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Approximate time-dependent current-voltage relations for currents exceeding the diffusion limit
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The time-dependent behavior of one-dimensional ion transport into a permselective medium is theoretically
modeled in this work for currents exceeding the diffusion limit. Leveraging the findings of Yariv [E. Yariv, Phys.
Rev. E 80, 051201 (2009)], we derive three separate expressions for the potential drop for short, intermediate, and
long times. We show that the potential drop correlates to the time evolution of the space-charge layer adjacent to
the permselective interface. Our approximate models show remarkable correspondence to numerical simulations.
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I. INTRODUCTION

Ton transport through permselective media is prevalent in
nature and technology. Desalination through electrodialysis
[1-4] and energy harvesting in reverse electrodialysis [5-10]
rely on large membranes that separate or mix electrolytes of
different concentration. Biosensors [11-13], fluid based elec-
trical diodes [7,14—19], and various physiological phenomena
[20] utilize either permselective nanochannels or permselec-
tive nanopores for their respective functions. Yet, despite its
importance, the fundamental physics of ion transport through
permselective media has yet to be fully revealed. This can be
attributed to the difficulty in analyzing the nonlinear coupled
set of equations governing ion transport.

Fortunately, in recent decades much progress has been
made, notably, in understanding the steady-state response. In
contrast to time-dependent processes, steady-state responses
are easier to mathematically model, as well as easier to
interpret experimentally. For example, in the steady state, ion
transport is characterized by a current-density-voltage (i-V')
response curve which has three different regions (Fig. 1).The
first region, termed the Ohmic response, is the low voltage re-
sponse characterized by a linear resistance, R = V/i [21]. The
second region, termed the limiting current response, occurs at
intermediate voltages when the current saturates to a diffusion
limiting value, #j,. The third region termed the overlimiting
current (OLC) response, ioLc, occurs above a critical voltage
value where nonlinear effects dominate. In contrast to the
steady state, time-dependent responses are more involved,
mathematically, and thus less understood. In this work, we
address transient effects in simple one-dimensional (1D)
systems.

In 1D systems, it has long been known that the (nondimen-
sional) convectionless i-V response is given by [1,22,23] (see
Sec. II for normalizations of the current and voltage)

i=2(1—e"?. )]

The diffusion limited current saturates to a limiting value
iim = 2. However, Rubinstein and Shtilman [23] showed that
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this diffusion limited current could be surpassed with the
formation of a nonequilibrium extended space-charge layer
(eSCL) at the permselective interface. Through numerical
simulations, they showed that the current increased linearly
with the normalized electric double layer (EDL) parameter, ¢,
which will be defined later (see Fig. 2). These above-limiting
currents are related to the overlimiting currents, iorc, but
at the same time they are different. In the remainder, we
will mark a distinction between these two. We will denote
these above-limiting (AL) currents as isr. The reason for
this is primarily semantics. In works focusing on OLCs,
an additional physical mechanism is required for igrc. For
example, Rubinstein and Zaltzman [4,24,25] showed that at
sufficiently high voltages the eSCL is unstable and results in
electroconvective effects that are responsible for iorc. Thus,
ioLc 1s a natural extension of is;, with the appearance of
electroconvection [26,27]. This is also true for iorc due to
surface conductance [28], water splitting [29-31], and more.
However, in this work we do not address any of these OLC

OLC

R=V/i

Current density, i

Voltage, V
FIG. 1. The current-voltage, i-V, response comprises three re-
gions: linear Ohmic resistance, R; limiting current, ij,; and over-

limiting current, ioLc.
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FIG. 2. Schematic of current-voltage relation surpassing the lim-
iting currents. The solid blue line is given by Eq. (1) while dashed
lines with increasing ¢ are determined by Eq. (41).

mechanisms; rather we focus solely on the effects of the eSCL
to produce these above-limiting currents.

The peculiar behavior of the steady state ir -V has been
addressed in a number of works. Rubinstein and Shtilman
[23] were the first to demonstrate the existence of iap via
numerical simulations. Later Ben and Chang [32] were the
first to derive an approximation for iap -V for large voltages.
This work would later serve as the basis for the equation de-
rived in Yossifon et al. [33] and used to explain experimental
observations of above-limiting currents. In later works, Chu
and Bazant [34,35] derived asymptotic expressions for above-
limiting currents. Similarly, Yariv [36,37] addressed the issue
of the potential drop across the entire layer (dotted black line
in Fig. 3). It should be noted that the common feature of all
these works is that they focused on the steady-state solution
and ignored transition effects. In this work, we will use much
of Yariv’s [36] formulation and we denote this work as Y09.

Yet others have been studying the time evolution of these
effects. Due to the inherent complications, most of the theoret-
ical work focused on the limiting case of ¢ — 0 whereby the
governing equations are drastically simplified [38—41]. Others
have addressed time-dependent problems in concordance with
other overlimiting mechanisms while the time dependency of
the eSCL has yet to be addressed [42—44]. Most recently,
Abu-Rjal et al. [42] considered the important question of
how the electroconvective dominated potential drop deviates
from the expected convectionless response. Their focus was
electroconvection; however, their numerical results presented
an equally interesting and overlooked question which served
as inspiration for this work—why does the convectionless
response behave as it does (solid line in Fig. 3)? In other
words, what is the time-dependent current-voltage response
for above-limiting currents [V (¢, iar)]?

This work addresses the time-dependent current-voltage
response V (¢, iar). Section II presents the governing equa-
tions and discusses the characteristic behavior of steady-state
ion transport. Transient effects are also discussed. Notably,
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FIG. 3. Time evolution of the potential drop similar to what was
shown in Ref. [42] but with different simulation parameters (as given
in Fig. 6).

using numerical simulations we demonstrate how the structure
of the extended space-charge layer varies for these different
scenarios. In Sec. III, leveraging the findings of Y09 we
present the V (¢, iar) relations for short times, intermediate
times, and steady state. Concluding remarks are given in
Sec. IV.

II. THEOERTICAL MODEL

A. Governing equations

The one-dimensional (1D) equations governing the time-
dependent transport of a symmetric and binary (z4 = —z_ =
1) electrolyte of equal diffusivities (D4 = D_ = D) through
permselective medium are the dimensionless Poisson-Nernst-
Planck (PNP) equations:

c:’; = C;X + (c+¢-x).x = _].j;v 2)
c,=cCu— (P )x=—J,, 3)
26°V2%p = —(c" —¢c7). 4)

Equations (2) and (3) are the Nernst-Planck equations sat-
isfying continuity of ionic fluxes for the cation and anion
concentrations ¢t and ¢, respectively. The current densi-
ties jy are given accordingly by Eqgs. (2) and (3). Equation
(4) is the Poisson equation for the electric potential. The
concentrations have been normalized by their bulk value c.
The electric potential has been normalized by the thermal
potential ¢, = RT/F where N, T, and F are the universal
gas constant, absolute temperature, and Faraday constant,
respectively. The current densities have been normalized by
DcoL~" where D is the diffusion coefficient and L is the length
of the system. Space and time have been normalized by L
and L?/D, respectively. These lead to the definition of the
normalized EDL,
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where gy and ¢, are the permittivity of vacuum and the relative
permittivity of the electrolyte, respectively, and Ap is the
Debye length. Finally, it should be noted that the electrical
current density i is normalized by F DcoL ™! [7,45].

B. Boundary conditions

Equations (2)—(4) govern ion transport in a 1D system such
as the one shown in Fig. 5. In this 1D domain, the bulk region
is defined at x = 1. There we have the standard bulk boundary
condition (BC) on the concentration and zero potential:

Fx=1,1) =1, (6)
p(x=1,1)=0. @)
At the ideal permselective interface at x = 0 we have
cfx=0,t)=N, j (x=0,1)=0, (8)
¢ =-V —InN. )

The first term in Eq. (8) is the requirement that the counterion
concentration equals that of membrane. The second term in
Eq. (8) ensures that the coion flux is zero. Equation (9) is a
condition that the total potential drop over the system is V.
The In N term has been added to ensure that for zero voltages,
the current is zero. As we are interested in the time evolution
of the concentration, initial conditions are needed, which are
that everywhere outside of the thin EDL of order O(¢) the bulk
is electroneutral and is unity:

Fx,t =0)=1. (10)

In steady state this approach, known as the potentiostatic
approach, dictates the potential drop across the system from
which the electrical current density is calculated. However,
as pointed out by others [24,32,33,35,36,39,45] the reverse
galvanostatic approach (input the current and calculate the
potential drop) is much easier for theoretical modeling. This
argument of potentiostatic versus galvanostatic also holds for
time-dependent problems and we adopt the latter. Thus, we
replace Egs. (7) and (9) with two modified BCs,

px(x=1,1)=—1i, (11)
¢ =—InN, (12)

where we dictate the current and calculate the potential drop
across the system.

C. Numerical simulations

Numerical simulations of the fully coupled Poisson-
Nernst-Planck equations [Egs. (2)—(4)] with the appropriate
BCs [Eqgs. (6),(8),(11), and (12)] were conducted in COMSOL
using the Transport of Diluted Species and Electrostatics
modules for both the time-dependent and time-independent
scenarios. The various simulation parameters are given in the
figures below. See previous works for more details [7,19,45]
regarding simulations.

D. Steady-state distributions

In Figs. 4(a) and 4(b) we plot the steady-state positive
charge-carrier concentration and space-charge distributions
q= %(c+ — ¢7) [Eq. (14)], respectively, calculated from nu-
merical simulations for a number of different currents.

At low currents, i < iy, it can be observed that the
concentration profile has a minimum near x = 0 while the
space-charge distribution has an almost equilibrium profile
(similar to that of i = 0). For i < ij,, the changes in the
concentration and space charge are limited to two regions:
(1) the diffusion layer (DL), x € (O(£*/?), 1]; (2) the cathodic
boundary layer (CBL), x € [0, O(¢%/?)). The scaling for the
DL, CBL, and two more regions defined below are discussed
thoroughly in Y09. We note that in the 1D steady state the DL

(a)
1 .....................................................................................................’....'..
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FIG. 4. Steady-state profiles for (a) the positive concentration
distribution, ¢*, and (b) the space-charge density, g [Eq. (14)], for
various currents. Simulation parameters are ¢ = 10™*, N = 25. For
presentation purposes in (a) we show concentration in the range of
0-1 but note that there is a boundary layer near x = 0 such that
¢t (x = 0) = N.1In (b) which is a log-log plot, we show that the space
charge is primarily dominated by the positive charge carrier such that
gx=0)~ ict(x=0)=N/2.
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is characterized by a linear change in the concentration of both
positive and negative charge carriers. In contrast, in the CBL
the negative and positive concentrations behave differently.
The positive concentration drops from a very high concen-
tration ¢ (x = 0) = N to the value of the concentration in the
DL, within a length of O(¢%/?). For small ¢, this implies that
a boundary layer exists near x = 0, as shown in Fig. 4(a). The
negative concentration rises from a value that is of O(N ")
to its value in the DL. This difference between positive and
negative charge carriers gives rise to the space-charge density
g [Fig. 4(b)].

As the current increases, [ ~ ij;,, we notice that the linear
concentrations profile reaches a minimum at the point %, =
x # 0 (which will be defined later). A third region, denoted
as the space-charge layer (SCL), appears between the DL and
the CBL. In this region the concentrations are near zero. This
region is commonly known as the depleted region. Now the
DL is limited to the region x € (x,, 1]. The SCL is defined
in the region, x € (0(%*?), x,.). We later show that to leading
order both the concentration and space-charge density in this
region are of order €. The extended space-charge layer (eSCL)
now comprises both the CBL and the SCL. At even larger
currents, [ = iar > iim, We see that formation of a “small
hump” in between the SCL and the DL. This fourth region,
predicted by Zaltzman and Rubinstein [24,25], is called the
transition layer (TL), which also has a length of O(¢?/3). More
information about this region can be found in Y09. Now the
eSCL is comprised of three regions (CBL, SCL, and TL).
To calculate the total potential drop across the system when
i = iaL > I1im, One has to integrate the electric field across all
four regions. This was cleverly done by Y09 and is discussed
later in Sec. III C.

Depending on the current density, the steady state con-
centration and space-charge distributions can be divided into
two to four regions. The number of regions depends on the
current density, i. The length of each region depends both on
the current density as well as the normalized EDL, ¢. These
regions are summarized in Fig. 5.

E. Time-dependent distributions

In Figs. 6(a) and 6(b) we plot the time-dependent positive
charge-carrier concentration and space-charge distributions,
respectively, calculated from numerical simulations for an
above-limiting current density.

At early times, the concentration profiles are not spatially
linear. The time evolution of the concentration is given later in

CBE. SCL IE DL

0(e?/®) 0(x,) 0(e*?) 0(1—x,)

o 1 1 o
x=0 X = X x=1

FIG. 5. A schematic of the 1D geometry within the domain x €
[0, 1]. The domain is divided into four regions: CBL, SCL, TL, and
DL. The order of magnitude of the length of each region is given;see
main text for more details (Sec. 11 D).
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FIG. 6. Time-dependent profiles for (a) the positive concentra-
tion distribution, ¢*, and (b) space-charge density, ¢, for different
times. Simulation parameters are ¢ = 1074, N =25, i =2.4.

Sec. III B. However, it can be observed that the space charge
is at quasiequilibrium where the space-charge profile appears
similar to the t = 0 solution. For this situation, it appears that
the space-charge layer comprises the electroneutral DL and
charged CBL.

At intermediate times, when the profile is fully depleted at
x ~ 0, it appears that the space-charge transitions to a region
that includes both the SCL and the TL. Two observations are
noteworthy. First, the SCL’s length increases over time until it
eventually reaches a steady state. Second, while the TL does
appear it does not reach its final profile until later times. Later,
we will make an ansatz, that for these intermediate times the
effects of the TL are negligible.

Finally, at late times, the distributions appear to have
reached their steady-state values and the structure of the space
now comprises the four regions described in Sec. IID and
shown in Fig. 5.
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F. Analogies between steady-state and time-dependent
space-charge distributions

There are obvious differences between time-dependent
above-limiting current responses versus the steady-state re-
sponse. However, Figs. 4 and 6 suggest that perhaps some
fundamental aspects might be shared:

(1) For short times, before the concentrations are
completely depleted, it appears that both above-limiting
time-dependent problems and underlimiting steady-state
problems are similar in that they both depend only on the DL
and CBL.

(2) At intermediate times, when the depletion is still lo-
calized around x &~ 0 both the SCL and TL form. However,
similar to the steady-state response for i & i, perhaps the
TL is not completely formed and its effects are negligible.

(3) Atlarge times, the time-dependent profiles reached are
quasi steady state and are comprised of four regions.

III. SOLUTION

The three observations from Sec. II F will be used in this
section to model the time-dependent behavior of the potential
drop across the system, V (¢), for short, intermediate, and long
times. We will show that using these assumptions, we can
describe the behavior of the numerically calculated V (¢) (solid
line in Fig. 7).

We start by reducing the mathematical complexity of the
problem. We will then present the early times solution, after
which we will present the steady-state solution of Y09. There-
after, we will return to intermediate times.

A. Mathematical simplification

Here we reduce the number of governing equations from
three to two. The electric field is related to the electric
potential by

E=—¢, (13)
80F e 5 ;..t!..;.;._a.. P p———
“¢‘ -
60 :
S a0t 1
:: Simulations

J V(t — c0) — Eq.(41)
o0l Fi - =V(t<T) —Eq(35) |

g eeees Vsco(t)  — Eq.(55)

I m=m=V(t>>T) — Eq.(47)

rd
0 |l - I I I
0 1 2 3 4
t

FIG. 7. Time evolution of the voltage, V (¢). Simulation parame-
ters as in Fig. 6.

Also, the space-charge density g and average salt density c are
defined as

q=3("—c), (14
=1+ (15)
Inserting Eqs. (13) and (14) into Egs. (2)—(4) yields
cj = c,‘;x —(c'E) ., (16)
c;=c ot (E)y a7
e’E, =q. (18)

Taking the sum and difference of Eqs. (16) and (17) yields

Cr = Cxx — (qE) s, 19)
4t =qxx— (cE) . (20)
Inserting Eq. (18) into Eqgs. (19) and (20) yields
i = Cox — 36 (E®) x, 1)
e%E = €°E 1xx — (cE) 4. (22)
Integrating Eq. (22) yields
—&%(E, — E ) = cE + const. (23)

Since this equation must also satisfy Eq. (11) to zeroth order
in &, we have that the constant equals i/2. Equations (21) and
(23) are the governing equations.

B. Short times

Before the concentration near the depleted interface (x =
0) reaches zero the CBL is still quasiequilibrium. We consider
the case where we have only two regions: CBL and DL. We
will derive the DL solution while the effects of the EDL or
CBL will be accounted as a BC—this approach is different
than that of Y09 in which a boundary-layer approach was used
to model the behavior of the CBL.

In the diffusion layer (DL) we consider a series expansions
for the electric field:

EpL ~ EpLo+ ¢EpL1 + & EpLa+ -+ . (24)

Equation (18) implies that to leading order ¢ ~ O(e?) and the
concentration, to leading order, is also independent of ¢. Thus,
in the DL we can reduce the governing equations from

Ctr =Cxx — %82(E2),xm (25)
—&¢*(E, — E.) = cE + i, (26)
to
CDL,t = CDL,xx» 27
epLEpLo = —3i. (28)
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The time-dependent solution for Eq. (27), with the above
dictated BCs, in the finite domain is given in Refs. [38,39,45],

cpL(x, 1) =1 — %(1—)5) - imi (_y;)me%%’ sin[ym(1 — 1)1,
(29)
where the eigenvalues are given by
Ym =1 (m — 1). (30)
The potential drop over the entire region is
V = A¢ = A¢pL + A¢cpL — InN, (€29)

where the last term accounts for the nonzero potential given
in Eq. (12). The potential difference across the DL [utilizing
Eq. (28)] is

A t—/la¢d——/1Ed—/l—i d
¢pL(t) = e X = ; pLdX = | e X.
(32)

The potential drop across the CBL can be calculated by
requiring that the counterion electrochemical potential,

p=Inc"+¢, (33)

is conserved at the interface located approximately at x =
& < 1. Hence we have

AgepL(t) = p(x =", 1) —px =¢7,1)

1 |:C (x—8 ,t)i|f\,1 |: N ]
ct(x=¢t,1) cpL(x =0,1) ’
(34)

Using the notation that 7 is the time at which concentration
at the permselective interface is zero is completely depleted
[ecpL(x = 0,t = T) = 0], we find that the potential drop is

! i
\% T)Y=A T) = _
=1 pu=1 /0 2cpL(x, 1) *

— In[epL(x = 0, 1)]. (35)

Equation (35) is the dashed red line in Fig. 7. It shows
remarkable correspondence to simulations until time 7. We
also note that at steady state, for i < iim, Eq. (35) reproduces
Eq. (1).

For t > T, the depletion front is moving away from the
permselective interface. The exact location of the front can be
calculated by cpp(x = x4, 1) = 0 where x, is the location of
the moving depletion front. Mathematically, it is defined by
Eq. (29):

2 > (="
Xe=1—=+42 E ( 2) e vl sin[y,,(1 —x,)].  (36)
l Y
m=1 m

Four comments are necessary. First, x,(¢ > T) needs to be
numerically calculated from Eq. (36). From numerical inves-
tigation of cpp (xy, t) it can be shown that for t > T only the
m = 1 mode is non-negligible. Thus, it is relatively simple to
calculate x,(f > T'). Second, it is also possible to estimate T

for i > 2 by requiring that x,(t = T') = 0. This yields

4 w2 2

Third, at steady state, the location of the depletion front is
Xo=x(t > o00)=1-1i (38)

Fourth, Eq. (38) is similar Eq. (14) in Y09 except for the
factor 2. We have defined our current density to be half of the
one used in Y09 (there i}, = 1 while here it i}, = 2). This
difference will be carried throughout this work.

C. Steady-state solution

As shown in Refs. [32,35,36,46] the equation govern-
ing steady-state ion transport through a 1D permselective
media is

&[Ex — 3E° + 1E*(x = DE] — Yilx —%)E = i/2. (39)
Y09 solved this equation for the DL, TL, SCL, and CBL
separately. Thereafter, using a clever regularization scheme,
Y09 integrates across the entire domain comprising the DL,

TL, SCL, and CBL and finds the above-limiting current-
voltage response [Y09’s Eq. (52)],

3(Li — )2
V(t — 00) = \/_(2;—) —In[4ei(}i = 1)"*] +2n
gl
3
+ 7” +0.634, (40)
where y =0.57721 is Euler’s constant and n =

sinh~![(i%,/N)!/?]. We note a difference between Eq. (40)
and Y09’s Eq. (52). Yariv did not account for the — In N term
in Eq. (12) and as a result Y09 has an additional In N which
has been removed here. As pointed out by Yariv, this equation
is similar to that derived by Ben and Chang [32] [their
Eq. (3.15)]. See Y09 for a thorough comparison of these two
works. For the purpose of this work, it is in fact beneficial
to note that Y09 derived each of the terms in Eq. (40) as a
function of X, [Eq. (38)]. In this notation the above-limiting
current-voltage response is

2il/253/? 1— %
Vit — o00) = 3 + In < )
&

3
o+ 7’/ +0.634. a1

Both Egs. (40) and (41) are identical and are given by the
dotted black line in Fig. 7. They indeed show remarkable
correspondence at steady state. In the remainder, we will
present additional results from Y09 that are needed for our
calculations. See Y09 for more details and explicit expres-
sions for the electric fields in each of the four regions.

D. Intermediate times

We return to the time-dependent governing equations and
consider the SCL region:

1.2(p2
escLe = escLar — 38 (Eser) o (42)

—&*(EscL, — Escrx) = cscLEscL + i/2. (43)
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In the steady state, it was shown that [35,36]

EscL ~ & 'Escr._1 + EscLo + eEscL + &% EscLay + -+
(44)

Inserting Eq. (44), which now depends on time, into Eqs. (42)
and (43) results in two interesting results. First, Eq. (43) yields
to leading order conservation of the electric current density:

-1 1-
cscLEscL = cscLe” EscL,—1 = —3i. 45)

This in turn suggests that the leading order term of the
concentration in the SCL, cgcr, is linear to O(e) [this will
be shown shortly—Eq. (54)]. Second, due to the cscL = ¢ ~
O(¢) scaling Eq. (42) reduces to

362 (Eser) o = 5(EScL—1) = 0. (46)

Thus, remarkably, both leading order equations are steady
state. This might appear paradoxical for a time-dependent
problem. The resolution to this is that the time dependency
of the problem enters via the location of the moving depletion
front [Eq. (36)].

The observation that the problem is “quasi” steady state
suggests the following ansatz: Replace %, in Eq. (41) with
X4(t) calculated from Eq. (36). This yields

%WMﬂWﬂ+m[1—&m]
3e de/2ix, (1)

3
+ 77/ +0.634. (47)

Vie>T)=

This solution is given by the dashed-dotted blue line in Fig. 7.
It can be observed that at steady state, as x, — X, we get
the expected result that V(r > T) — V(t — o0). Also, it
appears that the ansatz holds until it fails near the second
bend of the simulation curve of Fig. 7. This can be attributed
to the fact that in Eq. (47) it has been assumed that there
are four fully developed regions (DL, TL, SCL, and CBL).
However, perhaps the TL is not fully formed. If that is the
case, that would explain why Eq. (47) overpredicts the space
charge in the TL. This would increase the conductance in
this region—or equivalently decrease the resistance and the
resultant voltage.

To support this explanation, we derive the voltage drop
across three regions (DL, SCL, and CBL) and neglect the
effects of the TL. This potential drop is then

A3 1ayers = A¢pL + ApscL + AdcpL — In N. (48)

Similar to Eq. (32) the potential drop in the DL is calculated
from

i
—dx, 49
2cpL(x, 1) * “9)

1
A¢pL(t) = f

where the bottom integral limit has been modified [relative to
Eq. (32)] from O to x,. In the SCL, Y09 gives

Escr,_; = —i(xy — X), (50)

EscLo = —1/[2(x — x)]. (5L

To leading order, we find that

X 5 )
AgscL(t) = —/ EscLdx = —/ SSCLoL g
0 0 &
_ /x* mdx _ 2i1/2x§/2. )
0 € 3e

This is the first term in Eq. (47). To find the poten-
tial difference in the CBL (A¢cpL(t) = — In[CscL(x — 0)]),
it remains for us to calculate the concentration near the
interface,lscr (x — 0). The concentration in all three regions
is given by Y09

¢ = i(x —x,) + 12 [E? — E*(x = 1)]. (53)
Inserting Eqgs. (44), (50), and (51) in Eq. (53) yields to

leading order
i ¢
escL = f = (54)
Xe — X2

such that cscr (x — 0) = (£i'/2)/(2x}/?). Then the potential
drop [Eq. (48)] is

i 2i1/2x32

1
scL(?) ®3 layers /);F 2epL(x. 1) X+ 3e

ie
—In (\/;5> (55)

Note that last term is also reminiscent of a term that appears in
Eq. (47). Also, it should be noted that the nonlinear resistance
is dominated here by the second term which is of o™
while the two remaining terms are of order 0(&% and O(In ¢).
Equation (55) is given by the dotted magenta line in Fig. 7 and
shows good correspondence for intermediate times. At larger
times, this solution fails where it overpredicts the resistance
and the voltage. This can be attributed to the lack of inclusion
of the TL.

IV. CONCLUSIONS

This work considers the time evolution of the potential
drop across a standard 1D system, whose two ends are a
permselective interface and bulk, undergoing concentration
polarization for above-limiting currents. To describe the com-
plicated behavior of the potential drop, we note that the
structure of the space charge varies in time in a manner which
is analogous to how the space-charge varies in the steady state
with increasing currents.

For short times, the space charge is highly localized in
the EDL. The remaining DL is electroneutral. Utilizing the
electroneutral approach of the steady state, we derive the
short time approximation for the potential drop [V (t < T),
Eq. (35)] which holds until the concentration is completely
depleted at the permselective interface.

At steady state, the eSCL comprises three regions (CBL,
SCL, and TL). The current-voltage response is then given by
Y09’s remarkably simply expression [V (t — 00), Eq. (41)].
Using an ansatz of replacing steady-state depletion front
location %, with a time-evolving depletion front x.(z), we
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derive the time-evolving version of Eq. (41)—this is Eq. (47)
Vi > 1)

Leveraging the understandings that the governing equa-
tions are quasi steady state once the concentration at the
interface is completely depleted, we derive an expression for
the potential drop across the system for intermediate times
when we assume that the effects of the TL are negligible
[VscL(@), Eq. (55)].

Our overall goal has been to elucidate how the change
in the structure of the EDL effects the change in the po-
tential drop. Our three different equations show very good

correspondence to the fully coupled numerical simulation
(Fig. 7).

It is our hope that this approach can be extended to ad-
ditional nanofluidic systems that currently suffer from unre-
solved questions regarding time dependencies, for example,
semi-infinite domains, or three-layered systems that account
for the behavior within the permselective region as well as
the enriched region. Hopefully, this work demonstrates that
time-dependent problems in permselective systems might not
be as difficult as one might initially assume, and that more
effort should be made in addressing these problems.
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