas
(γ �= 0) having no degeneration quantum effects, the screened
interaction between the charged particles (proton and elec-
tron) can be obtained from a sequential solution of the chain of
Bogolyubov equations [13]. This screened interaction or the
pseudopotential between a pair of charged particles (q1, q2),
separated by a distance r, is given by (in a.u.) [13]

V (r) = q1q2[10 + γ (e−√
γ r/λ − 1)(1 − e−2r/λ)]

10[1 + c(γ )]

e−r/λ

r
, (2)

where the nonideal plasma parameter γ (=1/λKBTe) charac-
terizes the nonideality of the plasma, and c(γ ) is a function
of γ , called the correction function. The values of the c(γ )
is known for a set of discrete values of γ in the range
[0,4.5] [13]. The above pseudopotential takes into account the
collective events and the screening effects in it, and correctly
represents a pseudopotential model of particle interaction of
a nonideal classical plasma (NICP) for 0 � γ � 4.0. It is
to be noted that this potential reduces to the Debye-Huckel
potential in the form of Eq. (1) in the weak limit of nonideality
(γ � 1). There are a good number of studies in which the
pseudopotential in the form of Eq. (2) has been used to
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TABLE I. Ground state energies (in a.u.) of H− in NICP with increasing N in the wave function (5).

κ −EH− (σ14) −EH− (σ15) −EH− (σ16) −EH− (σ17) −EH− (σ18)(
a−1

0

)
γ N = 372 N = 444 N = 525 N = 615 N = 715

0.00 0.1 0.487 935 46 0.487 935 47 0.487 935 47 0.487 935 48 0.487 935 48
0.10 0.1 0.396 927 25 0.396 927 26 0.396 927 26 0.396 927 26 0.396 927 27
0.25 0.1 0.280 296 91 0.280 296 93 0.280 296 93 0.280 296 94 0.280 296 94

represent the screening of NICPs [13–23]. Moreover, there are
some studies in which quantum mechanical effects in nonideal
plasmas have been considered [24–28].

In vacuum, the bound states of H− have been studied exten-
sively [29–33]. However, most of the astrophysical environ-
ments prevail in the state of plasma [34–38]. The screening of
plasma significantly affects the stability of an atomic system.
For example, the hydrogen atom has an infinite sequence of
bound states in vacuum. As soon as it is embedded in plasma,
the number of bound states is reduced to a finite number
[23]. There are certain ranges of temperature and density of
plasmas beyond which electron-proton system is unable to
form a bound state. So far, some investigations have been
made to study the stability of H− in plasmas [39–41]. Those
studies reveal that in Debye-type plasmas H− exists when the
Debye length approximately lies in the range (∞, 0.85] (in a0)
[39]. In other words, the plasma screening parameter κ (=1/λ)
approximately lies in the range [0, 1.17] (in a−1

0 ). The value
of κ beyond which there exists no bound states is called the
critical screening parameter. As λ is related with temperature
and density, we can estimate the ranges of temperature and
density for which H− exists in Debye plasma environments.

In this paper we shall pay our attention to investigate the
bound states of H− embedded in NICP in which interactions
among the charged particles are governed by the pseudopoten-
tial in the form of Eq. (2). NICPs are found to exist in many
natural and laboratory frameworks, such as in astrophysical
objects and in plasmas produced by laser reduction of solid
targets [13]. The center of the planets and stars are thought
to consist of dense nonideal plasmas [24]. Our objective is
to investigate the effects of nonideality of classical plasmas
on the stability of H−. We consider the temperature and
density of the plasma to lie in the ranges [1 − 10] × 104 K and
2.7 × (1023–1026) m−3 respectively. This makes the nonideal
plasma parameter γ lie in the range [0, 4]. We intend to
make a detailed study on the properties of the ground sate of
H− for 0 � γ � 4.0 within the framework of Rayleigh-Ritz
variational principle. Particular emphasis would be given to
determine the critical screening parameters quite accurately.
In order to do these, we employ an extensive basis set in
Rayleigh-Ritz variational principle. Here, it is worthwhile to
mention that in electrolytic solutions, only the interactions
among the ions are considered to be screened. But in plasma
research, it is essential to replace all the Coulomb interactions
by screened interactions [42]. This is particularly apparent in
astrophysical hydrogen plasmas which, apart from electrons
and protons, contain neutral hydrogen as well and even, as a
rule, plenty of negative hydrogen ions [42]. It is to be noted
that the pseudopotential (2) describes the interaction between
two static charges and holds good if the relative velocity v of
the interacting particles is less than the thermal velocity vT .

In Debye-type plasma environments, there exists a dynamical
screening model in which the Debye length in Eq. (1) is
replaced by λ

√
1 + v2/vT [43]. Atomic units (a.u.) will be

used in the remaining part of this paper unless otherwise stated
explicitly.

II. THEORY AND CALCULATIONS

We choose the origin of the coordinate system at the proton
which is assumed to be at rest. Let �r1, �r2 be the coordinates of
the electrons and �r12 be the relative coordinate of the electrons.
In this coordinate system, the nonrelativistic Hamiltonian of
H− embedded in NICP, characterized by the pseudopotential
in the form of Eq. (2), is given by (in a.u.)

H = −1

2
∇2

1 − 1

2
∇2

2 − f (r1; γ )
e−r1/λ

r1

− f (r2; γ )
e−r2/λ

r2
+ f (r12; γ )

e−r12/λ

r12
, (3)

where f (r; γ ) = [10 + γ (e−√
γ r/λ − 1)(1 − e−2r/λ)]/[10{1 +

c(γ )}]. We have considered 32 values of c(γ ) for 0 � γ � 4.5

TABLE II. Comparison of the ground state energies of H−

and electron affinity of hydrogen embedded in Debye-type plasma
(γ = 0).

κ
(
in a−1

0

) −EH− (in a.u.) εH

0.00 0.527 751 012 422 14 0.027 751 012 422 14
0.527 751 016 544 377 196 586 5a

0.527 751 016 544 377 196 503b

0.527 751 016 54c 0.027 751 016 54c

0.527 751 01d

0.05 0.479 034 780 252 19 0.027 218 351 727 68
0.479 034 784 51c 0.027 218 355 98c

0.479 04e 0.027 215e

0.10 0.432 952 194 650 02 0.025 894 164 036 62
0.432 952 199 29c 0.025 894 168 68c

0.432 95e 0.025 892e

0.25 0.310 735 811 689 67 0.019 816 224 168 47
0.310 735 819 00c 0.019 816 231 48c

0.310 74e 0.019816e

0.50 0.157 826 406 142 10 0.009 709 384 269 68
0.157 826 419c 0.009 719 397c

0.157 83e 0.009 706e

aSee Frolov et al. [29].
bSee Drake et al. [30].
cSee Kar and Ho [39].
dSee Ghoshal and Ho [40].
eSee Winkler [41].
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TABLE III. The ground state energies (in a.u.) of H− and electron affinity of hydrogen (in a.u.) for various plasma temperatures and densities.

ne = 2.7 × 1023 m−3

Te (in K) 104 2 × 104 5 × 104 8 × 104 105

γ 0.125 821 66 0.044 484 67 0.011 253 83 0.005 560 58 0.003 978 83
λ (in a0) 250.970 411 60 354.925 759 84 561.186 900 68 709.851 519 68 793.638 125 97

−EH− 0.475 520 964 3 0.505 760 327 1 0.520 836 545 3 0.523 780 028 1 0.524 652 275 9
εH 0.025 200 035 9 0.026 737 953 5 0.027 479 807 1 0.027 615 561 8 0.027 653 779 2

ne = 2.7 × 1024 m−3

Te (in K) 104 2 × 104 5 × 104 8 × 104 105

γ 0.397 883 02 0.140 672 89 0.035 587 74 0.017 584 11 0.012 582 17
λ (in a0) 79.363 812 60 112.237 380 14 177.462 879 92 224.474 760 27 250.970 411 60

−EH− 0.388 810 346 7 0.466 149 161 4 0.506 609 319 6 0.515 391 808 2 0.518 059 640 4
εH 0.020 983 289 1 0.024 935 304 5 0.026 922 692 8 0.027 328 259 4 0.027 445 503 4

ne = 2.7 × 1025 m−3

Te (in K) 104 2 × 104 5 × 104 8 × 104 105

γ 1.258 216 58 0.444 846 74 0.112 538 31 0.055 605 84 0.039 788 30
λ (in a0) 25.097 041 16 35.492 575 98 56.118 690 07 70.985 151 97 79.363 812 60

−EH− 0.234 330 773 4 0.363 131 203 2 0.466 784 425 0 0.490 464 220 3 0.498 109 971 5
εH 0.013 503 726 9 0.020 178 560 3 0.025 360 672 3? 0.0264624502 0.0268022206

ne = 2.7 × 1026 m−3

Te (in K) 104 2 × 104 5 × 104 8 × 104 105

γ 3.978 830 17 1.406 728 90 0.355 877 39 0.175 841 11 0.125 821 66
λ (in a0) 7.936 381 26 11.223 738 01 17.746 287 99 22.447 476 03 25.097 041 16

−EH− 0.106 501 651 9 0.191 115 203 7 0.363 969 668 9 0.423 011 531 4 0.442 136 012 2
εH 0.006 785 662 6 0.011 796 779 7 0.021 044 546 8 0.023 967 177 2 0.024 860 689 4

as provided in Table I of Ref. [13]. The value of c(γ ) for
a given γ in [0, 4.0] is then determined by fitting a cubic
polynomial with four values of γ in succession. In order to
determine the bound state energies EH− and corresponding
wave functions � of H−, we solve the Schrodinger equa-
tion H� = EH−�, (EH− < 0). Solution of this Schrodinger
equation with in the framework of Rayleigh-Ritz variational
principle amounts to minimizing the Rayleigh quotient:

EH− [�] = 〈�|H |�〉
〈�|�〉 (4)

by employing a trial wave function �. In this paper, we have
considered the following wave function to determine the 1Se

state of H− embedded in NICP:

�(r1, r2, r12) =
N∑

i=1

Ci|ψi(r1, r2, r12; a, li, mi, ni )〉

=
N∑

i=1

Climini (1 + P12)e−a(r1+r2 )rli
1 rmi

2 rni
12 , (5)

where C′
i s (or C′

limini
s) are expansion coefficients, a is non-

linear variational parameter and P12 is the exchange operator
such that P12g(r1, r2) = g(r2, r1) for an arbitrary function g.
The wave function (5) has been expanded by giving non-
negative integer values to li, mi, and ni such that σi(= li +
mi + ni ) = 0, 1, 2, . . . . This means that σ0 corresponds to
N = 1, σ1 corresponds to N = 3, σ2 corresponds to N = 7,

and so on. Substitution of Eq. (5) in the Rayleigh quotient (4)

gives

EH−[�] =
∑N

i=1

∑N
j=1 C∗

i CjHi j
∑N

i=1

∑N
j=1 C∗

i CjSi j

, (6)

where

Hi j = 〈ψi(r1, r2, r12; a, li, mi, ni )

× |H |ψ j (r1, r2, r12; a, l j, mj, n j )〉 and (7)

Si j = 〈ψi(r1, r2, r12; a, li, mi, ni )|ψ j (r1, r2, r12; a, l j, mj, n j )〉
are Hamiltonian matrix elements and overlap matrix ele-
ments respectively. After some algebraic calculations it can
be shown that minimization of the Rayleigh quotient is equiv-
alent to finding the least eigenvalue of the matrix S̃−1H̃ , where
H̃ = [Hi j] and S̃ = [Si j]. The matrix eigenvalue problem has
been solved by employing the Q-R algorithm after transform-
ing the matrix to the Hessenberg form [44].

It is to be noted that we have used same screening param-
eters to describe the screened proton-electron and electron-
electron interactions. In this connection, it is to be mentioned
that screening in any form is a fact in plasma. So, the results
in this paper, which are based on the validity of the screening
model show general qualitative features. These have to be fine
tuned when there exists evidences that the screening model is
not a good approximation.

III. RESULTS AND DISCUSSION

In Table I, we put up the ground state energies of H−
embedded in NICP with an increase in the number of terms
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TABLE IV. Critical values of κ (in a−1
0 ) and γ .

κc 0.6 0.7 0.8 0.9 1.0 1.173 040

γc 2.943 723 1.810 911 1.161 095 0.690 811 0.416 252 0.0

in the wave function (5) for various values of the screening
parameter κ and nonideal parameter γ . We have performed
the computations in quadruple precision arithmetic. From
Table I we can infer that convergent results of ground state
energy up to eight decimal places can be obtained by using
715 terms (corresponds to σ18) in the wave function (5). The
accuracy of our results has been substantiated in Table II
which includes some of most accurate results for vacuum and
Debye-type plasma environment available in the literature. We
notice that in all cases our results are in excellent agreement
with those results of up to eight decimal places.

Table III shows the ground state energy of H− for a
number of plasma temperatures and densities lying in the
ranges (1–10) × 104 K and 2.7 × (1023–1026) m−3 respec-
tively. This table also shows the electron affinity of hydro-
gen. The ground state energies EH of hydrogen have been
calculated accurately by using the technique as described in
our previous work [23]. From Table III we notice that for
a given plasma density, the effect of increasing temperature
is to lower the ground sate energy of H−. On one hand, for
a given temperature, the effect of increasing density is to
increase the ground state energy of H−. These facts are also
true for hydrogen [23]. But, at a given density, εH increases
with increasing temperature, whereas at a given temperature
it decreases with increasing density. It is to be noted that
the ion remains stable in the entire range of temperature and
density considered here. The effect of increasing either κ or γ

is to push the ground state energy towards the continuum. For
a given Debye length, ground state energy is lifted towards
continuum with the increase in nonideality (that is γ ) leading
to the instability of the ion. We have calculated the critical
values of the parameters κ and γ . These are the values of κ

and γ beyond which no bound state of the ion exists. From

FIG. 1. Ground state energy of H− as a function of γ for different
values of κ (in a−1

0 ).

Table IV we note that for Debye-type plasmas (γ = 0), the
critical value of κ is 1.173 040 (in a−1

0 ) approximately. With
an increase in the nonideality of plasma, the critical value of
the screening parameter decreases.

In order to have a better understanding on the stability of
the ion with respect to the parameters κ and γ , we plot the
ground state energy of H− as a function of γ for a number of
values of κ. This is presented in Fig. 1. This imparts an idea
of to what extent the potential (2) which explicitly depends
on λ and γ is able to support the bound state of H−. It is
apparent that an increase of either κ or γ gradually leads to
the instability of the ion. Dependence of electron affinity of
hydrogen with the nonideality of plasma is shown in Fig. 2.
As expected, we note that for a given Debye length, the
electron affinity of hydrogen decreases with the increase in
nonideality.

IV. CONCLUSIONS

To be succinct, we have made an attempt to study the
effects of nonideal classical plasma on the ground state of the
negative ion of hydrogen. Ground state energies for various
values of plasma parameters have been calculated quite accu-
rately by using an extensive basis set within the framework
of the variational method. Our present study reveals that
increasing nonideality of the plasma leads to the instability
of the ion. The ion remains stable for the temperature and
density of the plasma lying in the ranges (1–10) × 104 K
and 2.7 × (1023–1026) m−3 respectively. We report the values
of the Debye length and nonideal plasma parameter beyond
which H− does not exist. We believe that our present results
will provide useful information in the understanding of kinetic
properties of nonideal plasmas.

FIG. 2. Electron affinity of hydrogen as a function of γ for
different values of κ (in a−1

0 ).
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