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Energy gain by laser-accelerated electrons in a strong magnetic field

A. Arefiev
Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, California 92093, USA

and Center for Energy Research, University of California at San Diego, La Jolla, California 92093, USA

Z. Gong
SKLNPT, School of Physics, Peking University, Beijing 100871, China

and Center for High Energy Density Science, University of Texas, Austin, Texas 78712, USA

A. P. L. Robinson
Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot, OX11 0QX, United Kingdom

(Received 5 October 2019; accepted 10 March 2020; published 3 April 2020)

This paper deals with electron acceleration by a laser pulse in a plasma with a static uniform magnetic field
B∗. The laser pulse propagates perpendicular to the magnetic field lines with the polarization chosen such that
(E laser · B∗) = 0. The focus of the work is on the electrons with an appreciable initial transverse momentum that
are unable to gain significant energy from the laser in the absence of the magnetic field due to strong dephasing. It
is shown that the magnetic field can initiate an energy increase by rotating such an electron, so that its momentum
becomes directed forward. The energy gain continues well beyond this turning point where the dephasing drops
to a very small value. In contrast to the case of purely vacuum acceleration, the electron experiences a rapid
energy increases with the analytically derived maximum energy gain dependent on the strength of the magnetic
field and the phase velocity of the wave. The energy enhancement by the magnetic field can be useful at high
laser amplitudes, a0 � 1, where the acceleration similar to that in the vacuum is unable to produce energetic
electrons over just tens of microns. A strong magnetic field helps leverage an increase in a0 without a significant
increase in the interaction length.

DOI: 10.1103/PhysRevE.101.043201

I. INTRODUCTION

Direct laser acceleration (DLA) is a robust mechanism for
generating large populations of energetic electrons in plasmas
irradiated by relativistic intensity laser pulses [1–4]. It is
also a reliable way to transfer the energy of an irradiating
laser pulse to the plasma. One advantage of DLA is that
it generates forward-directed electrons at relativistic laser
intensities. The energetic electrons can then be leveraged to
produce secondary particle (ion [5,6], neutron [7,8], positron
[9–11]) and radiation sources [12–14].

We understand the term “DLA” to mean the acceleration
of electrons in an underdense plasma when the electron
simultaneously experiences both the laser field and another
field, which might be a self-consistent “plasma” field or an
externally applied field [15]. This is in contrast to both wake-
field acceleration and schemes where a laser pulse accelerates
an electron in vacuo, i.e., vacuum laser acceleration. The
earliest example of DLA is that of the “betatron resonance”
scheme which occurs in a ponderomotively formed ion chan-
nel [15,16]; however, the term is now understood to refer to
a much broader range of scenarios [17]. It is well known,
via the Lawson-Woodward Theorem [18], that a plane wave
cannot impart energy to a solitary electron, and thus both the
mechanistic means and efficiency of net energy gain are a
matter of great concern in studies of DLA.

A useful reference point for the performance of DLA is
the energy gain by an initially immobile electron irradiated
by a plane electromagnetic wave in a vacuum [19,20]. The
maximum energy that the electron can achieve while moving
in a wave with a normalized amplitude a0 is

ε0 ≡ γ0mec2 = (
1 + a2

0/2
)
mec2, (1)

where a0 is defined in terms of the wave electric field E0 and
frequency ω as

a0 ≡ |e|E0/mecω. (2)

Here me and e are the electron mass and charge, respectively,
and c is the speed of light. One can also relate the nor-
malized amplitude to the wave intensity I0 and wavelength
λ, with a0 ≈ 0.85

√
I0[1018 W/cm2]λ[μm]. Equation (1) in-

dicates that an electron can achieve ε0 ≈ 20 MeV in a laser
pulse with I0 ≈ 1020 W/cm2 and λ = 1 μm (a0 ≈ 8.5). Most
of the energy is associated with the forward motion at a0 � 1.
It is worth noting that the described energy gain can often di-
rectly translate into the net energy gain when the acceleration
takes place inside a plasma, with the laser reflection serving as
a mechanism that nonadiabatically decouples electrons from
the accelerating laser pulse [21].

One difficulty of extrapolating this result to higher I0 is
that the acceleration distance increases with laser intensity.
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The electron has to travel a considerable distance, �, with
the laser pulse before it is able to achieve the energy given
by Eq. (1). This distance roughly scales as � ∝ γ0λ ∝
a2

0λ (e.g., see Sec. III in Ref. [4]). At a0 ≈ 50, we have
� > 100λ.

Experiments aimed at measuring DLA in a plasma have
shown that the electron energy can exceed γ0mec2 (see Refs.
[2,16]). The departure from the purely vacuum acceleration
regime has been attributed to the presence of quasistatic
electric fields that arise in a plasma when the interaction
exceeds the characteristic electron response time [1,4,22,23].
Even though these fields are much weaker than the field
of the laser max(Ewave), they profoundly alter the electron
dynamics to enhance −(v · Ewave) and/or to prolong the time
when −(v · Ewave) > 0 (for example, see Refs. [4] and [24].
The increased work by the laser on the electron then leads
to an improved energy gain compared to the purely vacuum
regime.

In contrast to the static electric fields, the role of strong
quasistatic magnetic fields has remained relatively unexplored
in the context of DLA in plasmas irradiated by ultra-intense
laser pulses. At currently achievable laser intensities, the
magnetic field generated in the plasma is typically weaker
than the plasma electric field (see examples provided in Refs.
[25] and [4]), so it is then not surprising that the laser-driven
magnetic field is only of secondary importance in this regime.
The next generation of laser facilities is projected to reliably
achieve on-target intensities exceeding 1022 W/cm2 [26–28].
Numerical simulations performed in anticipation of achieving
these intensities have shown that such an intense laser pulse
is able propagate through a classically overdense plasma and
drive a very strong longitudinal plasma current (∼MA) [29].
This current can then generate and sustain a strong magnetic
field (∼MT) [14,30,31]. The simulations have also revealed
that the plasma electric fields in overdense plasmas become
suppressed due to a reduced ion response time [29,31]. The
combination of the reduction in the electric field and the
increase in the magnetic field means that a regime with
a dominant quasistatic magnetic field will become accessi-
ble in overcritical plasmas irradiated by high-intensity laser
pulses.

The published results of particle-in-cell (PIC) simulations
for such a regime (e.g., see Refs. [14] and [31]) clearly
indicate that the presence of the slowly evolving azimuthal
magnetic field facilitates electron acceleration. Specifically,
it is observed that the electrons can reach high energies,
ε � a0mec2, after traveling just tens of wavelengths with the
laser pulse. The particle tracking has also revealed that the
electrons are injected into the magnetic field by the transverse
laser electric field from the ambient plasma, so they start the
acceleration process with a substantial transverse relativistic
momentum. The scaling for the energy gain in this regime
is not well understood, but it is critically important for the
development of gamma-ray sources based on synchrotron
emission of laser-driven electrons.

Although the problem of electron motion in both strong
EM waves and quasistatic magnetic fields has been considered
before, the collective analysis reported in the literature has a
number of crucial gaps. Most analyses have been concerned
with magnetic field that is aligned parallel to the direction

FIG. 1. Schematic representation of the considered setup where
a plane electromagnetic wave irradiates a relativistic electron in a
uniform magnetic field that is perpendicular to the wave propagation
and to the wave electric field.

of laser propagation [32]. However, analyses of the case
where the magnetic field is transverse to the direction of laser
propagation have suggested that net energy gain in this case
is likely to be negligible (at least given certain assumptions)
[33], which runs contrary to the intuitive notion that intro-
ducing such a field should break dynamical adiabaticity, and
thus requires clarification. An obvious counter-example is the
inverse free-electron laser concept [34]: however, this concept
does not involve a plasma (vacuum propagation assumed),
and it exploits a spatially oscillating rather than uniform
field. There is therefore a need to explain precisely under
what circumstances the combination of an EM wave and a
quasistatic EM field lead to net energy gain, as two cases give
what appears to be conflicting results.

In order to gain better insight into DLA in the presence
of quasistatic magnetic fields, we consider a simplified setup
where an electron is irradiated by a plane electromagnetic
wave in a uniform magnetic field B∗ that is transverse to the
laser propagation (see Fig. 1). The presence of the plasma is
accounted for by introducing a superluminal phase velocity,
vph > c. We are specifically interested in determining how
much energy an electron with an initial transverse momentum
can gain over a time interval of just a single cyclotron period.
In our setup, the electron trajectory remains in the plane
perpendicular to the magnetic field B∗, mimicking the dynam-
ics observed during particle tracking in PIC simulations (see
Fig. 3 of Ref. [14]). The setup captures the key element that
is relevant to electron dynamics in a nonuniform azimuthal
plasma magnetic field driven by an ultra-high-intensity laser
pulse [14].

The rest of the paper consists of five sections. Section II
provides the basic equations that describe the electron dy-
namics in our setup. An example of DLA in a uniform
magnetic field is given in Sec. III. Section IV gives estimates
for the maximum attainable energy and the corresponding
spatial displacement. Detailed parameter scans obtained by
numerically solving the equations from Sec. II and confirming
the robustness of the estimates are given in Sec. V. Section VI
examines the impact of the superluminossity on the DLA
process. The results are summarized in Sec. VII, where we
provide additional comments to emphasize the importance of
the obtained results.
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II. BASIC EQUATIONS

The dynamics of a relativistic electron is described by the
following equations:

d p
dt

= −|e|E − |e|
γ mec

[
p × B

]
, (3)

dr
dt

= c

γ

p
mec

, (4)

where r, p are the electron position and momentum, respec-
tively, t is the time,

γ =
√

1 + p2/m2
ec2 (5)

is the relativistic factor, and E and B are the electric and mag-
netic fields acting on the electron, respectively. In the regime
under consideration, E = Ewave is just the laser electric field,
whereas B = Bwave + B∗ is a superposition of the magnetic
field of the laser and the static uniform magnetic field B∗.

In order to simplify our analysis, we approximate the laser
pulse as a plane linearly polarized electromagnetic wave with
a given phase velocity vph. Without any loss of generality, we
assume that the wave propagates along the x axis, and we set

Ewave = eyE0 cos (s + 2πψ ), (6)

Bwave = ez
c

vph
E0 cos (s + 2πψ ), (7)

where E0 is the wave amplitude, ψ is the phase offset,

s ≡ ωt − ωx/vph (8)

is the phase of the wave with frequency ω at the electron’s
location.

We consider a configuration where the uniform magnetic
field is directed along the z axis and the electron has no
momentum along the magnetic field lines, so that the electron
trajectory remains flat. It is then convenient to introduce the
following notations:

p = ex p cos θ + ey p sin θ, (9)

where p is the absolute value of the momentum and θ is the
angle between the momentum vector and the direction of the
laser propagation.

The two nontrivial components of Eq. (3) can be arranged
as equations for θ and γ :

p
dθ

dt
= −|e|Ey cos θ + |e|Bz

v

c
, (10)

dγ

dt
= −|e|Ey sin θ

p

γ m2
ec2

. (11)

After taking into account the considered field configuration
we find that

dθ

d (tω)
= −a0 cos (s + 2πψ )

1

γ

c

v

[
cos θ − v

vph

]

+ 1

γ

ωce

ω
, (12)

dγ

d (tω)
= − a0 p

γ mec
sin θ cos (s + 2πψ ), (13)

FIG. 2. Electron trajectories in a uniform magnetic field with
ωce/ω = 2.085. The solid line is for an electron with an initial
transverse momentum py = −50mec that is irradiated by a laser pulse
with a0 = 50. The dotted line is for the same electron but without the
laser pulse.

where a0 is the dimensionless laser amplitude defined by
Eq. (2) and

ωce = |e|B∗
mec

(14)

is the nonrelativistic electron cyclotron frequency.

III. EXAMPLE OF DLA IN A MAGNETIC FIELD

In order to examine the effect of a strong magnetic field
on DLA, we consider an electron that starts its motion in the
laser pulse with a transverse momentum p0 = (0,−p0, 0) at
s = 0. There is no phase offset in this case, ψ = 0, so the
electron starts its motion in the strongest laser field. We also
set vph = c in this example to make an easier connection with
the published results for a purely vacuum DLA without an
additional static magnetic field.

In the case without the magnetic field, the solution is well
known:

γ = 1

2R

[
1 + R2 + (a0 sin s + p0/mec)2], (15)

where

R = γ

ω

ds

dt
(16)

is the so-called dephasing rate. The dephasing rate is a con-
stant of motion in a plane wave, and it is equal to R = γ −
px/mec. We take into account that p0 = (0,−p0, 0) at s = 0
to find that R =

√
1 + (p0/mec)2.

We consider an example with p0/mec = a0 � 1. We then
have R ≈ a0. According to Eq. (15), the electron reaches its
maximum energy at s = π/2, with

max(γ ) ≈ 5a0/2 � γ0 ≈ a2
0/2. (17)

The transverse motion is clearly detrimental, because the
maximum γ factor is less than the maximum γ factor for an
initially immobile electron, given by Eq. (1). The underlying
cause is a high dephasing rate that decreases the time the
electron spends gaining the energy from the laser electric field
before it slips into a decelerating phase.

As seen in Fig. 2, a strong static magnetic field with
ωce/ω = 2.085 dramatically enhances the energy gain of an
electron in a plane wave with a0 = 50. The initial conditions
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FIG. 3. Longitudinal and transverse electron momentum along
the trajectory shown in Fig. 2 with a solid curve. The circles mark
the turning point from Fig. 2.

are the same as in the previous example, but the maximum
relativistic factor is now max(γ ) ≈ 770, which is at least six
times higher than max(γ ) without the magnetic field [see
Eq. (17)].

The key difference is the rotation of the momentum by the
static magnetic field that reduces the dephasing between the
electron and the wave. The dotted trajectory in Fig. 2 is the
gyro-orbit of the electron in the absence of the laser field. The
corresponding rotation period is

T = 2π

ωce

√
1 + p2

0

m2
ec2

. (18)

After a quarter of this period, the momentum is pointing
forward, and the dephasing rate formally calculated using the
expression

R = γ − px/mec (19)

yields R ≈ mec/2p0 � 1. As seen in Fig. 4, the dephasing
calculated along the trajectory of the laser-irradiated electron
(Fig. 2) confirms the same trend: the dephasing gradually
reduces as the electron approaches the bottom of its trajectory
where the momentum is directed forward (see Fig. 3).

Even though the enhanced energy gain is triggered by the
dramatic reduction in the dephasing by the magnetic field,
most of the energy gain occurs at relatively high values of
R, with R � 1. Indeed, the energy gain in Fig. 4 takes place
as the electron moves at an angle of roughly 16◦ to the x axis.
According to Eq. (19), we have R ≈ pθ2/2, where p is the
total momentum. As p increases, so does the dephasing R
(instead of remaining at a constant low value). Therefore, the
acceleration in the presence of the magnetic field qualitatively
differs from the conventional vacuum acceleration with low
initial dephasing that remains constant.

We have confirmed using different values of the mag-
netic field, electron momentum, and a0 that the enhancement
always occurs after the electron passes the bottom part of
its trajectory, i.e., the turning point. There is one consistent
feature: the energy enhancement starts at Ewave < 0 when the
electron momentum is directed forward, with px/mec � 0. To

FIG. 4. Relativistic factor γ , angle θ , and the dephasing rate R of
the laser-irradiated electron in a uniform magnetic field. The circles
mark the turning point from Fig. 2.

make this point more evident, the circles in Figs. 3 and 4 mark
the values at the turning point of the trajectory shown in Fig. 2.

IV. ESTIMATES FOR DLA IN A MAGNETIC FIELD

In this section, we perform simple estimates to identify the
key features of the DLA in a uniform magnetic field. The
estimates are based on trends discussed in Sec. III.

In order to provide the context for our estimates, we first
review the main features of the DLA in a vacuum. We consider
an electron that starts its motion from rest at the moment when
Ey = −E0. This corresponds to ψ = −1/2 and px = py = 0
at s = 0. The solution for the electron’s momentum in a laser
pulse with vph = c is

px/mec = 1
2 a2

0 sin2(s), (20)

py/mec = a0 sin(s). (21)

We are interested in a high-amplitude laser pulse with a0 � 1
that can accelerate electrons to ultrarelativistic energies. As
the electron accelerates and its momentum becomes relativis-
tic, the angle θ decreases. We find directly from the provided
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solution that for γ � 1 we have

θvac ≈
√

2/γ . (22)

One of the main weaknesses of DLA in vacuum is that
the energy transfer from the laser to the electron becomes
inefficient with the energy increase. This point is evident from
Eq. (13) where the rate of the energy increase is proportional
to sin θ ≈ θ . We have shown that θ ∝ γ −1/2, which indicates
that the rate of the energy transfer becomes suppressed as
γ −1/2. The suppression reflects the fact that the electron
moves almost forward, so that its velocity is nearly orthogonal
to the electric field of the laser that does the work on the
electron. A direct consequence of this is that the electron has
to travel a significant distance with the laser pulse in order to
reach its maximum energy, with γmax = 1 + a2

0/2, for a0 � 1.
For example, this distance is roughly �x ≈ 150λ for a0 = 50,
where λ is the laser wavelength.

A static magnetic field alters the energy exchange with
the laser by preventing the angle θ from decreasing with the
energy increase. The last term in Eq. (12) for dθ/dt coun-
terbalances the first term that causes the already discussed
reduction in θ . Our goal is to find the corresponding angle θ

where the reduction stops. The corresponding condition reads

−a0 cos (s + 2πψ )
1

β

[
cos θ − β

u

]
+ ωce

ω
= 0, (23)

where

β ≡ v/c, (24)

u ≡ vph/c. (25)

It is evident from the structure of this equation that the small-
est value of θ allowed by the magnetic field corresponds to
the strongest laser field, with −a0 cos (s + 2πψ ) ≈ a0. Using
this approximation and by taking into account that the angle
is small, we find that

θ2

2
≈ u − β

u
+ β

a0

ωce

ω
. (26)

Equation (26) provides a general scaling for the angle
between the electron momentum and the x axis, so it is
instructive to consider limiting cases. In the limit of u → 1
and ωce → 0, we have θ2 ≈ 2(1 − β ). In this case, θ � θvac,
where θvac is the smallest angle achieved during the purely
vacuum acceleration, and it is given by Eq. (22). This means
that the considered compensation never occurs in this regime.
If the superluminosity is important, but the magnetic field is
still weak; we have θ2/2 ≈ (u − β )/u where we need to set
β ≈ 1. As a result we find that the angle is given by

θph =
√

2(u − 1) =
√

2δu, (27)

where

δu = u − 1 = (vph − c)/c (28)

is the measure of the superluminosity. This result matches the
result that we previously derived in Ref. [35]. If the magnetic
field dominates the acceleration process, then the last term in
Eq. (26) dominates. We set β ≈ 1 to find that the correspond-

ing angle is given by

θmag =
(

2ωce

a0ω

)1/2

. (29)

A general expression for the angle θ in the regime where
the acceleration differs from the purely vacuum case either
due to a uniform magnetic field or due to the superluminosity
follows from Eq. (26) where we must set β ≈ 1, so that

θ∗ ≈
[

2
δu

u
+ 2

a0

ωce

ω

]1/2

=
√

θ2
ph + θ2

mag. (30)

The applicability condition for this expression is

θ∗ � θvac ∝ γ −1/2. (31)

This condition indicates that the electron would tend to tran-
sition into the considered regime with the energy increase.
The magnetic field dominates the electron acceleration over
the superluminosity of the wave caused by the plasma if
θmag � θph, which is equivalent to a requirement that

ωce

a0ω
� vph − c

c
. (32)

We are now well positioned to estimate the energy gain by
the electron using Eq. (13). It is convenient to re-write this
equation as

dγ

ds
= −

[
1

ω

ds

dt

]−1 a0 p

γ mec
sin θ cos (s + 2πψ ), (33)

where
1

ω

ds

dt
= 1 − 1

vph

dx

dt
= 1 − β

u
cos θ. (34)

The electron is ultrarelativistic when it starts gaining energy,
so that p/γ mec ≈ 1. We also use the definitions for β and u
to obtain that

dγ

ds
= − a0u sin θ

u − β cos θ
cos (s + 2πψ ). (35)

We assume that the electron starts its acceleration at Ewave <

0, similarly to what is shown in Fig. 2. This is equivalent
to cos (s + 2πψ ) < 0 at the start of the acceleration and the
energy gain continues while this function remains negative.
Then the maximum energy gain is estimated by integrating
Eq. (35) over a phase interval �s = π where cos (s + 2πψ )
decreases from 0 to −1 and then increases back to 0. We also
set θ = θ∗ to find that

�γ ≈ 2a0u sin θ∗
u − β cos θ∗

. (36)

We can further simplify this expression by setting β ≈ 1 and
taking into account that θ∗ � 1 and that u − 1 � 1, which
yields

�γ ≈ 4a0θ∗
θ2∗ + 2δu

. (37)

In the regime where the magnetic field determines the electron
dynamics [see Eq. (32)], we have

�γmag ≈ 4a0

θmag
= (2a0)3/2

(
ω

ωce

)1/2

. (38)
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It is important to point out that a very strong magnetic field
reduces the electron energy gain. Indeed, in the regime where
the energy gain is determined primarily by the superluminos-
ity, we have

�γph ≈ 4a0θph

4δu
= 2a0

θph
. (39)

Equations (39) and (38) can be generalized as �γ ∝ 1/θ ,
where θ = max(θmag, θph ). This result confirms that, as the
magnetic field is increased for a fixed value of u and θmag ex-
ceeds θph, the energy gain becomes dependent on the magnetic
field as B−1/2

∗ .
The distance that the electron has to travel with the laser

is estimated by estimating the corresponding time interval �t
from Eq. (34) by setting ds = π ,

�t = π

ω

1

δu + θ2/2
. (40)

We then take into account that θ � 1, so that vx ≈ c, and find
that

�x ≈ c�t ≈ λ

θ2∗ + 2δu
. (41)

An alternative expression in terms of �γ from Eq. (37) reads

�x/λ ≈ �γ/4a0θ∗. (42)

We estimate the corresponding transverse displacement as
�y ≈ �x tan θ∗, which yields

�y/λ ≈ θ∗
θ2∗ + 2δu

. (43)

We conclude this section by comparing these estimates
with the exact solution shown in Fig. 2. Equations (38), (42),
and (43) for a0 = 50, ωce/ω = 2.085, and δu = 0 yield �γ ≈
690, �x/λ ≈ 12, and �y/λ ≈ 3.5. These estimates reproduce
the dynamics of the electron after it begins to move upwards
remarkably well.

V. PARAMETER SCANS

In this section we perform parameter scans to determine
the predictive capability of the estimates from Sec. IV.

Our first scan is over the phase offset ψ . We are considering
an ultrarelativistic electron with an initial longitudinal mo-
mentum p0 = 75mec. The electron begins its motion in a neg-
ative electric field of the laser, Ey(0) < 0, which implies that
−0.75 < ψ < −0.25 in Eq. (6). We set a0 = 50 and ωce/ω =
1. The electron in this setup starts moving upwards along the y
axis and gaining energy, because (v · Ewave) < 0. The energy
gain continues for as long as Ey remains negative. This agrees
with the assumptions that went into our estimates. In order
to find the maximum energy gain, we have numerically inte-
grated the equations of motion (3) and (4) for different values
of ψ between −0.75 and −0.25. The integration is performed
until the electric field becomes positive. The corresponding
initial values of Ey and the resulting γmax are shown in Fig. 5.
The middle panel of Fig. 5 shows the maximum transverse and
longitudinal displacements by the electron during the energy
gain. The dashed lines are the values given by our estimates
[Eqs. (38), (42), and (43)]. We conclude that these estimates

FIG. 5. Scan over the phase offset for an electron with p0 =
(75mec, 0, 0) irradiated by a wave with a0 = 50 in a magnetic field
with ωce/ω = 1. (d) the initial amplitude of the laser electric field.
(a)–(c) The maximum relativistic factor γmax and the maximum
displacement that the electron achieves while Ey remains negative.
The dashed lines are the estimates given by Eqs. (37), (42), and (43).

capture the electron dynamics relatively well, provided that
the electron samples a considerable part of the laser cycle with
the negative electric field.

Our second scan whose result is shown in Fig. 6 explores
the sensitivity to the initial longitudinal momentum p0 in the
same setup as in the previous scan and for the same values
of a0 = 50 and ωce/ω = 1. The key feature here is that the
highest value of γmax as a function of p0 remains relatively flat
for p0 � mec. As p0 changes from 5 to 75, the highest value
of γmax increases by less than 20%. The weak dependence
that does exist is due to the difference it time that it takes for
the electron to reach the regime described by our estimates.
A similar trend is observed for the maximum transverse and
longitudinal displacements.

Our last scan is over a0 and ωce to confirm the derived
scaling for the energy gain �γ given by Eq. (38). In this
case, we fix the phase offset and the ratio between the initial
longitudinal momentum p0 and a0 by setting ψ = −0.65

043201-6



ENERGY GAIN BY LASER-ACCELERATED ELECTRONS IN … PHYSICAL REVIEW E 101, 043201 (2020)

FIG. 6. Scan over the phase offset ψ and initial longitudinal
momentum p0 for an electron irradiated by a wave with a0 = 50
(δu = 0) in a magnetic field with ωce/ω = 1. The color shows the
maximum relativistic factor γmax that the electron achieves during
acceleration (while Ey remains negative). The dashed curves show
γmax = 200, 400, 600, and 800.

and p0 = a0mec. We find that both the trend and the values
predicted by Eq. (38) are reproduced relatively well as we vary
a0 from 10 to 80 and ωce/ω from 0.25 to 2.5. Figure 7 shows
the relative error between what we get from the exact solution
and what is predicted by Eq. (38). Even though the value of
γmax changes by almost two orders of magnitude, the relative
error remains below 15%.

VI. IMPACT OF SUPERLUMINOSITY

The estimates provided in Sec. IV include not only the
magnetic field but also the phase velocity vph because they
both have a similar impact on the electron acceleration.

In order to illustrate more clearly the impact of the super-
luminosity, we have performed a scan over the strength of the
magnetic field for a fixed value of δu = 10−2. In this case,

FIG. 7. Scan over a0 and ωce/ω at ψ = −0.65 and δu = 0. The
initial longitudinal momentum is set at p0 = a0mec. The color shows
a relative difference between the calculated maximum relativistic
factor γmax that the electron achieves during acceleration and �γ

predicted by Eq. (37).

a

b

FIG. 8. Scan over the magnetic field strength for an electron
irradiated by a wave with a0 = 50 and δu = 0.01. The phase offset is
ψ = −0.7, and the initial longitudinal momentum is p0 = 10mec.
The solid curves are the calculated γmax and the corresponding
longitudinal displacement xmax. The dotted curves are �γ and �x
predicted by Eqs. (37) and (42). �γmag and �γph are given by
Eqs. (38) and (39). �xmag is given by Eq. (42) with θ = θmag.

a0 = 50 and the initial longitudinal momentum is set to p0 =
10mec. The phase offset is also fixed at ψ = −0.7. The result
is shown in Fig. 8, where we show how the maximum γ factor
and the longitudinal displacement during the acceleration
change with ωce/ω. Note that we again run the calculation
only while Ey is negative, because the change in sign of Ey

terminates the electron acceleration in this example. The red
curves in Fig. 8 are �γ and �x predicted by Eqs. (37) and
(42). These estimates agree relatively well with the result of
the exact calculation.

The dashed curves in Fig. 8(a) represent two limiting
regimes: the regime where the energy gain is limited by the
magnetic field (yellow) and the regime where the energy gain
is limited by the superluminosity (purple). The two curves
intersect at

ωce/ω = 4a0δu. (44)

At ωce/ω � 4a0δu, the magnetic field is sufficiently strong
to negate the effect of the superluminosity and one can set
δu = 0 to simplify the analysis. This condition is consistent
with that given by Eq. (32). However, the superluminosity
significantly limits the energy gain by the electron at ωce/ω �
4a0δu and must be taken into account. As seen from Fig. 8(a),
the upper limit on the energy gain for a fixed value of δu
is given by �γph from Eq. (39). Figure 8(b) shows that the
reduction in the energy gain is associated with a reduction
of the distance traveled by the electron before reaching the
maximum energy gain. It is significantly shorter than �xmag

given by Eq. (42), which assumes δu = 0.
One source of the superluminosity is the presence of the

plasma itself. In a cold plasma, a linear plane electromagentic
wave has the following dispersion relation:

ω2 = ω2
pe + k2c2, (45)
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where k is amplitude of the wave vector and ωpe =√
4πnee2/me is the plasma frequency for electrons with den-

sity ne. In the limit of vph − c � c, we have

δu = vph − c

c
≈ 1

2

ω2
pe

ω2
= 1

2

ne

ncrit
, (46)

where ncrit is the cutoff electron density (often called the
critical density) determined by the condition ωpe = ω. A
laser pulse of relativistic intensity can make a plasma rela-
tivistically transparent by heating the electrons to relativistic
energies. This aspect can be taken into account by adjusting
Eq. (46), with the superluminosity related to the relativistic
transparency given by

δuRT ≈ 1

2a0

ω2
pe

ω2
= 1

2a0

ne

ncrit
. (47)

The relation given by Eq. (44) now reads

ωce/ω = 4a0δuRT ≈ 2
ne

ncrit
. (48)

We therefore conclude that a static magnetic field determines
the electron energy gain in a relativistically transparent plasma
if its strength satisfies the condition

ωce/ω � 2ne/ncrit. (49)

In the case of a 1 μm laser, this condition can be re-written as

B∗[kT] � 20ne/ncrit. (50)

VII. SUMMARY AND DISCUSSION

We have considered electron acceleration by a ultra-intense
laser pulse in a plasma with a static uniform magnetic field
B∗. In our setup, the laser pulse propagates perpendicular to
the magnetic field lines with the polarization chosen such that
(E laser · B∗) = 0. The focus of the work is on electrons with an
appreciable initial transverse momentum, p0 ∼ a0mec. These
electrons are unable to gain significant energy from the laser
pulse in the absence of the magnetic field due to strong
dephasing (see the red dotted curve in Fig. 9). We have
shown that the magnetic field can initiate an energy increase
by rotating the electron, such that its momentum becomes
directed forward.

We found that the energy gain continues well beyond the
turning point where the dephasing drops to a very small value
due to the momentum rotation induced by the magnetic field.
In contrast to the case of purely vacuum acceleration, the
electron continues to move at a significant angle with respect
to the laser propagation as its energy increases. It is worth
noting that this aspect was first highlighted in the context of
inverse free electron lasers; e.g., see Ref. [34]. The maximum
energy gain given by Eq. (37) depends not only on the strength
of the magnetic field but also on the phase velocity of the
wave. The magnetic field is the limiting factor if its strength
exceeds the value given by Eq. (44). Otherwise, the energy
gain is limited by the superluminosity.

A distinctive feature of the discussed electron accelera-
tion mechanism is a rapid energy gain compared to what
is possible with pure vacuum acceleration. Figure 9 shows
the relativistic factor γ as a function of the longitudinal

FIG. 9. Electron energy gain with and without the applied mag-
netic field. In all three cases we have a0 = 50, and the electron starts
its motion at Ey = E0. The blue and red dotted curves are for the
acceleration without the magnetic field with an initial longitudinal
and an initial transverse momentum, respectively. The solid curve is
for an electron with an initial transverse momentum p0 = −75mec
accelerated in a magnetic field, ωce/ω = 1.01.

coordinate for electrons that are accelerated at a0 = 50 with
and without the applied magnetic field. In the absence of the
magnetic field, the electron with px0 = 15mec has a reduced
dephasing rate and is able to experience a prolonged accel-
eration. The reduced dephasing is similar to what happens in
the magnetic field at the turning point. However, the energy
gain is relatively slow, as the electron reaches only γ ≈ 300
after traveling 45 μm with the laser pulse. In contrast to that,
the electron accelerated in the magnetic field experiences a
rapid energy gain after the turning point, with an increase of
�γ ≈ 1000 over just 20 μm. It is worth pointing out that, in
principle, the energy gain can be very rapid during the vacuum
acceleration, but this comes at the expense of the maximum
energy gain. The red dotted curve in Fig. 9 illustrates this for
an electron that has an initial transverse momentum.

The energy enhancement by the magnetic field can be
particularly useful at high laser amplitudes, a0 � 1, where the
acceleration similar to that in the vacuum is unable to produce
energetic electrons over tens of microns. A strong magnetic
field can help leverage an increase in the laser intensity with-
out a significant increase in the interaction length, as observed
in Refs. [14] and [31]. The results reported in Ref. [36] for
generation of energetic electrons in near-critical plasmas is
another relevant example of a strong magnetic field enhancing
electron energy gain over a relatively short distance.

The results presented here are intended as a building block
for a comprehensive model describing the energy gain in
laser-generated magnetic filaments where the electron goes
through multiple turning points while moving forward with
the laser pulse. This mechanism can serve as a source of
copious numbers of energetic electrons when using structured
targets that mitigate plasma cavitation by a tightly focused
laser pulse while preventing its defocusing [31,37]. The mag-
netic field provides radial confinement of electrons within the
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FIG. 10. Parameter scan for a laser-irradiated electron that starts
its motion with a transverse momentum. The laser amplitude is
a0 = 50 and the initial momentum is p0/mec = 75 − a0 sin(ψ ). The
color in panel (a) shows the maximum relativistic factor along the
trajectory similar to that shown in Fig. 2, whereas the color in panel
(b) shows px/mec at the turning point.

so-called magnetic boundary [38] determined by the plasma
current density. It may therefore still be appropriate to treat
the laser pulse as a plane wave for those electrons who remain
close to the axis of the filament, but the assumption that the
magnetic field is uniform must necessarily be revised.

FIG. 11. Parameter scan for an electron irradiated by a super-
luminal electromagnetic wave with δu = 0.01 and a0 = 50. The
electron starts its motion with a transverse momentum p0/mec =
75 − a0 sin(ψ ). The color shows the maximum relativistic factor
along the trajectory similar to that shown in Fig. 2.

It is important to stress that the energy gain is conditional
on the electron having a relativistic longitudinal momentum at
the turning point. Figure 10 shows a parameter scan over the
initial phase offset ψ and ωce/ω. The modulations of γmax in
Fig. 10(a) are directly correlated with the changes in px/mec
at the turning point shown in Fig. 10(b). As shown in Fig. 3,
the longitudinal momentum of the electron is modulated by
the laser, so the travel time to the turning point determines the
corresponding px/mec. A similar pattern is observed in the
case with a superluminal wave shown in Fig. 11. The im-
plication of this observation is that the energy gain can be
suppressed compared to what is predicted by Eq. (37) if the
electron arrives at the turning point with a low longitudinal
momentum. Therefore, our result provides and upper estimate
without accounting for the global electron dynamics prior to
the onset of the acceleration.
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